

Dalian Good Display Co.,Ltd.

LCD Module User Manual YM160160FSF-1

Dalian Good Display Co., Ltd.

Tel: +86-411-84619565 Fax: +86-411-84619585 WebSite: http://www.good-lcd.com

CONTENTS

MAI	N FEATURES	4
	Module Classification Information	
MEC	CHANICAL SPECIFICATIONS	4
	Physical Characteristics	
ΟΡΤ	ICAL SPECIFICATIONS	4
	Optical Characteristics Optical Definitions LED Backlight Characteristics	4
ELE	CTIRCAL SPECIFICATIONS	4
	Details of Interface Pin Functions	4 4 4 4
	OULE RELIABILIGY AND LONGEVITY	
	Module Reliability	
CAR	RE AND HANDLING PRECAUTIONS	21
	Design and Mounting	21 21 21
	Storage and Recycling	


QUALITY ASSURANCE STANDARDS	
Inspection Condition	
Color Definitions	23
Definition of Active Area and Viewing Area	23
Acceptance Sampling	
Defects Classification	24
Acceptance Standards	

MAIN FEATURES

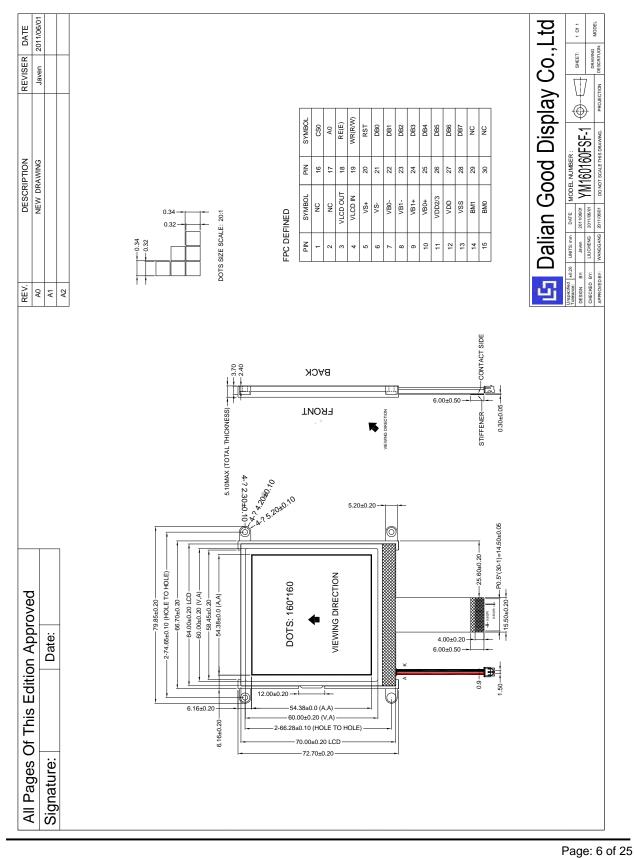
ITEM	STANDARD VALUE	UNIT
Dot Matrix	160 X 160	Dots
LCD Type	FSTN/Transflective/Positive	
LCD Duty	1/160	Duty
LCD Bias	1/10	Bias
Viewing Direction	6:00	Clock
Backlight Type	Edge LED Backlight with white color	
Connecter	FPC	
IC Package	COG	
Outline Dimension with FPC Folded	79.85(W) × 72.7(H) × 5.00(T) (MAX)	mm
Active Area (Diagonal)	3.73	inch
Dot size	0.32 ×0.32	mm
Dot Pitch	0.34 ×0.34	mm
Operating Temperature	-20 ~ +70	°C
Storage Temperature	-30 ~ +80	°C
Net Weight	36.0 ± 15% grams (typical)	g
Interface	3-wire,4-wire serial bus and 4-bit ,8-bit parallel bus	

Module Classification Information

Ordering Information

Part Number	LCD Type	Background Color	Display Color	Display Image
YM160160FSF-1	FSTN Postive	White Color	Black Color	
YM160160SBSF-1	STN BLUE	Blue Color	White Color	
YM160160DNSF-1	FFSTN Negative	Black Color	White Color	

MECHANICAL SPECIFICATIONS


Physical Characteristics

ITEM	SIZE
Number of Dots	160 X 160 Dots = 25600 Dots
Dot Size	0.32 (W)×0.32 (H) mm
Dot Pitch	0.34 (W)×0.34 (H) mm
Active Area Diagonal	Inches: 3.00"
Actic Arec Width and Llaight	Millimeters: 64.0 (W) X 70.0 (H) mm
Actie Area Width and Height	Inches: 2.52"(W) X 2.76" (H)
Viewing Area Width and Llaight	Millimeters: 60.0 (W) X60.0 (H) mm
Viewing Area Width and Height	Inches: 2.36"(W) X 2.36" (H)
Module Width	Millimeters: 72.7mm
	Inches: 2.86"
Overall Height with EDC unfolded	Millimeters:70.00 mm
Overall Height with FPC unfolded	Inches: 2.76"
Overall Lieisht with EDC folded	Millimeters:110.00 mm
Overall Height with FPC folded	Inches: 4.33"
Madula Dapth	Millimeters:5.10 mm
Module Depth	Inches: 0.20"
Module Connector Pitch	0.50mm
FPC Bend Radius	>R.40
Weight	36.0 ± 15% grams (typical)

YM160160FSF-1

Outline Module Drawing

Dalian Good Display Co.,Ltd

ELECTRICAL SPECIFICATIONS

Details of Interface Pin Functions

Pin No.	Pin Name	Туре	Descriptions		
1	NC		NO Connection		
2	NC				
3	VLCD-OUT		High voltage LCD Power Supply. When internal $V_{\mbox{\tiny LCD}}$ is used,		
			connect these pins together. When external $V_{\mbox{\tiny LCD}}$ source is		
4	VLCD-IN	PWR	used, connect external VLCD source to VLCDIN pins and leave VLCDOUT open.		
			Capacitor C_{L} should be connected between V_{LCD} and V_{SS} . In		
			COG applications, keep the ITO trace resistance around 20Ω .		
5	VS+		LCD SEG driving voltages. These are the voltage sources to		
6	VS-		provide SEG driving currents. These voltages are generated		
			internally.		
7	VBO-		Connect capacitors of CBX value between V _{BX+} and _{BX-} ,and a		
8	VB1-	PWR	capacitor of CS value between Vs+ and Vs		
9	VB1+		The resistance of these traces directly affects the driving		
10	VBO+		strength of SEG electrodes and impacts the image of the LCD module, Minimize the trace resistance is critical in achieving		
			high quality image.		
11	VDD2/3		VDD is the digital power supply and it should be connected to		
			a voltage source that is no higher than VDD2/ VDD3. VDD2/ VDD3		
12	VDD		is the analog power supply and it should be connected to the		
		PWR	same power source.		
			Please maintain the following relationship:		
			$V_{DD}+1.3V \ge V_{DD2/3} \ge V_{DD}$		
			Minimize the trace resistance for this node.		
10	Vss		Ground. Connect Vss and Vss2 to the shared GND pin		
13		GND	Minimize the trace resistance for this node.		
14	DN4		Rus mode: The interface bus made is determined by PM(4:0)		
	BM1	I	Bus mode: The interface bus mode is determined by BM[1:0] by the following relationship:		
15	BM0		BM(1:0) Mode		
		I	01 6800/8-bit		
		•	00 8080/8-bit		
16	CS0	I	Chip Select. Chip is selected when "CS0="L". When the chip is		
			not selected [7:0] will be high impedance.		

17	AO	I/O	This is connected to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or a command. A0 = "H": Indicate that D0 to D7 are display data A0 = "L": Indicates that D0 to D7 are control data
18	R0[E]	Γ	When connected to an 8080 MPU, it is active LOW. This pad is connected to the /RD signal of the 8080MPU, and the NT7538 data bus is in an output status when this signal is "L". When connected to a 6800 Series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU
19	WR[R/W]	I	When connected to an 8080 MPU, this is active LOW. This terminal connects to the 8080 MPU /WR signal. The signals on the data bus are latched at the rising edge of the /WR signal. When connected to a 6800 Series MPU, this is the read/write control signal input terminal. When R/W = "H": Read When R/W = "L": Write
20	RST	I	When RST="L",all control registers are re-initialized by their default States. Since UC1698u has built-in Power-ON reset and software reset commands,RST pin is not required for proper chip operation. An RC Fitter has been included on-chip. These are no need for external RC noise fitter. When RST is not used, connect the pin to VDD.
21~28	D0~D7	I/O	8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, DB0 to DB7 may be high impedance.
29	NC		No Connection
30	NC		

OPTICAL SPECIFICATIONS

Optical Characteristics

ITEM	SYMBOL	CONDITION	MINIMUM	ТҮРІСАL	MAXIMUM	
Viewing Angle (6 o'clock) (Vertical, Horizontal)	(V)θ	CR <u>></u> 2	30°		60°	
(venical, nonzonial)	(H)φ	CR <u>≥</u> 2	-45°		45°	
Contrast Ratio	CR			8		
LCD Response Time*	T rise	Ta = 25°C		150 ms	200 ms	
	T fall	Ta = 25°C		150 ms	200 ms	
*Response Time: The amount of time it takes a liquid crystal cell to go from active to inactive or back again.						

