

T1, T148C, & 2 M Bit/s PCM Line Repeater

GENERAL DESCRIPTION

The XR-T5600/T5620 is a bipolar monolithic repeater IC designed for PCM carrier systems operating at 1.544 M bit/s (T1), 2 M bit/s, or 2.37 M bit/s (T148C). It provides all of the active circuits required for one side of a PCM repeater. A crystal filter clock extraction version of XR-T5600/T5620 is available as XR-T5700/T5720.

FEATURES

Single 5.1 V Power Supply Less than 10 ns Sampling Pulse over the Operating Range Triple Matched ALBO Ports 2 M Bit/s Capability

APPLICATIONS

T1 PCM Repeater T148C PCM Repeater European 2 M Bit/s PCM Repeater T1C PCM Repeater (requires external preamplifier)

ORDERING INFORMATION

Part Number	Package	Operation Temperature
XR-T5600	Plastic	-40°C to 85°C
XR-T5620	Plastic or Ceramic	-40°C to 85°C

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Operating Temperature	-40°C to +85°C
Supply Voltage	-0.5 to +10 V
Supply Voltage Surge (10 ms)	+25 V
Input Voltage (cxcept Pin 2,3,4,17)	-0.5 to 7 V
Input Voltage (Pin 2,3,4,17)	-0.5 to +0.5 V
Data Output Voltage (Pin 10, 11)	20 V
Voltage Surge (Pin 5,6,10,11) (10 msec onl	y.) 50 V

FUNCTIONAL BLOCK DIAGRAM

SYSTEM DESCRIPTION

The XR-T5600/T5620 performs most of the functions required for one side of a PCM repeater operating at 2 M bit/s or similar baud rate. The integrated circuit amplifies the received positive and negative pulses and feeds them into Automatic Line Build-out (ALBO), clock and data threshold detectors, see Figure 1. The ALBO threshold detector ensures that the received pulses at Pins 7 and 8 have the correct amplitude and shape. This is carried out by controlling the gain and frequency shaping of the ALBO network with three variable impedance ALBO ports.

The clock threshold detector extracts timing information from the pulses received at Pins 7 and 8 and passes it into the external tank coil at Pin 15. The sinusoidal-type waveform is amplified into a square wave at Pin 13, and forwarded through an external phase shift network into Pin 12. This waveform provides the data sampling pulse which opens latches into which the data from the data threshold detectors is passed. The resulting pulses are stored for half a bit period (normally 488 ns) in the latches. They appear as half-width output pulses at Pins 10 and 11.

ELECTRICAL CHARACTERISTICS

Test Conditions: $T_A = 25^{\circ}C$, $V_{CC} = 5.1 V \pm 5\%$, unless specified otherwise (see Figure 1).

PARAMETERS	PINS	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Supply Current Data Output Leakage Current ALBO Port Off Voltage Amplifier Pin Voltage	14 10,11 2,3,4 5,6,7,8	2.4	22 0 0 2.9	30 100 0.1 3.4	mΑ μΑ V V	V _{pull-up} = 15 V, V _{cc} = 5.35 V
DYNAMIC CHARACTERISTIC	S AMPLI	FIER				
Output Offset Voltage AC Gin @ 1 MHz Input Impedance Output Impedance		-50 47 20	0 50	50 53 200	mV dB kΩ Ω	R _s = 8.2 kΩ
ALBO						
ALBO Off Impedance ALBO On Imepdance		20		25 25	kΩ Ω	
THRESHOLDS						
ALBO Threshold Clock Threshold as % of ALBO DATA Threshold as % of ALBO Clock Drive Current	Threshold Threshol	1.4 68 d 42 0.7	1.5	1.6 80 49 1.4	V % % mA	At Vo = VALBO Threshold
OUTPUT STAGES						RL = 130Ω, V _{pull-up} = 5.1 ± 5%
Output Pulse Rise Time Output Pulse Fall Time Output Pulse Width Output Pulse Width Differential Buffer Gate Voltage (Low) Buffer Gate Voltage Differential		224 -10 0.65 -0.15	244	40 40 264 +10 0.95 0.15	ns ns ns V V	

ELECTRICAL CHARACTERISTICS

Test Conditions: Unless otherwise stated, all characteristics shall apply over the operating temperature range of -40°C to +85°C with $V_{CC} = 5.1 \text{ V} \pm 5\%$, all voltages referred to ground = 0 V.

