

Low Power T1, T148C, & 2 M Bit/s Repeater

GENERAL DESCRIPTION

The XR-T5660 is a monolithic bipolar low power version of the XR-T5620 repeater circuit for T1 type carrier system operating at 1.544 M bit/s (T1), European 2 M bit/s or 2.37 M bit/s (T148C). It provides all of the active circuitry required for one side of a PCM repeater. A crystal filter clock extraction version is available as XR-T5760.

FEATURES

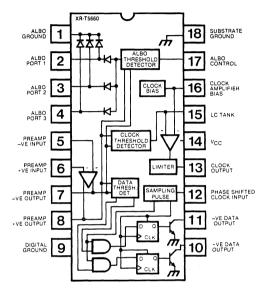
Low Power Single 5.1 V Power Supply Triple Matched Automatic Line Build-out (ALBO) Ports 2 M Bit/s Capability

APPLICATIONS

T1 PCM Repeater T148C PCM Repeater European 2 M Bit/s PCM Repeater T1C PCM Repeater (requires external amplifier)

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Operating Temperature	-40°C to +85°C
Supply Voltage	-0.5 to +10V
Supply Voltage Surge (10 ms)	+ 25V
Input Voltage (except Pins 2,3,4,17)	– 0.5 to 7V
Input voltage (Pins 2,3,4,17)	-0.5 to +0.5V
Data Output Voltage (Pins 10,11)	20V
Voltage Surge (Pins 5,6,10,11) (10 msec only) 5	


ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-T5660	Ceramic	-40°C to +85°C

SYSTEM DESCRIPTION

The XR-T5660 is a monolithic bipolar PCM repeater IC operating at 1.544 (T1), 2.048 and 2.37 (T148C) M bits/ sec. It is the low power version of XR-T5620 PCM repeater IC. It contains all the active circuitry to implement one side of a PCM repeater operating on either pulp or plastic insulated cables. Repeater to repeater spacing on either type of cable is 6300 ft. max.

FUNCTIONAL BLOCK DIAGRAM

Bipolar PCM signal is attenuated and dispersed in time as it travels along the transmission cable, characteristics of which vary with length, frequency, temperature and humidity. The PCM signal when received is amplified, equalized for amplitude characteristics and reconstructed by the preamplifier, automatic line build out (ALBO), clock and data threshold circuits. Amplitude equalization is achieved through shaping the frequency spectrum with the help of variable impedance ALBO ports.

Timing information is contained in the incoming pulse stream. This signal is full wave rectified and applied to an L-C tank circuit to extract the clock signal at the data rate. The clock signal is amplified and phase shifted between Pins 13 and 12 to obtain 90° phase shift by means of an R-L-C circuit.

Data is sampled and stored in the output data latches by an internally generated sampling pulse. Buffer drivers are then enabled to produce precisely timed output pulses whose width and time of occurence are controlled by the regenerated clock.

ELECTRICAL CHARACTERISTICS

Test Conditions: $V_{CC} = 5.1V$, $\pm 5\%$, $T_A = 25$ °C, unless otherwise specified.

PARAMETERS	MIN	ТҮР	MAX	UNIT	CONDITIONS
Supply Current		9	14	mA	ALBO Off
Clock & Data Output			100		V 15 V
Output Leakage Current Amplifier Pin Voltages	2.4	0	100 3.4	μΑ V	V _{pull-up} = 15 V At DC Unity Gain
Amplifier Output	2.1		0.1		
Offset Voltage Voltage Swing	- 50 2.2	0	50	mV V	$R_S = 8.2 k\Omega$ Measured Differentially from Pin 8 to Pin 7
Amplifier Input			-		
Bias Current ALBO on Current	3		5	μA mA	
Drive Current	0	1		mA	
AC CHARACTERISTICS				J	
Pre-Amplifier					
AC Gain at 1 MHz Input Impedance	20	50		dB	
Output Impedance	20		200	kΩ Ω	
Clock Amplifier			200		
AC Gain		32		dB	
- 3 dB Bandwidth Delay	10	10		MHz ns	
Output Impedance			200	Ω	
ALBO					
Off Impedance	20			kΩ	
On Impedance			25	Ω	
DATA OUTPUT BUFFERS					$R_{L} = 130\Omega, V_{pull-up} = 5.1 V \pm 5\%$
Rise Time		30		ns	
Fall Time Output Pulse Width		30 244		ns	
Sample Pulse Width		10		ns ns	
VoL		0.7		V	
IL sink		35		mA	
THRESHOLDS					
ALBO	1.4	1.5	1.6	V	A
Clock Drive Current Peak		1.0		mA	At $V_0 = V_{ALBO}$ Threshold
CLOCK THRESHOLD		·····			
% of ALBO	63	68	75	%	
DATA THRESHOLD					
% of ALBO	40	46	52	%	