Optical Defination

- Operating Voltage (V_{LCD}): V_{OP}
- Viewing Angle
 - Vertical (V)0: 0°
 - Horizontal (H)φ: 0°
- Frame Frequency: 64 Hz
- Driving Waveform: 1/16 Duty, 1/5 Bias
- Ambient Temperature (Ta): 25°C

Definition of Operation Voltage (Vop)

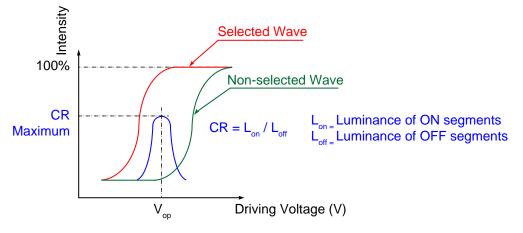


Figure 6. Definition of Operation Voltage (V_{OP}) (Negative)

Definition of Response Time (Tr, Tf0)

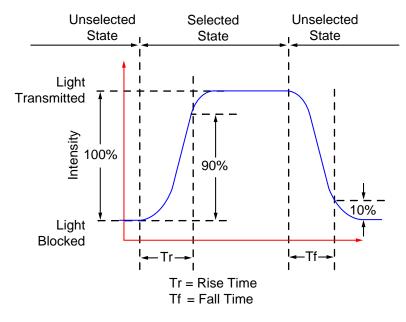
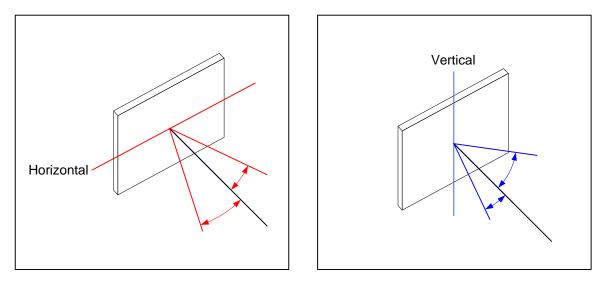



Figure 7. Definition of Response Time (Tr, Tf) (Negative)

Definition of Vertical and Horizontal Viewing Angles (CR \geq 2)

Figure 8. Definition of Horizontal and Vertical Viewing Angles (CR>2)

Definition of 6 O'Clock and 12:00 O'Clock Viewing Angles

This module has a 6:00 o'clock viewing angle. A 6:00 o'clock viewing angle is a bottom viewing angle like what you would see when you look at a cell phone or calculator. A 12:00 o'clock viewing angle is a top viewing angle like what you would see when you look at the gauges in a golf cart or airplane.

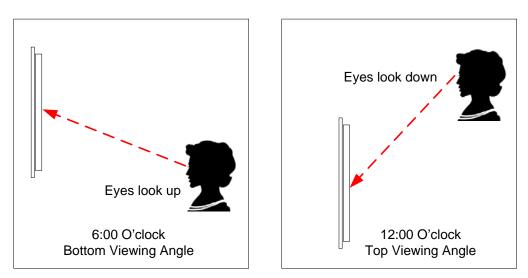


Figure 9. Definition of 6:00 O'Clock and 12:00 O'Clock Viewing Angles

LEDs are "current" devices. The important aspect of driving an LED is the current flowing through it, not the voltage across it. Ideally, a current source would be used to drive the LEDs. In practice, a simple current limiting resistor in line from a voltage source will work well in most applications and is much less complex than a current source.

Backlight Characteristics					
PARAMETER	MAXIMUM				
Forward Current (I _{LED)} V = 3.3V	80 mA	90 mA	95 mA		
Forward Voltage (V _{LED})		3.30V			

YM160160FSF-1

Absolute Maximum Ratings

In accordance with IEC134, Note 1 and 2

Symbol	Parameter	Min.	Max.	Unit
V _{DD}	Logic Supply voltage	-0.3	+4.0	V
V _{DD2}	LCD Generator Supply voltage	-0.3	+4.0	V
V _{DD3}	Analog Circuit Supply voltage	-0.3	+4.0	V
$V_{DD2/3}$ - V_{DD}	Voltage difference between V_{DD} and $V_{\text{DD}2/3}$		1.6	V
V _{LCD}	LCD Driving voltage (-25 ^o C ~ +75 ^o C)	-0.3	+19.8	V
V _{IN}	Digital input signal	-0.4	V _{DD} + 0.5	V
T _{OPR}	Operating temperature range	-30	+85	°C
T _{STR}	Storage temperature	-55	+125	°C

NOTE:

- 1. V_{DD} is based on $V_{SS} = 0V$
- 2. Stress beyond ranges listed above may cause permanent damages to the device.

DC Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply for digital circuit		1.65		3.3	V
V _{DD2/3}	Supply for bias & pump		2.7		3.3	V
V _{LCD}	Charge pump output	$V_{DD2/3} = 2.8V, 25^{\circ}C$		15.2	18	V
VD	LCD data voltage	$V_{DD2/3} = 2.8V, 25^{\circ}C$	1.09		1.95	V
V _{IL}	Input logic LOW				$0.2V_{\text{DD}}$	V
VIH	Input logic HIGH		$0.8V_{DD}$			V
V _{OL}	Output logic LOW	0			$0.2V_{\text{DD}}$	V
V _{OH}	Output logic HIGH		$0.8V_{DD}$			V
IIL	Input leakage current				1.5	μΑ
I _{SB}	Standby current	$V_{DD} = V_{DD2/3} = 3.3V,$ Temp = 85°C			50	μΑ
C _{IN}	Input capacitance			5	10	PF
COUT	Output capacitance			5	10	PF
$R_{ON(SEG)}$	SEG output impedance	$V_{LCD} = 16.5V$		850	1100	Ω
R _{ON(COM)}	COM output impedance	V _{LCD} = 16.5V		950	1100	Ω
f _{LINE}	Average line rate	LC[4:3] = 10b, 25 ^o C	-10%	37.0	+10%	Klps

AC CHARACTERISTICS

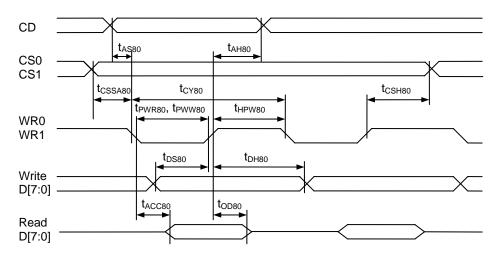


FIGURE 15: Parallel Bus Timing Characteristics (for 8080 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0 0	-	nS
t _{CY80}		System cycle time 16-bit bus (read) (write) 8-bit bus (read) (write)	LC[7:6]=10b LC[7:6]=01b	170 130 100 80 90	I	nS
t _{PWR80}	WR1	Pulse width 16-bit (read) 8-bit		85 50	1	nS
t _{PWW80}	WR0	Pulse width 16-bit (write) 8-bit	LC[7:6]=10b LC[7:6]=01b	65 40 45	Ι	nS
t _{HPW80}	WR0, WR1	High pulse width 16-bit bus (read) (write) 8-bit bus (read) (write)	LC[7:6]=10b LC[7:6]=01b	85 65 50 40 45	Ι	nS
t _{DS80} t _{DH80}	D0~D15	Data setup time Data hold time		30 0	I	nS
t _{ACC80} t _{OD80}		Read access time Output disable time	C _L = 100pF	- 15	60 30	nS
T _{CSSA80} t _{CSH80}	CS1/CS0	Chip select setup time		5 5		nS

