1 芯片功能说明

XPT6871 是一款桥式音频功率放大器。5V 工作电压时,最大驱动功率为 4W (4 Ω 负载, THD<10%) 音频范围内总谐波失真噪声小于 1% (20Hz~20KHz);XPT6871 的应用电路简单,只需极少数外围器件; XPT6871 输出不需要外接耦合电容或上举电容、缓冲网络、反馈电阻; XPT6871 采用 SOP 封装,特别适合用于小音量、小体重的便携系统。XPT6871 可以通过控制进入休眠模式,从而减少功耗;XPT6871 内部具有过热自动关断保护机制。XPT6871 工作稳定,增益带宽积高达 2.5MHz,并且单位增益稳定。通过配置外围电阻可以调整放大器的电压增益,方便应用。

1.1 芯片主要功能特性

- 输出功率高(THD+N<10%, 1KHz频率): 4W(4Ω负载)
- 掉电模式漏电流小: 0.6uA(典型)
- 采用 SOP 封装
- 外部增益可调
- 宽工作电压范围 2.0V─5.5V
- 不需驱动输出耦合电容、自举电容、缓冲网络
- 单位增益稳定

1.2 芯片应用场合

- 手提电脑
- 台式电脑
- 低压音响系统

1.3 产品订购信息

芯片型号	封装类型	包装类型	最小包装数量(PCS)	备注
XPT6871	SOP8	管装	100/管	

1.4 芯片基本结构描述

XPT6871 是双端输出的音频功率放大器,在 5V 电压工作时,最大可以驱动输出功率为 4W,音频范围内总谐波失真噪声小于 1% (20Hz~20KHz)。其原理框图为:

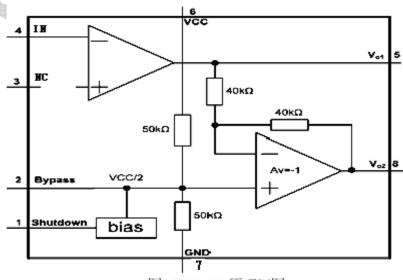
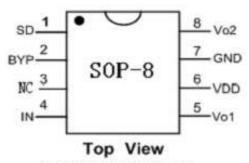



图1 XPT6871 原理框图

1.5 芯片的封装和引脚

1.5.1 封装引脚图

XPT6871的封装管脚图

1.5.2 XPT6871 管脚描述

表1 XPT6871 管脚描述

管脚号	符号	描述
1	SD	掉电控制管脚,高电平有效,
2	BYP	内部共模电压旁路电容
3	NC	此管脚悬空
4	IN	模拟输入端
5	VO1	模拟输出端 1
6	VDD	电源正 电源正
7	GND	山源地
8	VO2	模拟输出端 2