SYMBOL	PARAMETERS	PINS	MIN	ТҮР	MAX	UNIT	CONDITIONS
GENERAL (R	ef. Figure 2)						
IS UD	Supply Current Data Output	14		22	30	mA	
	Leakage Current Amplifier Pin Voltages ALBO Ports Off Voltage	10,11 5,6,7,8 2,3,4	2.4	6 2.9 0	100 3.4 0.1	μΑ 	From V_S (See Note 1)

Note: 1. Vs = 15 V, Vcc = 5.35 V

AMPLIFIER	Ref. Figure 2, Only Pins 1, 9,	1018 co	nnected)			.	•
	Input Offset Voltage	5&6	-10		+10	mV	$R_S = 8.2 k\Omega$
	Input Bias Current	5&6	0		5	μΑ	(See Note 1) $R_S = 8.2 k\Omega$ (See Note 1)
	Input Offset Current	5&6	-1		1	μA	$R_{S} = 8.2 k\Omega$ (See Note 1)
	Output Offset Voltage	7&8	-50	0	50	mV	$R_{S} - 8.2 k\Omega$ (See Note 1)
	Common Mode Rejection Ratio Output Voltage Swing	7&8 7&8	30 2.2		.	dB V	V _{CC} ±10%

Note: 1. Rs = Source Resistance

CLOCK AMPL	CLOCK AMPLIFIER (Ref. Figure 2, Disconnect Pin 15 from Pin 16)											
	Input Offset Voltage	15 & 16	0.5		6	mV	R _S = 10 kΩ (See Note 1)					
	Input Bias Current	15 & 16			10	μA	T = 25°C					
	Max. Output Voltage	13	0.7			V						
	Min. Output Voltage	13	0.7			V						
	Max./Min. Output Voltage Difference	-	0.7		50	mV						

Notes: 1. RS = Source resistance, Pin 15 positive with respect to Pin 16

2. Pin 15 = Pin 16 = 3.6 V

3. Pin 15 = 2.6 V, Pin 16 = 3.6 V

4. Pin 15 = 4.6 V, Pin 16 = 3.6 V

5. Calculation only

SYMBOL	PARAMETERS	PINS	MIN	ТҮР	MAX	UNIT	CONDITIONS
LBO (Ref. Fig	gure 2)						
	On Current Drive Current Resistance Pin 17 to Groun	1 17 d	3 0.4 35	50	1.4 70	mA mA kΩ	V8-V7 = ± 1.75 V V8-V7 = ± 1.75 V Not Powered
YNAMIC CH	ARACTERISTICS			•			
MPLIFIER (F	Ref. Figure 3)						
Ao Z _{in} Z _{out}	AC Gain @ 1 MHz Input Impedance Output Impedance	5 to 8 5 7,8	47 20	50	53 200	dB kΩ Ω	(See Note 1) (See Note 2)
otes: 1. At 2. At	1 MHz, AC ground Pins 7 an 1 MHz, use Figure 2	d 8, disconn	ect 51 Ω i	resistor, allo	ow for in-cire	cuit R,C	
LOCK AMPLI	FIER (Ref. Figure 3)						
Ao BW ^t d Z _{out}	AC Gain -3 dB Bandwidth Delay Output Impedance	15, 16 to 13 15, 16 to 13 15 to 13 13	32 10 8		mHz 12 200	dΒ ns Ω	(See Note 1) (See Note 2) (See Note 3) (See Note 4)
otes: 1. Rer 2. Rer 3. Rer edg 4. Rer	nove dc offset, at 2 . 048 MH nove dc offset, Pin 13 = 1 V nove dc offset, Pin 15 = 2 V e nove dc offset, at 2.048 MH	z, Pin 13 = 1 pk-pk sine v pk-pk sine v z	V pk-pk si vave vave; delay	ne wave from Pin 1	5 negative-go	bing zero cr	ossover to Pin 13 positive
LBO (Ref. Fig	jure 2)	1 1			1	r	
	Off Impedance Intermediate Impedance Difference On Impedance Transconductance	2,3,4 2,3,4 2,3,4 7/8 to 1	20		5 25 0.03	kΩ % Ω dB	(See Note 1) (See Note 2) (See Note 3) (See Note 4)
otes: 1. At 2. At 3. At 4. At	Transconductance 1 MHz, allow for in-circuit R 1 MHz, V8-V7 adjusted for c 1 MHz, V8-V7 adjusted for ± 1 MHz, change in V8-V7 for	,C urrent at Pin = 1.75 V current at Pi	i 1 = 100 μ. in 1 = 10 μ.	Α Α to 100 μ,	0.03	dB	(See Note 4)

SYMBOL	PARAMETERS	PINS	MIN	ТҮР	MAX	UNIT	CONDITIONS
THRESHOLD V	OLTAGES (Ref. Figure 3)						
	ALBO Threshold +ve	8-7	1.4	1.5	1.6	V	(See Notes 1 & 2)
	ALBO Threshold -ve	7-8	1.4	1.5	1.6	V	(See Notes 1 & 2)
	ALBO Threshold Difference	_	-5	0	5	%	(See Note 3)
	Clock Drive on Current						
	(peak) +ve	18		1.0	1.4	mA	(See Note 4)
	Clock Drive on Current						
	(peak) -ve	18		1.0	1.3	mA	(See Note 5)
	Clock Drive on Current						
	Difference		-5	0	5	%	(See Note 3)
	Clock Threshold +ve	87	68		80	%	(See Notes 1, 6, 8)
	Clock Threshold -ve	7-8	68		80	%	(See Notes 1, 7, 8)
	Clock Threshold Difference	_	-5	0	5	%	(See Note 3)
1	Data Threshold +ve	8-7	44	46	48	%	(See Notes 1,8,9,11)
1	Data Threshold -ve	7-8	44	46	48	%	(See Notes 1,8,10,11)
	Data Threshold Difference	-	-3	0	3	%	(See Note 3)