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0 0	-	nS
t _{CY80}		System cycle time 16-bit bus (read) (write) 8-bit bus (read) (write)	LC[7:6]=10b LC[7:6]=01b	320 270 180 145 220	Ι	nS
t _{PWR80}	WR1	Pulse width 16-bit (read) 8-bit		160 90	-	nS
t _{PWW80}	WR0	Pulse width 16-bit (write) 8-bit	LC[7:6]=10b LC[7:6]=01b	135 73 110	-	nS
t _{HPW80}	WR0, WR1	High pulse width 16-bit bus (read) (write) 8-bits bus (read) (write)	LC[7:6]=10b LC[7:6]=01b	160 135 90 72 110	Ι	nS
t _{DS80} t _{DH80}	D0~D15	Data setup time Data hold time		60 0	-	nS
t _{ACC80} t _{OD80}		Read access time Output disable time	C _L = 100pF	- 30	120 60	nS
t _{CSSA80} t _{CSH80}	CS1/CS0	Chip select setup time		10 10		nS

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

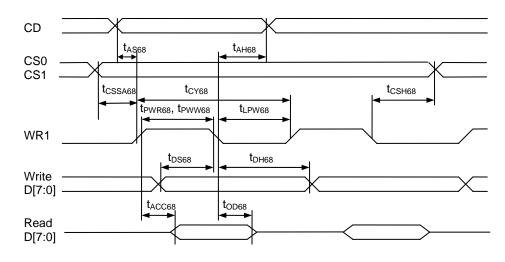


FIGURE 16: Parallel Bus Timing Characteristics (for 6800 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0 0	-	nS
t _{CY68}		System cycle time 16-bit bus (read) (write) 8-bit bus (read) (write)	LC[7:6]=10b LC[7:6]=01b	170 130 100 80 90	_	nS
t _{PWR68}	WR1	Pulse width 16-bit (read) 8-bit		85 50	-	nS
t _{PWW68}		Pulse width 16-bit (write) 8-bit	LC[7:6]=10b LC[7:6]=01b	65 40 45	Ι	nS
t∟pw68		Low pulse width 16-bit bus (read) (write) 8-bit bus (read) (write)	LC[7:6]=10b LC[7:6]=01b	85 65 50 40 45	-	nS
t _{DS68} t _{DH68}	D0~D7	Data setup time Data hold time		30 0	Ι	nS
t _{ACC68} t _{OD68}		Read access time Output disable time	C _L = 100pF	- 15	60 30	nS
t _{CSSA68} t _{CSH68}	CS1/CS0	Chip select setup time		5 5		nS

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS68}	CD	Address setup time		0	-	nS
t _{AH68}		Address hold time		0		
t _{CY68}		System cycle time			-	nS
		16-bit bus (read)		320		
		(write)		270		
		8-bit bus (read)		180		
		(write)	LC[7:6]=10b	145		
			LC[7:6]=01b	220		
t _{PWR68}	WR1	Pulse width 16-bit (read)		160	_	nS
		8-bit		90		
t _{PWW68}		Pulse width 16-bit (write)		135	_	nS
		8-bit	LC[7:6]=10b	73		
			LC[7:6]=01b	110		
t _{LPW68}		Low pulse width			_	nS
		16-bit bus (read)		160		
		(write)		135		
		8-bit bus (read)		90		
		(write)	LC[7:6]=10b	72		
		, , , , , , , , , , , , , , , , , , ,	LC[7:6]=01b	110		
t _{DS68}	D0~D7	Data setup time		60	_	nS
t _{DH68}		Data hold time	٩	0		
t _{ACC68}		Read access time	$C_{L} = 100 pF$	-	120	nS
t _{OD68}		Output disable time		30	60	
t _{CSSA68}	CS1/CS0	Chip select setup time		10		nS
t _{CSH68}	031/030	Chip select setup tille		10		

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

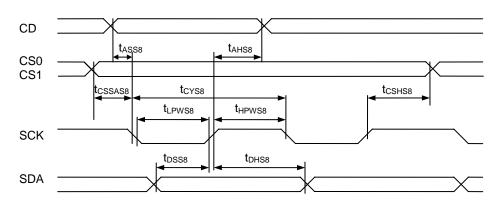


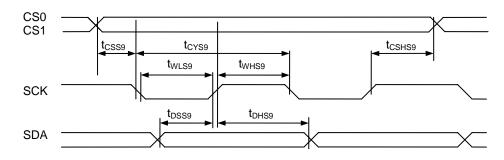
FIGURE 17: Serial Bus Timing Characteristics (for S8/S8uc)

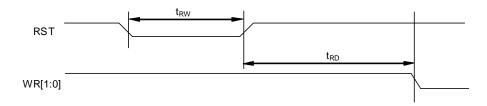
$(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$	(2.5V	$\leq V_{DD} <$	3.3V,	Ta=	-30 to	+85	C)
---	-------	-----------------	-------	-----	--------	-----	----

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	-	nS
t _{AHS8}		Address hold time		0	-	nS
t _{CYS8}	SCK	System cycle time		40	_	nS
t _{LPWS8}		Low pulse width	C C	20	_	nS
t _{HPWS8}		High pulse width		20	_	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time Data hold time		15 0	-	nS
tcssas8 t _{CSHS8}	CS1/CS0	Chip select setup time		5 5		nS

(1.65V \leq V_{DD} < 2.5V, Ta= –30 to +85 $^{\rm o}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	-	nS
t _{AHS8}		Address hold time		0	-	nS
t _{CYS8}	SCK	System cycle time		75	-	nS
t _{LPWS8}		Low pulse width		37	-	nS
t _{HPWS8}		High pulse width		38	-	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time Data hold time		30 0	-	nS
tcssas8 t _{cshs8}	CS1/CS0	Chip select setup time		10 10		nS




FIGURE 18: Serial Bus Timing Characteristics (for S9)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYS9}	SCK	System cycle time		40	Ι	nS
t _{LPWS9}		Low pulse width		20	Ι	nS
t _{HPWS9}		High pulse width	ч. Т	20	-	nS
t _{DSS9} t _{DHS9}	SDA	Data setup time Data hold time		15 0	Ι	nS
tcssas9 t _{CSHS9}	CS1/CS0	Chip select setup time		5 5		nS

(1.65V \leq V_{DD} < 2.5V, Ta= –30 to +85 $^{\circ}\text{C}\text{)}$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYS9}	SCK	System cycle time		75	Ι	nS
t _{LPWS9}		Low pulse width		38	-	nS
t _{HPWS9}		High pulse width		38	-	nS
t _{DSS9} t _{DHS9}	SDA	Data setup time Data hold time		30 0	-	nS
tcssas9 t _{CSHS9}	CS1/CS0	Chip select setup time		10 10		nS

FIGURE 19: Reset Characteristics

 $(1.65V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{RW}	RST	Reset low pulse width		3	-	μS
t _{RD}	RST, WR	Reset to WR pulse delay		10	-	mS