2 芯片特性说明

2.5 芯片最大极限值

表2 芯片最大物理极限值

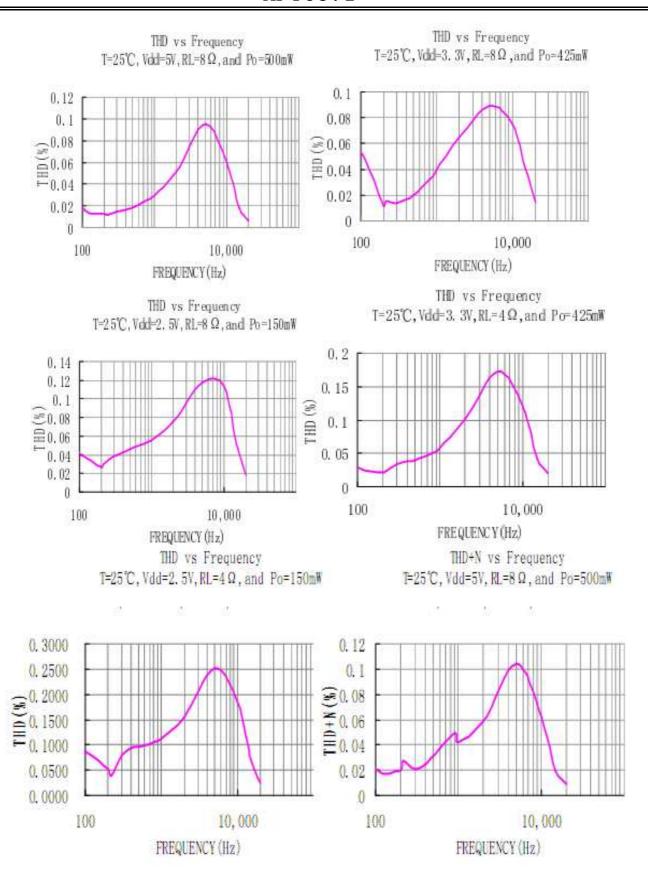
参数	最小值	最大值	单位	说明
电源电压	1.8	6	V	
储存温度	-65	150	°C	
输入电压	-0.3	V_{DD}	V	
功耗			mW	内部限制
耐 ESD 电压 1	3000		V	HBM
耐 ESD 电压 2	250		V	MM
节温	150		°C	典型值 150
推荐工作温度	-40	85	°C	
推荐工作电压	2.0	5.5		
热阻				
$\theta_{JC}(SOP)$	î î	35	°C/W	
$\theta_{JA}(SOP)$		140	°C/W	
θ _{XC} (LLP)	2 3	4.3	°C/W	
$\theta_{JA}(LLP)$		56	°C/W	900-
焊接温度		220	°C	15秒内

