

Data Buffer

GENERAL DESCRIPTION

The XR-2125 is a logic circuit designed to perform the data buffer function for Bell 212A Type Modem Systems. Both asynchronous to synchronous and synchronous to asynchronous conversion are performed at nominal data rates of 1200 bits per second. The XR-2125 is selectable for character lengths of 9 or 10 bits. Separate enable/disable inputs are supplied for async to sync and sync to async converter sections. These inputs allow the same data lines to be used for asynchronous or synchronous operation.

The receive data buffer section (sync to async) accepts input sync data (typically from the modem demodulator) at 1200 BPS and converts it to a 1219 BPS async data format. The transmit data buffer (async to sync) accepts input async format data with a data rate of 1200 BPS +1%, -2.5% and it is synchronized to 1200 BPS, which is typically sent to the modulator. This section also provides break signal automatic extension.

The XR-2125 is constructed using silicon gate CMOS technology for low power operation. Operation is designed for an input clock frequency of 1.8432 mHz. The XR-2125, available in a 14 Pin package, is designed for single 5 volt operation.

FEATURES

Bell 212A Compatible Asynchronous to Synchronous Conversion Synchronous to Asynchronous Conversion Independent Disable Input for Receiver and Transmitter Sections 1.8432 MHz Clock Break Signal Automatic Extension for Transmitter 1200 BPS +1%, -2.5% Operation Single 5 Volt Operation

APPLICATIONS

Bell 212A Data Buffer

ABSOLUTE MAXIMUM RATINGS

-0.3 to +7.0 V
-0.3 to V _{DD} +0.3
±10 mA
250 mW
-65°C to +125°C

ORDERING INFORMATION

Package

Ceramic

Plastic

Part Number XR-2125CN XR-2125CP Operating Temperature 0°C to 70°C 0°C to 70°C

SYSTEM DESCRIPTION

The XR-2125 provides the complete interface between synchronous and character - asynchronous data systems. The synchronous side consists of two data lines, T_{XD} and R_{XD}, each with their respective clocks, T_{XC} and R_{XC}. The synchronous portion is designed for data rates of 1200 \pm .01% BPS. The asynchronous side handles data oriented in characters where the actual data bits are bracketed by a start and stop bit. Character lengths are 9 or 10 bit (7 or 8 data bits), pin selectable.

To perform this interface, the XR-2125 consists of two main sections: synchronous to asynchronous (receive section) converter to reinsert stop bits deleted by the sending modern. The other section is the a synchronous to synchronous converter (transmit section) to add or delete stop bits to correct the transmit data rate to 1200 BPS. This section also extends the break signal to two character lengths plus three bits when it comes in at a shorter period.

A standby mode is included to put the $\rm XR-2125$ in a low supply current, non-operative, mode on command.

ELECTRICAL CHARACTERISTICS

Test Conditions: V_{DD} = 5 V ± 5%, T_A = 0-70°C, CLK IN = 1.8432 MHz ±0.01%, unless otherwise specified.

SYMBOL	PARAMETERS	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
DC CHARACTERISTICS							
VOL	Output Low Voltage		0.05	0.8	V	IOL = 2 mA	
∨он	Output High Voltage	2.4			v	I _{OM} = -400 μA	
VIL	Input Low Voltage			0.8	v		
Vін	Input High Voltage	2.4			v		
^I OL	Output Low Current		2		mA		
юн	Output High Current			-400	μΑ		
١N	Input Current			±10	μA	V _{IN} = 0 - V _{DD}	
DD	Supply Current Quiesent	l	100	250	μA		
IDD	Supply Current Standby			10	μA		
AC CHARACTERISTICS: f _{TXC IN} = 1200 ±0.01% Hz, f _{RXC IN} = 1200 ±0.01% Hz.							
twstr	Start Bit Width		820		µ .s		
^t wstp	Stop Bit Width 9 Bit Character 10 Bit Character		938 951		μs μs	Reinserted Stop Bits and (n) (820 μs) long	
f _{txd}	TXD in Bit Rate	1170	1200	1212	BPS		
^t dt×d	TXD Out Delay Time			200	ns	C _L = 50 pf; 10/9 = Hi	
^t drxd	RXD Out Delay Time			200	ns	10/9 = Hi	
frxco	RXC Out Frequency		1219		Hz		