Command Table

The following is a list of host commands supported by UC1698u

TI	he following is a list of ho C/D: 0: Control, W/R: 0: Write Cycle, #: Useful Data bits	st cor	1 1	ids su : Data : Rea : Do	a d Cyc	cle	UC1	698u						
	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Actio	n	Default
1	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1	byte	N/A
2	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1	byte	N/A
3	Get Status & PM	0	1	GE Ver	MX	MY Code (DE MO[6: PID		MD	MS [1:0]	Get {Statu PMO, Produ	Get {Status, Ver, PMO, Product Code, PID, MID}	
	Set Column Address LSB	0	0	0	0	0	011)	#	#	#	[1.0] #	Set CA[3:0]		0
4	Set Column Address LSB	0	0	0	0	0	1	# 0	#	#	#	Set CA		0
5	Set Temp. Compensation	0	0	0	0	1	0	0	# 1	#	#	Set CA		0
6	Set Power Control	0	0	0	0	1	0	1	0	#	#	Set PC		10b
-	Set Adv. Program Control	0	0	0	0	1	1	0	0	# 0	R #	Set APC[F		100
7	(double-byte command)	0	0	#	#	#	#	#	#	#	к #	R = 0 (N/A
		0	0	# 0	# 1	# 0	# 0	#	#	#	#			0
8	Set Scroll Line LSB	-	-	-		-	-					Set SL[0
	Set Scroll Line MSB	0	0	0	1	0	1	#	#	#	#	Set SL		0
9	Set Row Address LSB	0	0	0	1	1	0	#	#	#	#	Set RA		0
	Set Row Address MSB	0	0	0	1	1	1	#	#	#	#	Set RA	[7:4]	0
10	Set V _{BIAS} Potentiometer (double-byte command)	0 0	0 0	1 #	0 #	0 #	0 #	0 #	0 #	0 #	1 #	Set PM		40H
11	Set Partial Display Control	0	0	1	0	0	0	0	1	0	_#	Set LC		0
12	Set RAM Address Control	0	0	1	0	0	0	1	#	#	#	Set AC	[2:0]	001b
13	Set Fixed Lines	0 0	0 0	1 #	0 #	0 #	1 #	0 #	0 #	0 #	0 #	Set {FLT,	FLB}	0
14	Set Line Rate	0	0	1	0	1	0	0	0	#	#	Set LC	4:31	10b
_	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC		0
	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC		0
17	Set Display Enable	0	0	1	0	1	0	1	#	#	#	Set DC[4:2]		110b
18		0	0	1	1	0	Ø 0	0	#	#	#	Set LC[2:0]		0
	Set N-Line Inversion	0	0	1	1	0	0 #	1 #	0 #	0 #	0 #	Set NIV		1DH
20	Set Color Pattern	0	0	1	1	0	1	<i>#</i>	# 0	<i>#</i>	#	Set LC	151	0 (BGR)
20	Set Color Mode	0	0	1	1	0	1	0	1	#	#	Set LC		10b
22	Set COM Scan Function	0	0	1		0	1	1	#	#	#	Set CSF		000b
		0	-	1		1		0		# 1	# 0			N/A
23	System Reset	-	0	1	1		0		0	1		System F		
24	NOP	0	0		1	1	0	0	0		1	No oper		N/A
25	Set Test Control	0	0	1	1	1	0	0	1		T	For testing		N/A
-	(double-byte command)	0	0	#	#	#	#	#	#	#	#	Do not		111 10
26	Set LCD Bias Ratio	0	0	1	1	1	0	1	0	#	#	Set BR	[1:0]	11b: 12
27	Set COM End	0 0	0 0	1 -	1 #	1 #	1 #	0 #	0 #	0 #	1 #	Set CEN	l[6:0]	159
28	Set Partial Display Start	0 0	0 0	1 -	1 #	1 #	1 #	0 #	0 #	1 #	0 #	Set DST	[6:0]	0
29	Set Partial Display End	0 0	0 0	1 -	1 #	1 #	1 #	0 #	0 #	1 #	1 #	Set DEN	I[6:0]	159
30	Set Window Program Starting Column Address	0	0	1 -	1 #	1 #	1 #	0 #	1 #	0 #	0 #		Set WPC0	0
31	Set Window Program Starting Row Address	0	0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	1 #	Shared	Set WPP0	0
32	Set Window Program Ending Column Address	0	0	1	# 1 #	1 #	1 #	0 #	1 #	# 1 #	# 0 #	with MTP commands	Set WPC1	127
33	Set Window Program	0	0	- 1	1	1	1	0	1	1	1		Set	159
	Ending Row Address	0	0	#	#	#	#	#	#	#	#	0.140	WPP1	
34	Window Program Mode	0	0	1 1	1	1	1	1	0	0	# 0	Set AC	• •	0: Inside
35	Set MTP Operation control	0	0	-	-	-	#	#	0 #	0 #	0 #	Set MTP	C[4:0]	10H

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Actio	n	Default
36	Set MTP Write Mask	0 0 0	0 0 0	1 - -	0 # -	1 # -	1 # -	1 # -	0 # -	0 # #	1 # #	Set MTPN MTPM1		0
37	Set V _{MTP1} Potentiometer	0 0	0 0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	0 #		Set MTP1	N/A
38	Set V _{MTP2} Potentiometer	0 0	0 0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	1 #	Shared with Window	Set MTP2	N/A
39	Set MTP Write Timer	0 0	0 0	1 #	1 #	1 #	1 #	0 #	1 #	1 #	0 #	Program commands	Set MTP3	N/A
40	Set MTP Read Timer	0 0	0 0	1 #	1 #	1 #	1 #	0 #	1 #	1 #	1 #		Set MTP4	N/A

NOTE:

- All other bit patterns other than commands listed above may result in undefined behavior.
- The interpretation of commands (36)~(40) depends on the setting of register MTPC[3].
 - Commands (37)~(40) are shared with commands (30)~(33). These two sets of commands share exactly the same code and control registers. When MTPC[3]=0, they are interpreted as Window Program commands and registers. When MTPC[3]=1, they function as MTP Control commands and registers.
- After MTP ERASE or PROGRAM operation, before resuming normal operation, please always

 a) Remove TST4 power source,
 a)
 - b) Do a full V_{DD} ON-OFF-ON cycle.
- Under 16-bit bus mode and CD=0, D[15:8] is ignored and only D[7:0] is used. As a result, the bus cycles
 for commands under 16-bit bus and 8-bit bus are the same, and double-byte commands still need two
 bus cycles under 16-bit bus mode.

Example:

8-bit bus mode:

Set PL[1:0] = 2'b11 :	D[7:0] = 0010 1011
Set PM[7:0] = 8'h8b :	1^{st} D[7:0] = 1000 0001
	2 nd D[7:0] = 1000 1011

16-bit bus mode:

Set PL[1:0] = 2'b11:	D[15:0] =	0000 0000	0010 1011
Set PM[7:0] = 8'h8b: 1 st	D[15:0] =	0000 0000	1000 0001
2 ^{nc}	ⁱ D[15:0] =	0000 0000	1000 1011

Command Description

(1) WRITE DATA TO DISPLAY MEMORY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Write data	1	0		8-b	oit dat	ta wri	tten to	o SRA	١M	

UC1698u will convert input RAM data to 16-bit of RGB data. Please refer to command Set Color Mode for detail of data-write sequence.

(2) READ DATA FROM DISPLAY MEMORY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Read data	1	1		8-b	oit dat	a rea	d fror	n SR/	١M	

Each RGB triplet is stored as 16-bit in the display RAM. Each 16-bit of RGB data takes 1 (/ 2) RAM read cycles for 16 (/ 8) -bit bus mode, respectively. The read out RGB data is after-extension for 64K color mode.

R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	B 3	B2	B1	B 0
		1	st 8-bi	t Read	b					2	2 nd 8-b	it Rea	d		

Write/Read Data Byte (commands (1) and (2)) operation uses internal Row Address register (RA) and Column Address register (CA). RA and CA can be programmed by issuing commands Set Row Address and Set Column Address. If wrap-around (WA, AC[0]) is OFF (0), CA will stop incrementing after reaching the CA boundary, and system programmers need to set the values of RA and CA explicitly. If WA is ON (1), when CA reaches end of column address, CA will be reset to 0 and RA will be increased or decreased, depending on the setting of Row Increment Direction (RID, AC[2]). When RA reaches the boundary of RAM (i.e. RA = 0 or 127), RA will be wrapped around to the other end of RAM and continue.

For 8-bit / 16-bit interface, the first 1 byte / 2 bytes of read, respectively, is a dummy read. Please ignore the data read out.

(3) GET STATUS & PM

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
	0	1	GE	MX	MY	WA	DE	WS	MD	MS
Get Status	0	1	Ver			PI	MO[6	:0]		
	0	1	Р	roduc	t Coc	le	PID	[1:0]	MID	[1:0]

Status1 definitions:

- GE: Green Enhancing enable flag. Green Enhance Mode is disabled when GE = 1.
- MX: Status of register LC[1], mirror X.
- MY: Status of register LC[2], mirror Y.
- *WA* : Status of register AC[0]. Automatic column/row wrap around. DE: Display enable flag. DE=1 when display is enabled
- WS: MTP Operation succeeded
- MD: MTP Option (1 for MTP version, 0 for non-MTP version)
- MS: MTP action status

Status2 definitions:

Ver: IC Version Code. 0 or 1. PMO[6:0] : PM offset value.

Status3 definitions:

Product Code: 1000b (8h) PID[1:0] : Provide access to ID pins connection status. *MID*[1:0] : LCM manufacturer's configuration.

If multiple Get Status commands are issued consecutively within one single CD 1 \Rightarrow 0 \Rightarrow 1 transaction, the Get Status command will return {Status1, Status2, Status3, Status1, Status2, Status3, Status1.} alternately.