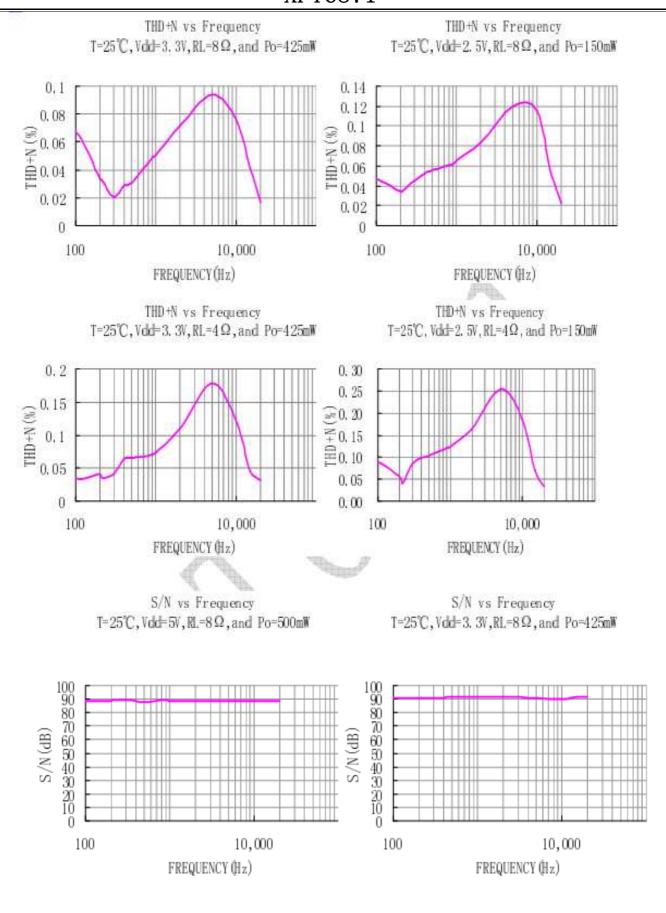
2.6 芯片数字逻辑特性

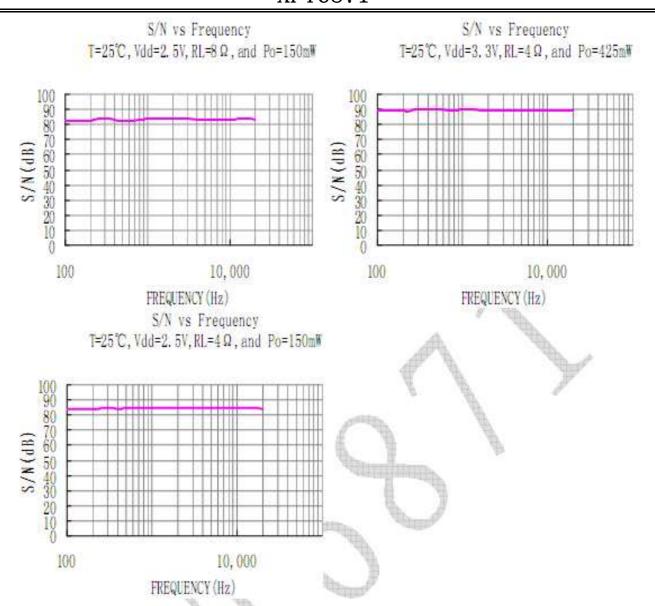
XPT6871

表3 关断信号数字逻辑特性

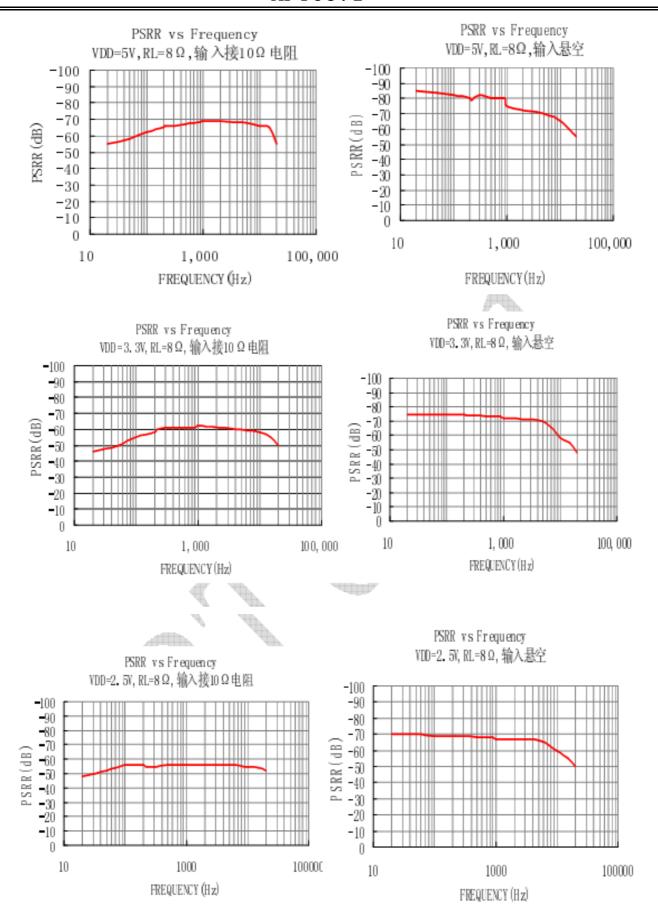
参数	最小值	典型值	最大值	单位	说明
电源电压为:	5V	0.96/05	M 2007	er ve et	57273
VIH		1.5		V	
VIL	3	1.3		V	
电源电压为:	3V	-20	78	S S	
VIH		1.3		V	
VIL	Q Q	1.0	, II	V	
电源电压为:	2.6V	-March			
VIH	8 9	1.2	*	V	
VIL		1.0		V	

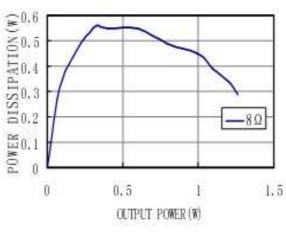

2.7 芯片性能指标特性

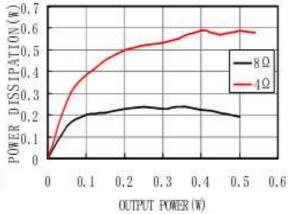

表4 芯片性能指标 1 (VDD=5.0V, TA=25°C)


