

PCM AMI Line Receiver and Clock Recovery Circuit

GENERAL DESCRIPTION

The XR-T5740 is a monolithic bipolar IC designed for T1 line receiver application operating at 1.544 M bit/s. It provides all the active circuitry required to perform automatic line build out (ALBO), threshold detection, binary NRZ data and clock recovery as the XR-T5640 but with a crystal filter instead of a LC tank circuit.

A clock recovery using an LC filter circuit version of the XR-T5740 is also available as the XR-T5640.

FEATURES

Clock Recovery using Crystal Filter On-chip NRZ Data and Clock Recovery Circuitry Less than 10 ns Sampling Pulse Over the Operating Range Triple Matched ALBO Ports Single 5.1 V Power Supply

APPLICATIONS

T1 PCM Line Receiver T1C PCM Line Receiver (requires external gain) General Purpose Bipolar Line Receiver

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Operating Temperature	-40°C to +85°C
Supply Voltage	-0.5 to +10V
Supply Voltage Surge (10 ms only)	+ 25V
Input Voltage (except Pins 2,3,4,17)) -0.5 to +7V
Input Voltage (Pins 2,3,4,17)	-0.5 to +0.5V
Data and Clock Output Voltage	-0.5 to 20V
Voltage Sure (Pins 5,6,10,11) (10 m	s only) + 50V

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-T5740	Ceramic	-40°C to +85°C

FUNCTIONAL BLOCK DIAGRAM

SYSTEM DESCRIPTION

The XR-T5740 is designed as a receiver for interfacing T1 PCM carrier lines on plastic or pulp insulated cables. It can also be used as a general purpose alternate mark inversion (AMI) receiver.

The XR-T5740 is a modified version of XR-T5720 PCM repeater IC. It contains all the active circuitry needed to build a T1 receiver for interfacing up to 6300 ft. The preamplifier, the clock amplifier, threshold detectors, ALBO port, data latches and output drivers are similar to the ones on XR-T5720. Clock extraction is done by means of a crystal filter circuit.

Bipolar + 1 and - 1 pulses are combined within the IC to form a binary non-return to zero PCM signal at Pin 10. A synchronous clock signal is made available at Pin 11. Both outputs have open collector transistors.

ELECTRICAL CHARACTERISTICS Test Conditions: T_A = 25°C, V_{CC} = 5.1 V \pm 5%

XR-T5740	
----------	--

1

PARAMETERS	MIN	TYP	MAX	UNIT	CONDITIONS
Supply Current Clock & Data Output Leakage Current Amplifier Pin Voltages Amplifier Output Voltage Swing Amplifier Output Offset Voltage	2.4 2.2 - 50	22 0 2.9 0	30 100 3.4 50	mA μA V W	ALBO Off V _{pull-up} = 15V At Unity DC Gain R _S = 8.2 kΩ
Ampliner input Blas Current ALBO on Current Drive Current	3	1	5	μA mA mA	
AC CHARACTERISTICS					
Pre-Amplifier AC Gain at 1 MHz Input Impedance Output Impedance Clock Amplifier	20	50	200	dB kΩ Ω	Open Loop
AC Gain - 3 dB Bandwidth Delay Output Impedance	10	32 10	200	dB MHz ns Ω	Open Loop
ALBO	L	L	I		
Off Inpedance On Impedance	20		25	kΩ Ω	
CLOCK DATA OUTPUT BUFFERS			•	<u></u>	$R_L = 130\Omega, V_{pull-up} = 5.1V \pm 5\%$
Rise Time Fall Time Output Pulse Width Sample Pulse Width VOL IL sink		30 30 244 10 0.7 35		ns ns ns V mA	
THRESHOLDS					
ALBO Clock Drive Current Peak Clock Thresholds	1.4	1.5 1.0	1.6	V mA	At $V_0 = V_{ALBO}$ Threshold
% of ALBO Data Threshold %of ALBO	63 40	46	75 52	%	