

Precision Tone Decoder

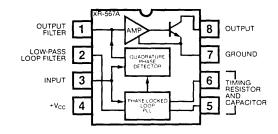
GENERAL DESCRIPTION

The XR-567A provides all the necessary circuitry for constructing a variety of tone detectors and frequency decoders. Phase-locked loop circuit techniques are used to provide operation from 0.01 Hz tp 500 kHz. The circuit also features an input preamp, a high-current logic output, and programmable output delay.

The XR-567A, available in an 8-Pin DIL package, is designed to offer improved frequency accuracy and drift characteristics over the standard industry 567. These changes offer improved overall circuit performance, while reducing initial circuit adjustments.

FEATURES

Programmable Detection Bandwidt Logic Output Wide Center	th	0% to 14% 100 mA		
	0.01			
Frequency Range	0.01	Hz to 500 kHz		
High Rejection				
of Out-of-Band Signals and Noise				
Direct Replacement for standard 567				
Inherent immunity to				
out-of-band signals & noise				


APPLICATIONS

Tone Detection Touch-Tone® Decoding Communications Paging Ultrasonic Remote Control Precision Oscillator Wireless Intercom Carrier-Tone Transceiver FSK Demodulation Dual Time Constant Tone Detector

ABSOLUTE MAXIMUM RATINGS

Power Supply	10 volts
Power Dissipation	
Ceramic Package	385 mW
Plastic Package	300 mW
Derate above 25°C	2.5 mW/°C
Operating Temperature Range	
XR-567AM	– 55°C to + 125°C
XR-567ACN/ACP	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-567AM	Ceramic	-55°C to +125°C
XR-567ACN	Ceramic	0°C to +70°C
XR-567ACP	Plastic	0°C to +70°C

SYSTEM DESCRIPTION

The XR-567A is an improved version of the popular 567 tone decoder. Center frequency accuracy is guaranteed by design modifications and testing to 5%, and is typically better than 2%. Temperature drift of the center frequency is also improved. Thus, in most applications, no trimming is required.

The XR-567A monolithic tone decoder consists of a phase detector, low pass filter, and current controlled oscillator which comprise the basic phase-locked loop, plus an additional low pass filter and quadrature detector enabling detection of in-band signals. The device has a normally high open collector output capable of sinking 100 mA.

The input signal is applied to Pin 3 (20 k Ω nominal input resistance). Free running frequency is controlled by an RC network at Pins 5 and 6 and can typically reach 500 kHz. A capacitor on Pin 1 serves as the output filter and eliminates out-of-band triggering. PLL filtering is accomplished with a capacitor on Pin 2; bandwidth and skew are also dependant upon the circuitry here. Bandwidth is adjustable from 0% to 14% of the center frequency. Pin 4 is + V_{CC} (4.75 to 9V nominal, 10V maximum); Pin 7 is ground; and Pin 8 is open collector output, pulling low when an in band signal triggers the device.

XR-567A

ELECTRICAL CHARACTERISTICS Test Conditions: V_{CC} = +5V. T_A = 25° C, unless otherwise specified.

	LIMITS				
PARAMETER:	MIN	ТҮР	MAX	UNITS	CONDITIONS
GENERAL Supply Voltage Range Supply Current Quiescent XR-567AM Quiescent XR-567AC Activated XR-567AM Activated XR-567AC Output Voltage Negative Voltage at Input Positive Voltage at Input	4.75	6 7 11 12	9.0 8 10 13 15 15 15 - 10 V _{CC} + 0.5	Vdc mA mA mA V V V V	$ \begin{array}{l} R_{L} \ = \ 20 \ k\Omega \\ R_{L} \ = \ 20 \ k\Omega \\ R_{L} \ = \ 20 \ k\Omega \\ R_{L} \ = \ 20 \ k\Omega \end{array} $
CENTER FREQUENCYHighest Center Frequency StabilityTemperature $T_A = 25^{\circ}C$ $0 < T_A < 70^{\circ}C$ $-55 < T_A < +125^{\circ}C$ Supply VoltageXR-567AMXR-567ACInitial AccuracyCenter Frequency	100	$500 \\ 35 \\ \pm 60 \\ \pm 120 \\ 0.5 \\ 0.7 \\ \pm 2.0 \\ 1.06$	1.0 2.0 ±5.0	kHz ppm/°C ppm/°C ppm/°C %/V %/V	$f_{O} = 100 \text{ kHz}$ $f_{O} = 100 \text{ kHz}$ $f_{O} = 80 \text{ kHz}$ $f = \sqrt{k_{C}}$
DETECTION BANDWIDTH Largest Detection Bandwidth XR-567AM XR-567AC Largest Detection Bandwidth Skew XR-567AM XR-567AC Largest Detection Bandwidth Variation Temperature Supply Voltage	12 10	14 14 1 2 ±0.1 ±1	16 18 2 3 ±2	% of f _o % of f _o % of f _o % of f _o %/°C %/V	$f_0 = 100 \text{ kHz}$ $f_0 = 100 \text{ kHz}$ $V_{in} = 300 \text{ mV rms}$ $V_{in} = 300 \text{ mV rms}$
INPUT Input Resistance Smallest Detectable Input Voltage Largest No-Output Input Voltage Greatest Simultaneous Outband Signal to Inband Signal Ratio Minimum Input Signal to Wideband Noise Ratio	10	20 20 15 +6 ~6	25	kû mV rms mV rms dB dB	$I_L = 100 \text{ mA}, f_i = f_0$ $I_L = 100 \text{ mA}, f_i = f_0$ $B_n = 140 \text{ kHz}$
OUTPUT Output Saturation Voltage Output Leakage Current Fastest ON/OFF Cycling Rate Output Rise Time Output Fall Time		0.2 0.6 0.01 f ₀ /20 150 30	0.4 1.0 25	V V μA ns ns	$I_{L} = 30 \text{ mA, } V_{in} = 25 \text{ mV rms}$ $I_{L} = 100 \text{ mA, } V_{in} = 25 \text{ mV rms}$ $R_{L} = 50\Omega$ $R_{L} = 50\Omega$