符号	参数	測试条件	最小值	标准值	最大值	单位
V_{DD}	电源电压		2.0		5.5	V
I _{DD}	电源静态电流	V _{IN} =0V, I _O =0A,	4	6	10	mA
I _{SD}	关断漏电流			0.8	2	μА
Vos	输出失调电压			5.7	50	mV
Ro	输出电阻		7	8.5	10	ΚΩ
Po	输出功率	THD=1%,f=1KHz R_L =4 Ω R_L =8 Ω	D	3.8 1.8		W
		THD+N=10%,f=1KHz		190		Ì
THD+N	总失真度+噪声	A _{VD} =2 20Hz≤f≤20KHz LLP 封装, R _L =4Ω, P ₀ =1.6W 其他封装, R _L =8Ω, P ₀ =1W		0.1		%
PSRR	电源抑制比	V _{DD} =4.9V 到 5.1V	65	80		dB

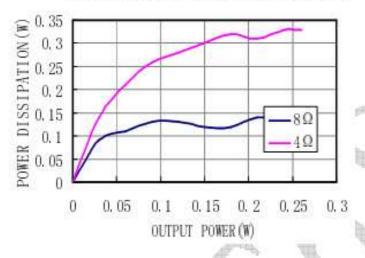
2.8 XPT6871 的典型参考特性

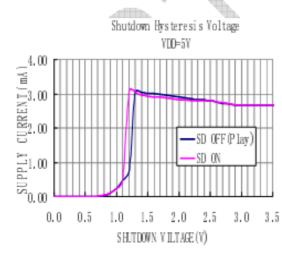

2.8.1 总谐波失真 (THD), 失真+噪声 (THD+N), 信噪比 (S/N)

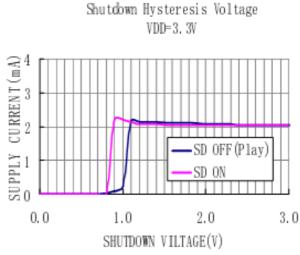

2.8.2 电源电压抑制比 (PSRR)

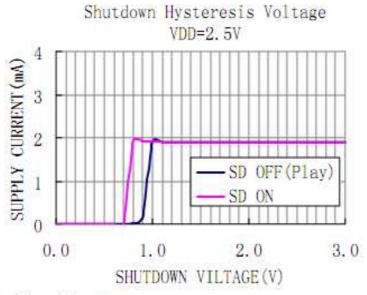


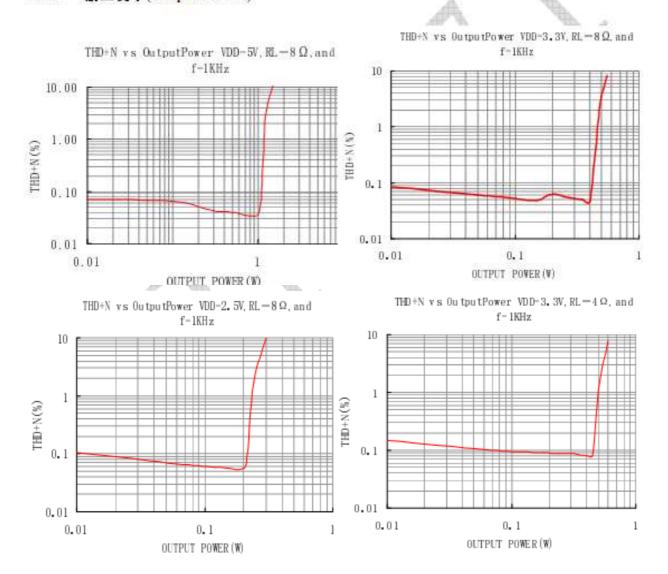
2.8.3 芯片功耗 (Power Dissipation)