(4) SET COLUMN ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Column Address LSB CA[3:0]	0	0	0	0	0	0	CA3	CA2	CA1	CA0
Set Column Address MSB CA[7:4]	0	0	0	0	0	1	0	CA6	CA5	CA4

Set SRAM column address for read/write access. CA is counted in RGB triplets, not individual SEG electrode.

CA value range: 0~127

(5) SET TEMPERATURE COMPENSATION

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Temperature Comp. TC[1:0]	0	0	0	0	1	0	0	1	TC1	TC0

Set V_{BIAS} temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition: $00b = -0.00\%/^{\circ}C$ $01b = -0.05\%/^{\circ}C$

10b = -0.15%/°C 11b = -0.25%/°C

(6) SET POWER CONTROL

Set Panel Loading PC[1:0] 0 0 0 0 0 1 0 1 0 PC1	Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
5 1 1	Set Panel Loading PC[1:0]	0	0	0	0	7	0	1	0	PC1	PC0

Set PC[0] according to the capacitance loading of LCD panel.

Panel loading definition: **0b** : $LCD \le 13nF$ 1b : $13nF < LCD \le 22nF$

Set PC[1] to program the build-in charge pump stages. Before changing PC[1] value, always ensure the IC is in a RESET state. Avoid changing PC[1] when the display is enabled.

Pump control definition: 0b = External V_{LCD} 1b = Internal V_{LCD} (x10)

(7) SET ADVANCED PROGRAM CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set APC[R][7:0]	0	0	0	0	1	1	0	0	0	R
(Double-byte command)	0	0		Α	NPC re	egiste	r para	amete	er	

0

For UltraChip only. Please do NOT use.

(11) SET PARTIAL DISPLAY CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Partial Display Enable LC[8]	0	0	1	0	0	0	0	1	0	LC8

This command is used to enable partial display function.

LC[8] : **0**b: Disable Partial Display, Mux-Rate = CEN+1 (DST, DEN not used.) 1b: Enable Partial Display, Mux-Rate = DEN-DST+1+ LC[0]x(FLT+FLB)x2

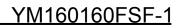
(12) SET RAM ADDRESS CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC [2:0]	0	0	1	0	0	0	1	AC2	AC1	AC0

Program registers AC[2:0] for RAM address control.

AC[0]: WA, Automatic column/row wrap around.

0: CA or RA (depends on AC[1]= 0 or 1) will stop incrementing after reaching boundary


1: CA or RA (depends on AC[1]= 0 or 1) will restart, and RA or CA will increment by one step.

AC[1]: Auto-Increment order

- 0 : column (CA) increment (+1) first until CA reaches CA boundary, then RA will increment by (+/-1).
- 1 : row (RA) increment (+/-1) first until RA reach RA boundary, then CA will increment by (+1).

AC[2]: RID, row address (RA) auto increment direction (**0**/1 = +/- 1) When WA=1 and CA reaches CA boundary, RID controls whether row address will be adjusted by +1 or -1.

AC[2:0] controls the auto-increment behavior of CA and RA. For Window Program mode (AC[3]=ON), see section *Command Description* (32) ~ (35) for more details. If WPC[1:0] and WPP[1:0] values are the default values, the behavior of CA, RA auto-increment will be the same, no matter what the setting of AC[3] is.

(13) SET FIXED LINES

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Fixed Lines {FLT,FLB}	0	0	1	0	0	1	0	0	0	0
(Double-byte command)	0	0		FLT	[3:0]			FLB	[3:0]	

The fixed line function is used to implement the partial scroll function by dividing the screen into scroll and fixed area. The Set Fixed Lines command will define the fixed area, which will not be affected by the SL scroll function. The fixed area covers the top 2xFLT and bottom 2xFLB rows for mirror Y (MY) is 0, or covers the top 2xFLB and bottom 2xFLT rows for MY=1. One example of the visual effect on LCD is illustrated in the figure below.

Fixed Area	1		Fixed Area	1
(2xFLT)			(2xFLB)	
Scroll Area			Scroll Area	
Fixed Area	↓		Fixed Area	↓
(2xFLB) 1	60		(2xFLT)	160
MY = 0		1	MY = 1	
1011 - 0			1011 - 1	

When partial display mode is activated, the display of these 2x(FLT+FLB) lines is also controlled by LC[0]. Before turning on LC[0], ensure:

MY=0	DST ≥ FLTx2
	$DEN \leq (CEN-FLBx2).$

 $\begin{array}{ll} MY=1 & DST \geq FLBx2 \\ DEN \leq (CEN-FLTx2) \end{array}$

(14) SET LINE RATE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Line Rate LC [4:3]	0	0	1	0	1	0	0	0	LC4	LC3

Program LC [4:3] for line rate setting (Frame-Rate = Line-Rate / Mux-Rate). The line rate is automatically scaled down by 2/3, 1/2, 1/3 and 1/4 at Mux-Rate = 108, 80, 56, and 40.

The following are line rates at	Mux Rate = 109 ~ 160.		
00b: 25.2 Klps	01b: 30.5 Klps	10b: 37.0 Klps	11b: 44.8 Klps
In On/Off Mode			
00b: 8.5 Klps	01b: 10.4 Klps	10b: 12.6 Klps	11b: 15.2 Klps
(Klps: Kilo-L	ine-per-second)		

(15) SET ALL PIXEL ON

			-			D0
Set All Pixel ON DC [1] 0 0 1 0 1	0	0	0	1	0	DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM.

(16) SET INVERSE DISPLAY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Inverse Display DC [0]	0	0	1	0	1	0	0	1	1	DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

(13) SET FIXED LINES

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Fixed Lines {FLT,FLB}	0	0	1	0	0	1	0	0	0	0
(Double-byte command)	0	0		FLT	[3:0]			FLB	[3:0]	

The fixed line function is used to implement the partial scroll function by dividing the screen into scroll and fixed area. The Set Fixed Lines command will define the fixed area, which will not be affected by the SL scroll function. The fixed area covers the top 2xFLT and bottom 2xFLB rows for mirror Y (MY) is 0, or covers the top 2xFLB and bottom 2xFLT rows for MY=1. One example of the visual effect on LCD is illustrated in the figure below.

Fixed Area 1		Fixed Area	1
(2xFLT)		(2xFLB)	
Scroll Area		Scroll Area	
Fixed Area 🛛 🕁		Fixed Area	★
(2xFLB) 160		(2xFLT)	160
MY = 0	_	MY = 1	
W = 0		111 - 1	

When partial display mode is activated, the display of these 2x(FLT+FLB) lines is also controlled by LC[0]. Before turning on LC[0], ensure:

MY=0	DST ≥ FLTx2
	$DEN \leq (CEN-FLBx2).$

 $\begin{array}{ll} MY=1 & DST \geq FLBx2 \\ DEN \leq (CEN-FLTx2) \end{array}$

(14) SET LINE RATE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Line Rate LC [4:3]	0	0	1	0	1	0	0	0	LC4	LC3

Program LC [4:3] for line rate setting (Frame-Rate = Line-Rate / Mux-Rate). The line rate is automatically scaled down by 2/3, 1/2, 1/3 and 1/4 at Mux-Rate = 108, 80, 56, and 40.

The following are line rates at I	Mux Rate = 109 ~ 160.		
00b: 25.2 Klps	01b: 30.5 Klps	10b: 37.0 Klps	11b: 44.8 Klps
In On/Off Mode			
00b: 8.5 Klps	01b: 10.4 Klps	10b: 12.6 Klps	11b: 15.2 Klps
(Klps: Kilo-Li	ine-per-second)		

(15) SET ALL PIXEL ON


Action C/D	••/1	וט	D6	D5	D4	D3	D2	D1	D0
Set All Pixel ON DC [1] 0	0	1	0	1	0	0	1	0	DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM.

(16) SET INVERSE DISPLAY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Inverse Display DC [0]	0	0	1	0	1	0	0	1	1	DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

(18) SET LCD MAPPING CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set LCD Mapping Control LC [2:0]	0	0	1	1	0	0	0	MY	MX	LC0

This command is used for programming LC[2:0] to control COM (row) mirror (MY), SEG (column) mirror (MX).

LC[2] controls Mirror Y (MY): MY is implemented by reversing the mapping order between RAM and COM electrodes. The data stored in RAM is not affected by the MY action. MY will have immediate effect on the display image.

LC[1] controls Mirror X (MX): MX is implemented by selecting the CA or 127-CA as write/read (from host interface) display RAM column address so this function will only take effect after rewriting the RAM data.