RECEIVE TIMING

TRANSMIT TIMING

3

DESCRIPTION OF INPUTS AND OUTPUTS

Pin Name Description

- 1 SB This pin places the XR-2125 in a non-operative, low quiesent current mode.
- - R_X EN An enable input for the receiver section (sync to async). When enabled, sync to async conversion is performed on R_{XD} I_N. When disabled, the data on R_X OUT will be identical to that of R_{XD} I_N (flow through mode). In Bell 212A type modern applications the sync to async will be disabled for 300 BPS FSK operation and for 1200 BPS synchronous operation.
- 4 T_{XD} IN The transmitter data input. This is a serial data stream with a data rate of 1200 BPS +1%/-2.5% (T_X EN active).
- 5 RXDOUT The asynchronous serial data outfrom the sync to async converter (RX EN active). The data rate of this signal is 1219 BPS.
- 6 RXCLKOUT Received clock output.
- 7 VSS Ground pin.
- 8 10/9 Asynchronous character length selection input. Ten bit (start bit, 8 data bits and a stop bit) or nine bit (7 data bits) can be selected.
- 9 RXC IN The receive clock input, which typically is supplied by the demodulator (XR-2122). The frequency should be 1200 Hz ± 0.01%.
- 10 RXD IN The synchronous serial data input which is typicall from the demodulator data output (RXD of the XR-2122). The data rate of this signal is 1200 BPS ± 0.01%.

11	CLK IN	Master clock input of 1.8432 Hz ± 0.01%.
12	TXC IN	The transmit clock input which is typically supplied by the modulator (XR-2121). The frequency should be 1200 Hz ± 0.01%.
13	TXD OUT	The synchronous serial data output which typically goes to the modulator input (XR-2121). The data rate of this signal is 1200 BPS \pm 0.01%.
14	VDD	This pin provides the input for the positive power supply which should be $+5 \pm 0.25$ volts.

CONTROL INPUTS

Table 1 gives the logic conditions for the various control inputs of the XR-2125.

		FUNCTION				
PIN	NAME	LOGIC HIGH	LOGIC LOW			
1	SB	Normal Operation	Standby Mode			
2	TXEN	Transmitter Enabled	Transmitter Disabled			
3	RXEN	Receiver Enabled	Receiver Disabled			
8	10/9	10 Bit Character	9 Bit Character			

Table 1. Control Input Conditions

PRINCIPLES OF OPERATION

The XR-2125 performs the complete asynchronous to synchronous and synchronous to asynchronous conversion on the serial transmit and receive data paths in a Bell 212A type modem. This conversion allows the synch modulator/ demodulator such as the XR-2121/XR-2122 to communicate with the async DTE. The async format is character type as shown in Figure 1.

Figure 1. Async Character

Figure 1 shows each character starting with a start bit (T1) followed by either 7 or 8 data bits (8 shown \rightarrow T2 - T9) and ending by a stop bit T10) this makes a total character length of either 9 or 10 bits, which the XR-2125 can be selected for by pin 8, 10/9.

The XR-2125 can also provide "flow through" operation by disabling the transmit and receive sections using pins 2 and 3, T_{XEN} and R_{XEN}. This mode would be used for 1200 BPS sync mode or 300 BPS bit async operation.

Figure 2 illustrates a typical connection of the XR-2125. Pins 2 and 3 (T_{XEN} and R_{XEN}) are used to toggle the

XR-2125 into the high speed asynchronous mode. The main function of the XR-2125 is to synchronize asynchronous data (1200 BPS + 1% - 2.5%) from the DTE to synchronous data (1200 BPS) for the modulator, and to take synchronous demodulated data (1200 BPS) and conver it to the 1219 BPS asynchronous format for the DTE.

The break detector serves to distinguish between an actual break character and two consecutive nulls with the stop bit deleted. It forces reinsertion of the stop bit between the nulls and passes

3