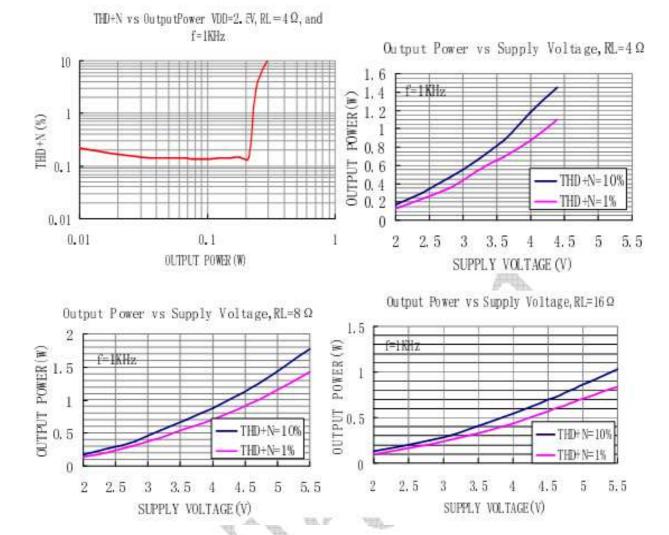







Power Dissipaton vs Output Power, VDD=2.5V


2.8.4 关断滞回 (Shut Down Hysteresis)



2.8.5 输出功率(Output Power)

3 XPT6871 应用说明

XPT6871 内部集成两个运算放大器,第一个放大器的增益可以调整输入电阻来设置, 此放大器内置了 50KQ 反馈电阻,后一个为电压反相跟随,从而形成增益可以配置的差分 输出的放大驱动电路。

3.5 外部电阻配置

如应用图示 1,运算放大器的增益由外部电阻 R,决定,其增益为 $A_v=2\times R_i/R_i$,芯片通过 V_{O1} 、 V_{O2} 输出至负载,桥式接法。

桥式接法比单端输出有几个优点:其一是,省却外部隔直滤波电容。单端输出时,如不接隔直电容,则在输出端有一直流电压,导致上电后有直流电流输出,这样即浪费了功耗,也容易损坏音响。其二是,双端输出,实际上是推挽输出,在同样输出电压情况下,驱动功率增加为单端的4倍,功率输出大。

3.6 芯片功耗

功耗对于放大器来讲是一个关键指标之一,差分输出的放大器的最大自功耗为:

 $P_{DMAX} = 4 \times (V_{DD})^{-2} / (2 \times \prod^2 \times R_L)$

必须注意,自功耗是输出功率的函数。

在进行电路设计时,不能够使得芯片内部的节温高于 T_{JMAX} (150°C),根据芯片的热阻 Θ_{IA} 来设计,可以通过自己散热铜铂来增加散热性能。

如果芯片仍然达不到要求,则需要增大负载电阻、降低电源电压或降低环境温度来解决。

3.7 电源旁路

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求旁路电容尽量靠近芯片、电源脚。典型的电容为 10uF 的电解电容并上 0.1uF 的陶瓷电容。

在 XPT6871 应用电路中,另一电容 C_B (接 BYP 管脚) 也是非常关键,影响 PSRR、 开关/切换噪声性能。一般选择 0.1uF~ 1uF 的陶瓷电容。