LC[0] controls whether soft icon sections (2xFLT, 2xFLB) are displayed during partial display mode.

(19) SET N-LINE INVERSION

	Action	n		C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set	N-line inversi	ion NIV[3	3:0]	0	0	1	1	0	0	1	0	0	0
(E	Double-byte c	ommand)	0	0	-	-	-	NIV4	NIV3	NIV2	NIV1	NIV0
N-Line Inv	version:						_		_				-
NIV[2:0]:	000b: 11 line	es	001b	: 19 li	nes		01	10b: 2	1 line	s 🌑		011	b: 25 l
	100b: 29 line	es	101b	: 31 I	ines		11	10b: 3	87 line	s		111	b: 43 l
NIV[3]:	0b: non-XOF	२	1b: X	OR									
NIV[4]:	0b: Disable I	NIV	1b: E	nabl	e NIV								
	NIV[3]=0		31		؛ ا	5 26	3 		<u>31</u>				

51		
	Frame 2	

(20) SET COLOR PATTERN

NIV[3]=1

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Color Pattern LC [5]	0	0	1	1	0	1	0	0	0	LC5

UC1698u supports on-chip swapping of R⇔B data mapping to the SEG drivers.

Frame 1

31

LC[5]	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	 SEG382	SEG383	SEG384
0	В	G	R	В	G	R	 В	G	R
1	R	G	В	R	G	В	 R	G	В

26

The definition of R/G/B input data is determined by LC[7:6], as described in Set Color Mode below.

(21) SET COLOR MODE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Color Mode LC [7:6]	0	0	1	1	0	1	0	1	LC7	LC6

Program color mode and RGB input pattern. Color mode (LC[7:6]) definition:

Note: For serial bus modes, please refer to 8-bit tables below.

Green Enhance Mode disabled (DC[4]=1):

LC[7:6] = 01b (RRR-GGGG-BBBB, 4K-color)

12 bits of input RGB data are stored to 16 RAM bits. No dither is performed. Every 3 bytes of input data will be merged into 2 sets of RGB data.

Data Write Sequence (8-bit)	D[]	7:0]						
1 st Write Data Cycle	R3	R2	R1	R0	G3	G2	G1	G0
2 nd Write Data Cycle	B 3	B 2	B1	B 0	R3	R2	R1	R 0
3 rd Write Data Cycle	G3	G2	G1	G0	B 3	B 2	B1	B 0

Data Write Sequence (16-bit)	D[15:0	1													
1 st Write Data Cycle	0	0	0	0	R3	R2	R1	R0	G3	G2	G1	G0	B 3	B 2	B1	B 0
2 nd Write Data Cycle	0	0	0	0	R3	R2	R1	R0	G3	G2	G1	G0	B 3	B 2	B1	B 0

LC[7:6] = 10b (RRRRR-GGGGGGG-BBBBB, 64K-color)

16 bits of input data are stored to 16 RAM bits directly.

Data Write Sequence (8-bit)	D[]	7:0]														
1 st Write Data Cycle	R4	R3	R2	R1	R0	G5	G4	G3								
2 nd Write Data Cycle	G2	G1	G0	B 4	B 3	B 2	B 1	B 0								
Data Write Sequence (16-bit)	D[15:0]	1													
1 st Write Data Cycle	R4	R 3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B 4	B 3	B 2	B 1	B 0

Green Enhance Mode enabled (DC[4]=0):

LC[7:6] = 01b (RRRR-GGGGG-BBB, 4K-color)

12 bits of input data are extended and stored to 16 RAM bits. Every 3 bytes of input data will be merged into 2 sets of RGB data.

Data Write Sequence (8-bit)	D[]	7:0]														
1 st Write Data Cycle	R 3	R2	R1	R0	G4	G3	G2	G1								
2 nd Write Data Cycle	G0	B 2	B1	B 0	R 3	R2	R 1	R0								
3 rd Write Data Cycle	G4	G3	G2	G1	G0	B 2	B 1	B 0								
Data Write Sequence (16-bit)	D[⁻	15:0]	1													
1 st Write Data Cycle	0	0	0	0	R3	R2	R1	R0	G4	G3	G2	G1	G0	B 2	B1	B 0
2 nd Write Data Cycle	0	0	0	0	R 3	R2	R1	R 0	G4	G3	G2	G1	G0	B2	B1	B 0

LC[7:6] = 10b (RRRR-GGGGGG-BBBBB, 64K-color)

The behaviors of 8-bit input mode and 16-bit input mode do not change with DC[4] setting. Refer to previous section for more information on these two input modes.

(22) SET COM SCAN FUNCTION

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set COM Scan Function CSF[2:0]	0	0	1	1	0	1	1	CSF2	CSF1	CSF0

COM scan function

- CSF[0]: Interlace Scan Function
 - 0b: LRM sequence: AEBCD-AEBCD
 - 1b: LRM sequence: AEBCD-EBCDA
- CSF[1]: FRC Function
 - 0b: FRC Disable
 - 1b: FRC Enable

CSF[2]: Shade-1, Shade-30 option

- 0 : Dither directly on input data(SRAM Change)
- 1 : PWM on SEG output stage

(23) SYSTEM RESET

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
System Reset	0	0	1	1	1	0	0	0	1	0

This command will activate the system reset. Control register values will be reset to their default values. Data stored in RAM will not be affected.

ß

0

(24) NOP

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
No Operation	0	0	1	1	Y	0	0	0	1	1
This common die wood for "no oneration"										

This command is used for "no operation".

(25) SET TEST CONTROL

Set TT 0	•					-			
Selli	0	1	1	1	0	0	1	Т	Т
(Double-byte command) 0	0			Tes	ting p	aram	eter		

This command is used for UltraChip production testing. Do <u>NOT</u> use.

(26) SET LCD BIAS RATIO

Action	l	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Bias Ratio	BR [1:0]	0	0	1	1	1	0	1	0	BR1	BR0
Bias ratio definition: 00b =5	01b = 10	1	10b =	11		11b	= 12				

(27) SET COM END

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set CEN	0	0	1	1	1	1	0	0	0	1
(Double-byte command)	0	0	-		CEI	V regi	ster p	aram	eter	

This command programs the ending COM electrode. CEN defines the number of used COM electrodes, and it should correspond to the number of pixel-rows in the LCD. When the LCD has less than 160 pixel rows, the LCM designer should set CEN to N-I (where N is the number of pixel rows) and use COM1 through COM-N as COM driver electrodes.

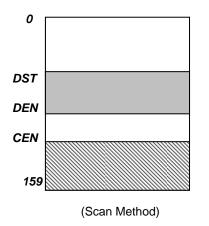
(28) SET PARTIAL DISPLAY START

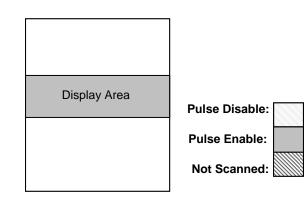
Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DST	0	0	1	1	1	1	0	0	1	0
(Double-byte command)	0	0	-		DS	T regi	ster p	aram	eter	

This command programs the starting COM electrode, which has been assigned a full scanning period and will output an active COM scanning pulse.

(29) SET PARTIAL DISPLAY END

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DEN	0	0	1	1	1	1	0	0	1	1
(Double-byte command)	0	0	-		DEI	V regi	ster p	aram	eter	


This command programs the ending COM electrode, which has been assigned a full scanning period and will output an active COM scanning pulse.


CEN, DST, and DEN are 0-based index of COM electrodes. They control only the COM electrode activity, and do not affect the mapping of display RAM to each COM electrodes. The image displayed by each pixel row is therefore not affected by the setting of these three registers.

When LC[8]=1b, the Mux-Rate is narrowed down to DST-DEN+1+(FLT+FLB)xLC[0]x2. When MUX rate is reduced, reduce the line rate accordingly to reduce power. Changing MUX rate also require BR and V_{LCD} to be reduced.

For minimum power consumption, set LC[8]=1b, set (DST, DEN, FLT, FLB, CEN) to minimize MUX rate, use slowest line rate which satisfies the flicker requirement, use On/Off mode, set PC[0]=0b, disable N-Line Inversion, and use lowest BR, lowest V which satisfies the contrast requirement. When Mux-Rate is under 40, it is recommended to set BR=5 for optimum power saving.

In either case, DST/DEN defines a small subsection of the display which will remain active while shutting down all the rest of the display to conserve energy.

