

Dual Line Driver

GENERAL DESCRIPTION

The XR-T5675 is a bipolar monolithic dual line driver designed to drive PCM lines up to a 10 MBPS rate. The device is powered from a single $5V\pm5\%$ source. Its current consumption is 14mA (typical) and the output can be pulled up to 20VDC.

FEATURES

50mA Output Drive Current Capability Low Current Consumption (18mA Max.) High Speed Switching Dual Matched Driver Outputs High Output Voltage TTL or DTL Compatible Inputs

APPLICATIONS

T1, T1C, T2, 2.048MBPS and 8.448MBPS PCM Line Driver LAN Line Driver Relay Driver LED/Lamp Driver

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) Input Voltage (Pin 1,2,6,7)	+7.0V 0.2V to +V _{CC}
Output Pull-up Voltages (Pin 3,5)	+35.0V
Power Dissipation	
Ceramic	700mW
Plastic	600mW
Storage Temperature	-65°C to 150°C

PIN ASSIGNMENT

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-T5675CP	Plastic	0°C to +70°C
XR-T5675CN	Ceramic	0°C to +70°C
XR-T5675 D	SOIC	0°C to +70°C

SYSTEM DESCRIPTION

Figure 1 contains the Functional Block Diagram of the XR-T5675. The circuit consists of two AND logic gates with their outputs internally connected to the bases of the output transistors. The low level outputs are clamped at 1 VBE to ground to insure non-saturating operation for fast switching.

Α	В	OUTPUT (D)		
L	L	H (OFF)		
L	Н	H (OFF)		
Н	L	H (OFF)		
Н	Н	L (ON)		

Truth Table — XR-T5675 H = High Level, L = Low Level

ELECTRICAL CHARACTERISTICS
Test Conditions: $V_{CC} = 5.0V$, $T_A = 0^{\circ}C$ to +70°C, unless specified otherwise,

SYMBOL	PARAMETERS	PINS	MIN	TYP	MAX	UNIT	CONDITIONS
V _{CC}	Supply Voltage	8	4.75	5.0	5.25	٧	
V _{iH}	High Level Input Voltage	1,2,6,7	2.2			V	I _{OL} = 50mA, V _{OL} = 0.95V
V _{IL}	Low Level Input Voltage	1,2,6,7			0.8	٧	
I _{IH}	High Level Input Current	1,2,6,7			40	μА	V _{IH} = 2.7V, Pins 3 & 5 Open
I _{IL}	Low Level Input Current	1,2,6,7			-1.2	mA	V _{IL} = 0.4V, Pins 3 & 5 Open
VoL	Low Level Output Voltage	3,5	0.6		0.95	V	V _{IH} = 2.2V, I _{OL} = 50mA
loL	Low Level Output Current	3,5	·=·		50	mA	$V_{IH} = 2.2V, V_{OL} = 0.95V$
l _{OH}	High Level Leakage Current	3,5			100	μА	Pins 3 & 5, Pull-up to +20V
Іссн	Supply Current Output High	8			3.0	mA	Pins 3 & 5 Open
lcaL	Supply Current Output Low	8		14.0	18.0	mA	Pins 3 & 5 Open
SWITCHIN	G CHARACTERISTICS, $V_{CC} = 5.0V$	± 5%, T _A = +	25°C			*****	
ҍ҉р∟н	Propagation Delay, Low to High	3,5		15		ns	See Figure 2
t _{pHL}	Propagation Delay, High to Low	3,5		15		ns	See Figure 2
t _{rise}	Rise Time	3,5		15	24	ns	See Figure 2
t _{fall}	Fall Time	3,5		10	24	ns	See Figure 2
	Output Pulse Imbalance			2.5		ns	At 50% Output Level

Note 1. Pulse Generator Frequency = 2.0MHz, Z_{OUT} = 50 Ω . Note 2. C_L Included — Probe and Jig Capacitance

Figure 2. AC Test Circuit and Switching Waveforms

determined by the output signal

amplitude required.

D - i/PRX* Vcc **SAMPLING** CLOCK i/P 6 5 +Vcc **BIPOLAR** SIGNAL TO LINE XR-T5675 .1µF **SAMPLING** CLOCK i/P D + i/PR_X*

In the case where D+ and D- are half width signals, Pin 1 and Pin 7 should be tied together and returned to +5.0V via a 1K resistor

Figure 3. XR-T5675 PCM Line Driver Application Circuit