Notes: 1. Pk/pk voltage at Pins 7 and 8 of a 1 MHz sine wave derived through amplifier and measured differentially

2. Pk/pk voltage at Pins 7 and 8 adjusted for current at Pin 1 = 3 mA $\,$

3. Calculation only

-

percentage difference calculated from

 $\left(\frac{\text{higher value}}{\text{lower value}} -1 \right) \times 100 \%$

4. V8-V7 adjusted to ALBO threshold +ve voltage, ref. Pin 16 = 3.6 V

5. V7-V8 adjusted to ALBO threshold -ve voltage, ref. Pin 16 = 3.6 V

6. V8-V7 adjusted to peak current at Pin 18 = 1/2 (clock drive on current peak +ve)

7. V7-V8 adjusted to peak current at Pin 18 = 1/2 (clock drive on current peak -ve)

8. Figure taken as a percentage of lower ALBO threshold

- 9. V8-V7 increased until 1 MHz PRF on counter at Pin 10
- 10. V7-V8 increased until 1 MHz PRF on counter at Pin 11

11. With 2,048 MHz 2 V pk-pk sine wave to Pin 15 with 180 μ H in parallel with 36 Ω to Pin 16 = 3.6 V

OUTPUT STAC	3 ES (Ref. Figure 3. Use 180 μ	H inductor i	between Pir	is 15 and 16	5. Apply 2.0	48 MHz 2V	pk/pk to Pin 15.)
tr	Output Pulse Bise						
-1	Time +ve	10			40	ns	10% - 90%
tr	Output Pulse Rise						
	Time -ve	11			40	ns	10% - 90%
tf	Output Pulse Fall						
	Time +ve	10			40	ns	10% - 90%
tf	Output Pulse Fall						
	Time -ve	11			40	ns	10% - 90%
tw	Output Pulse Width +ve	10	224	244	264	กร	at 50%
	Output Pulse Width -ve	11	224	244	264	ns ,	at 50%
Δt_W	Output Pulse Width						
	Difference	-	-10		10	ns	
VOL	Buffer Gate Voltage						
	(low) +ve	10	0.65		0.95	V	
Vol	Buffer Gate Voltage						
	(low) -ve	11	0.65		0.95	V	
ΔVOL	Buffer Gate Voltage						
	Difference	-	-0.15		0.15	V	

Figure 3. A.C. Parameter Test Circuit

2-45

SYMBOL	PARAMETERS	PINS	MIN	TYP	MAX	UNIT	CONDITIONS
SAMPLE PULSE	WIDTH (Ref. Figure 4, Cy	= 27 pF)					
s	ample Pulse Width			10		ns	(See Notes 15)

Notes: 1. The sample pulse width is the period during which the output latches are opened to accept a signal above the data hold at Pin 7 or 8 and cause a half-width output pulse at Pin 11 or 10 respectively.

- Sample pulse width is specified with a 2.048 MHz TTL waveform at clock input (Pin 15) and a 2,400 MHz Schottky TTL waveform at amplifier input in the circuit of Figure 4. Figure 7 shows the relevant IC waveforms.
- 3. Monitor the frequency of coincident output pulses at Pins 10 and 11 either directly or through ouput circuit to frequency counter.
- 4. Sample pulse width = X ns + (0,1 x measured frequency in kHz) ns where X is the mean rise/fall times of the waveform at Pin 8 between 25% and 75%.
- 5. X to be within the range of 10 nx < X < 12 ns. THis requires HF layout techniques with the amplifier operated closed loop.

SAMPLE PULSE GENERATOR INPUT WAVEFORM (pin 12 - Ref. Figure 4, Cy = 40 pF)									
	Output Pulse Frequency	10,11	1,024 -100 ppm	1,024	1,024 +100 ppm	MHz	(See Note 1)		

Note: 1. With 2.048 MHz ±100 ppm TTLwaveform at clock input. With half of above waveform frequency at amplifier input.

Figure 4. Sampling Pulse Test Circuit

Figure 5. Typical and Limiting Values of Gain and Phase

COINCIDENT OUTPUT PULSES

Figure 6. IC Waveforms for Measuring Sampling Pulse Width

T5600/T5620 1.544 M BITS/SEC REPEATER APPLICATION CIRCUIT

XR-T5600/T5620

XR-T5620

2-49