(Display Result)

(30) SET WINDOW PROGRAM STARTING COLUMN ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPC0	0	0	1	1	1	1	0	1	0	0
(Double-byte command)	0	0	-	И	/PC0	[6:0] r	egiste	er par	amete	ər

This command is to program the starting column address of RAM program window.

(31) SET WINDOW PROGRAM STARTING ROW ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPP0	0	0	1	1	1	1	0	1	0	1
(Double-byte command)	0	0		WPI	P0[7:0	0] reg	ister p	baram	eter	

This command is to program the starting row address of RAM program window.

(32) SET WINDOW PROGRAM ENDING COLUMN ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPC1	0	0	1	1	1	1	0	1	1	0
(Double-byte command)	0	0	-	И	/PC1	[6:0] r	egiste	er par	amet	ər

This command is to program the ending column address of RAM program window.

(33) SET WINDOW PROGRAM ENDING ROW ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPP1	0	0	1	Y	Z	1	0	1	1	1
(Double-byte command)	0	0		WPI	₽1[7:(0] reg	ister p	baram	neter	

This command is to program the ending row address of RAM program window.

(34) SET WINDOW PROGRAM MODE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Window Program Enable AC[3]	0	0	1	1	1	1	1	0	0	AC3

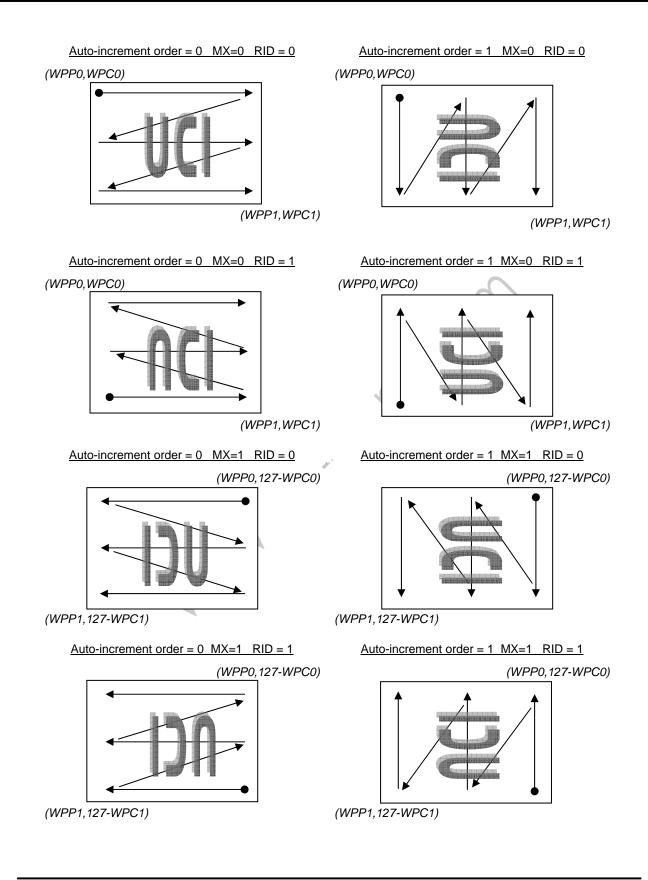
This command controls the Window Program function.

AC[3]=0: Inside Mode

When Window Programming is under "Inside" mode , the CA and RA increment and wrap-around will be performed automatically around the boundaries as defined by registers WPC0, WPC1, WPP0, and WPP1, so that the CA/RA address will stay <u>within</u> the defined window of SRAM address, and therefore allow effective data update within the window.

AC[3]=1: Outside Mode

When Window Programming is under "Outside" mode, the CA and RA increment and wrap-around boundary will cover the entire UC1698u SRAM map (CA: 0~127, RA:0~159). However, when CA/RA points to a memory location within the window defined by registers WPC0, WPC1, WPP0, and WPP1, the SRAM data update operation will be suspended, the existing data will be retained and the input data will be ignored.


The direction of Window Program will depend on the WA (AC[0]), RID (AC[2]), auto-increment order (AC[1]) and MX (LC[1]) register setting.

- WA (AC[0]) decides whether the program RAM address advances to next row / column after reaching the specified window column / row boundary.
- RID (AC[2]) controls the RAM address increasing from WPP0 toward WPP1 (RID=0) or the reverse direction (RID=1).
- Auto-increment Order (AC[1]) directs the RAM address increasing vertically (AC[1]=1) or horizontally (AC[1]=0).
- MX (LC[1]) results the RAM column address increasing from 127-WPC0 to 127-WPC1 (MX=1) or from WPC0 to WPC1 (MX=0).

By different combination of RID, AC[1], MX, and by setting CA, RA at proper corners of the "window", effects such as mirrors and rotations can be easily achieved.

Setting or resetting AC[3] does not affect the values of CA and RA. So, always remember to reposition CA and RA properly after changing the setting of AC[3].

Dalian Good Display Co.,Ltd

(35) SET MTP OPERATION CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPC (Double-byte command)	0	0	1	0	1	1	1	0	0	0
	0	0	-	-	-	MTPC register parameter				

This command is for MTP operation control:

MTPC[2:0] : MTP command

000 : Sleep	001 : MTP Read
010 : MTP Erase	011 : MTP Program
1xx : For UltraChip use only.	

MTPC[3]: MTP Enable (automatically cleared each time after MTP command is done)

MTPC[4]: MTP value valid (ignore MTP value when L) DC[2] and MTPC[3] are mutually exclusive. Only one of these two control flags can be set to ON at any time.

In other words, when DC[2] is ON, all MTP operations will be blocked, and, when MTP operation is active, set DC[2] to 1 will be blocked.

The following commands, (37) ~ (41), are used as MTP commands only when MTPC[3]=1.

(36) SET MTP WRITE MASK

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPM (Triple-byte command)	0	0	1	0	1	1	1	0	0	1
	0	0	-	М	MTPM[6:0] register parameter					
	0	0	-	-	-	-	-	-	MTPM1 [1:0]	

This command enables Write to each of the 7 individual MTP bits.

When MTPM[x]=1, the x-th bit of the MTP memory will be programmed to "1". MTPM[x]=0 means no Write action for x-th bit. And the content of this bit will not change.

The amount of "programming current" increases with the number of 1's in MTPM. If the "programming current" appears to be too high for the LCM design (e.g. TST4 ITO trace is not wide enough to supply the current), use multiple write cycles and distribute the 1's evenly into these cycles.

MTPM[6:0]: Set PMO value

MTPM1[1:0]: Set MID value

This command is only valid when MTPC[3]=1.

(37) SET V_{MTP1} POTENTIOMETER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP1	0	0	1	1	1	1	0	0		
(Double-byte command)	0	0	Shared register parameter							

This command is for fine tuning V_{MPT1} setting (use with BR=00) and is only valid when MTPC[3]=1.

(38) SET V_{MTP2} POTENTIOMETER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP2	0	0	1	1	1	1	0	1	0	1
(Double-byte command)	0	0		Sh	ared	regist	ter pa	rame	ter	

This command is for fine tuning V_{MTP2} PM setting (use with BR=01) and is only valid when MTPC[3]=1.

(39) SET MTP WRITE TIMER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP3 (Double-byte command)	0	0	1	1	1	1	0	1	1	0
	0	0	Shared register parameter							

This command is only valid when MTPC[3]=1.

(40) SET MTP READ TIMER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0			
Set MTP4 (Double-byte command)	0	0	1	1	1	1	0	1	1 1 1				
	0	0	Shared register parameter										

This command is only valid when MTPC[3]=1.

ESD (Electro-static Discharge) Specifications

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other PCB such as expansion cards or motherboards. Ground your body, work surfaces, and equipment.

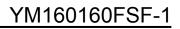
MODULE RELIABILIGY AND LONGEVITY

Module Reliablity

ITEM	SPECIFICATION
LCD including LED backlight	50,000-10,000 (typical)

Module Longevity (EOL/Relacement Policy)

EastRising is committed to making all of our LCD modules available for as long as possible. For each module we introduce, we intend to offer it indefinitely. We do not preplan a module's obsolescence. The majority of modules we have introduced are still available.


We recognize that discontinuing a module may cause problems for some customers. However, rapidly changing technologies, component availability, or low customer order levels may force us to discontinue ("End of Life", EOL) a module. For example, we must occasionally discontinue a module when a supplier discontinues a component or a manufacturing process becomes obsolete. When we discontinue a module, we will do our best to find an acceptable replacement module with the same fit, form, and function.