3.8 掉电模式

为了节电,在不使用放大器时,可以关闭放大器,XPT6871 有掉电控制管脚,可以控制放大器是否工作。

该控制管脚的电平必须要接满足接口要求的控制信号,否则芯片可能进入不定状态, 而不能够进入掉电模式,其自功耗没有降低,达不到节电目的。

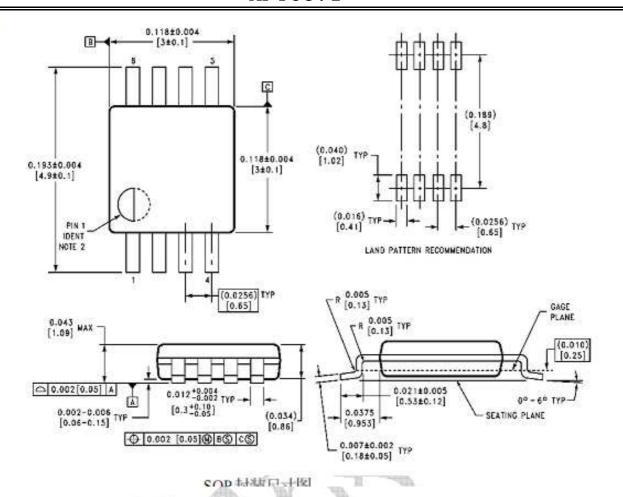
3.9 外围元件的选择

正确选择外围元器件才能够确保芯片的性能,尽管 XPT6871 能够有很大的余量保证性能,但为了确保整个性能,也要求正确选择外围元器件。

XPT6871 在单位增益稳定,因此使用的范围广。通常应用单位增益放大来降低 THD+N,是信噪比最大化。但这要求输入的电压最大化,通常的音频解码器能够有 IV_m。的电压输出。

另外, 闭环带宽必须保证, 输入耦合电容 C (形成一阶高通)决定了低频响应,

3.10 选择输入耦合电容


过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于100Hz-150Hz的低频语音,因此采用大的电容并不能够改善系统的性能。

除了考虑系统的性能, 开关切换噪声的抑制性能受电容的影响, 如果耦合电容大, 则 反馈网络的延迟大, 导致 pop 噪声出现, 因此, 小的耦合电容可以减少该噪声。

另外,必须考虑 C_B 电容的大小,选择 $C_B=1uF$, $C_i=0.1uF\sim0.39uF$,可以满足系统的性能。

4 芯片的封装

如没特别提示,所有尺寸标注均为:英寸(毫米)。

5 XPT6871 典型应用电路

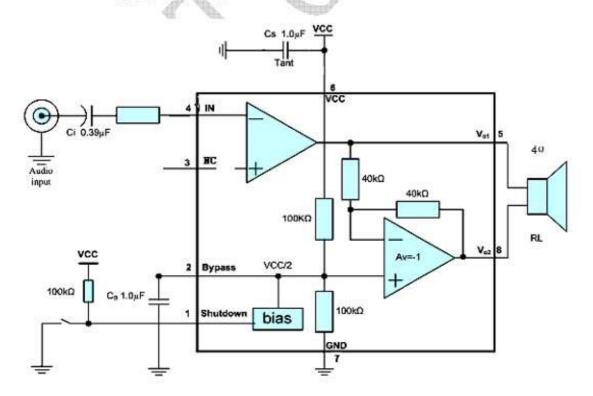
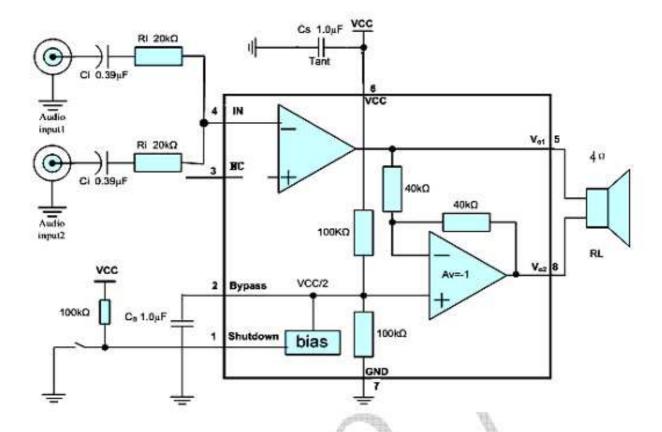



图2 XPT6871 典型应用电路

XPT6871 两声道叠加应用电路