In most situations, you will not notice a difference when comparing a "fit, form, and function" replacement module to the discontinued module it replaces. However, sometimes a change in component or process for the replacement module results in a slight variation, perhaps an improvement, over the previous design.

Although the replacement module is still within the stated Data Sheet specifications and tolerances of the discontinued module, changes may require modification to your circuit and/or firmware. Possible changes include:

- *LCD fluid, polarizers, or the LCD manufacturing process.* These items may change the appearance of the display, requiring an adjustment to V
- *Backlight LEDs.* Brig ffected (perhaps the new LEDs have better efficiency) or the current they draw may change (new LEDs may have a different VF).
- Controller. A new controller may require minor changes in your code.
- *Component tolerances.* Module components have manufacturing tolerances. In extreme cases, the tolerance stack can change the visual or operating characteristics.

Please understand that we avoid changing a module whenever possible; we only discontinue a module if we have no other option. We will post Part Change Notices on the product's webpage as soon as possible. If interested, you can subscribe to future part change notifications.

CARE AND HANDLING PRECAUTIONS

Design and Mounting

- The exposed surface of the LCD "glass" is actually a polarizer laminated on top of the glass. To protect the soft plastic polarizer from damage, the module ships with a protective film over the polarizer. Please peel off the protective film slowly. Peeling off the protective film abruptly may generate static electricity.
- The polarizer is made out of soft plastic and is easily scratched or damaged. When handling the module, avoid touching the polarizer. Finger oils are difficult to remove.
- To protect the soft plastic polarizer from damage, place a transparent plate (for example, acrylic, polycarbonate, or glass) in front of the module, leaving a small gap between the plate and the display surface. We use GE HP-92 Lexan, which is readily available and works well.
- Do not disassemble or modify the module.
- Do not modify the tab of the metal holder or make connections to it.
- Solder only to the I/O terminals. Use care when removing solder—it is possible to damage the PCB.
- Do not reverse polarity to the power supply connections. Reversing polarity will immediately ruin the module.

Avoid Shock, Impact, Torque and Tension

- Do not expose the module to strong mechanical shock, impact, torque, and tension.
- Do not drop, toss, bend, or twist the module.
- Do not place weight or pressure on the module.

If LCD Panel Breaks

- If the LCD panel breaks, be careful not to get the liquid crystal fluid in your mouth or eyes.
- If the liquid crystal fluid touches your skin, clothes, or work surface, wash it off immediately using soap and plenty of water.
- Do not eat the LCD panel.

Cleaning

The polarizer (laminated to the glass) is soft plastic. The soft plastic is easily scratched or damaged. Be very careful when you clean the polarizer.

- Do not clean the polarizer with liquids. Do not wipe the polarizer with any type of cloth or swab (for example, Q-tips).
- Use the removable protective film to remove smudges (for example, fingerprints) and any foreign matter. If you no longer have the protective film, use standard transparent office tape (for example, Scotch® brand "Crystal Clear Tape"). If the polarizer is dusty, you may carefully blow it off with clean, dry, oil-free compressed air.

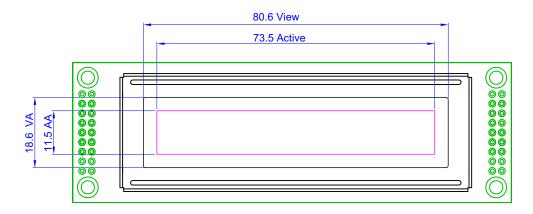
Operation

- We do not recommend connecting this module to a PC's parallel port as an "end product." This module is not "user friendly" and connecting them to a PC's parallel port is often difficult, frustrating, and can result in a "dead" display due to mishandling.
- Your circuit should be designed to protect the module from ESD and power supply transients.
- Observe the operating temperature limitations: from -20°C minimum to +70°C maximum with minimal fluctuations. Operation outside of these limits may shorten the life and/or harm the display.
 - At lower temperatures of this range, response time is delayed.
- At higher temperatures of this range, display becomes dark. (You may need to adjust the contrast.)
- Operate away from dust, moisture, and direct sunlight.

Storage and Recycling

- Store in an ESD-approved container away from dust, moisture, and direct sunlight.
- Observe the storage temperature limitations: from -30°C minimum to +80°C maximum with minimal fluctuations. Rapid temperature changes can cause moisture to form, resulting in permanent damage.
- Do not allow weight to be placed on the modules while they are in storage.
- Please recycle your outdated EastRising LCD modules at an approved facility.

QUALITY ASSURANCE STANDARDS


Inspection Condition

- Environment
 - Temperature: 25±5°C
 - Humidity: 30~85% RH (noncondensing)
- For visual inspection of active display area
 - Source lighting: two 20-Watt or one 40-Watt fluorescent light
 - Display adjusted for best contrast
 - Viewing distance: 30±5 cm (about 12 inches)
 - Viewing angle: inspect at 45° angle of vertical line right and left, top and bottom

Color Definitions

We try to describe the appearance of our LCD modules as accurately as possible. For the photos, we adjust the backlight (if any) and contrast for optimal appearance. Actual display appearance may vary due to (1) different operating conditions, (2) small variations of component tolerances, (3) inaccuracies of our camera, (4) color interpretation of the photos on your monitor, and/or (5) personal differences in the perception of color.

Definition of Active Area and Viewing Area

Acceptance Sampling

DEFECT TYPE	AQL*						
Major	<u><</u> .65%						
Minor	<1.0%						
* Acceptable Quality Level: maximum allowable error rate or variation from standard							

Defects Classification

Defects are defined as:

- Major Defect: results in failure or substantially reduces usability of unit for its intended purpose
- Minor Defect: deviates from standards but is not likely to reduce usability for its intended purpose

Acceptance Standards

#	DEFECT TYPE	CRITERIA							
1	Electrical defects	1. No display, display m 2. Current consumption			Major				
2	Viewing area defect	Viewing area does not	Viewing area does not meet specifications.						
3	Contrast adjustment defect	Contrast adjustment fai	Contrast adjustment fails or malfunctions.						
4	Blemishes or foreign			Acceptable Qty					
	matter on display segments		<u><</u> 0.30 mm	3	Minor				
			defects within 10	MINO					
5	Blemishes or foreign		Defect Size	Acceptable Qty					
	matter outside of display segments	(Width + Length)/2	<u><</u> 0.15 mm	Ignore					
		Length	0.15 to 0.20 mm	3	Minor				
			0.20 to 0.25 mm	2					
			> 0.30 mm	1					
6	Dark lines or scratches	Defect Width	Defect Length	Acceptable Qty					
	in display area	<u><</u> 0.03 mm	<u><</u> 3.0 mm	3					
	₹	0.03 to 0.05	<u><</u> 2.0 mm	2	Minor				
		0.05 to 0.08 ≤2.0 mm		1	iviinor				
	Length	0.08 to 0.10	≤3.0 mm	0					
		<u>></u> 0.10	>3.0 mm	0					

#	DEFECT TYPE	CRITERIA							
7	Bubbles between polarize	r film and glass	Defect Size	Acceptable Qty					
		-	<u>≺</u> 0.20 mm						
			0.20 to 0.40 mm	3	Minor				
			0.40 to 0.60 mm	2					
			<u>≥</u> 0.60 mm	0					
8	Display pattern defect			Minor					
		Dot Size	Acce	eptable Qty	Minor				
		((A+B)/2) <u><</u> 0.20 mm							
		C>0 mm	<u><</u> 3 to						
		((D+E)/2) <u><</u> 0.25 mm	<u><</u> 2 pinł	noles per digit					
9	Backlight defects	 Light fails or flickers. Color and luminance Exceeds standards for dark lines or scratche 	do not correspond to s or display's blemishes,		See list ✦				
10	PCB defects	 Oxidation or contamination on connectors.* Wrong parts, missing parts, or parts not in specification.* Jumpers set incorrectly. (Minor) Solder (if any) on bezel, LED pad, zebra pad, or screw hole pad is not smooth. (Minor) *Minor if display functions correctly. Major if the display fails. 							
11	Soldering defects	 Cold solder joints, mis Solder bridges causir Residue or solder bal Solder flux is black or 	 *Minor if display functions correctly. Major if the display fails. 1. Unmelted solder paste. 2. Cold solder joints, missing solder connections, or oxidation.* 3. Solder bridges causing short circuits.* 4. Residue or solder balls. 5. Solder flux is black or brown. *Minor if display functions correctly. Major if the display fails. 						