

1 特性

- 工作电压范围 4.5V 至 6V
- 内置 VCC 欠压锁存功能

充电部分

- (短路)涓流/恒流/恒压三段式充电
- 恒流充电时输入电流恒定
- 内部设定 300mA 充电电流
- 充电开关频率 1MHz
- 充电效率最高达 90%
- 内置自动复充功能
- 内部预设 4.2V 充电浮充电压
- 内置充电过流、短路和过温保护

放电部分

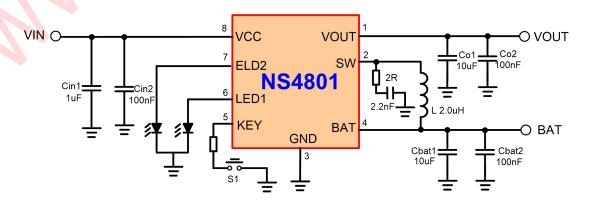
- 同步升压输出 5.05V
- 放电开关频率 1MHz
- 放电效率最高达 93%
- 同步升压最大输出电流 500mA
- 待机电流<30uA
- 待机电压恒定为 2.8V
- 放电截止电流 5mA 以下
- 内置自动负载检测升压功能
- 内置放电短路、电池欠压锁存和过温保护

LED 显示和 KEY 按键功能

- 支持充电状态和放电状态显示
- 支持 KEY 按键引脚
- 4 典型应用电路

2 应用范围

- 移动电源
- 蓝牙耳机充电仓
- 便携式锂电池充电设备等


3 说明

NS4801 是一款集成降压转换器、锂电池充电管理和电池状态显示的多功能电源管理 IC,能够为便携式锂电池充电提供完整的解决方案。芯片的高度集成度和内置多重功能,使其在应用时仅需极少的外围器件,并有效的减小 PCB 尺寸,降低方案的成本。NS4801 只需要一个电感即可实现降压和升压功能。其转换器工作频率为 1MHz,能够支持低成本的电感和电容。

NS4801 充电部分支持(短路)涓流/恒流/恒压三段式充电模式。在恒流模式下,芯片为恒定输入电流模式,其转换效率最高达90%。

另外,芯片內置 LED 显示和 KEY 按键功能, 且包含多重保护功能,最大程度上提高芯片的可靠 性和方案的安全性。

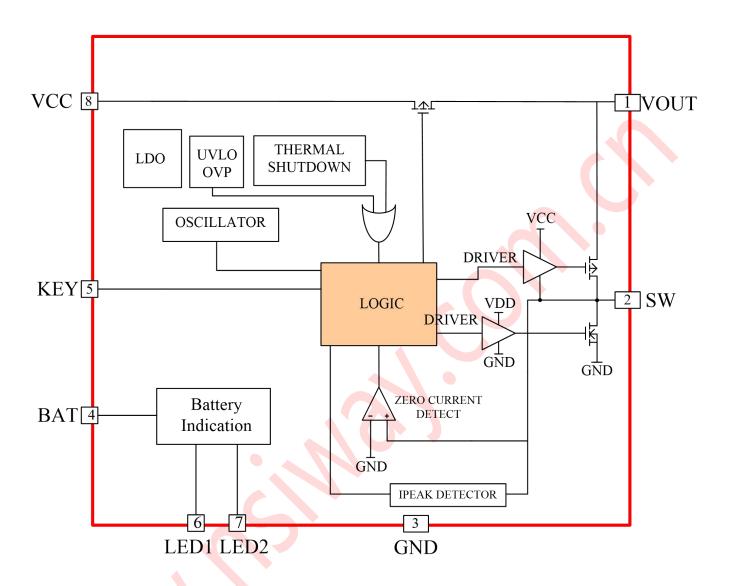
NS4801 采用 SOP8 的标准封装。

5 管脚配置

SOP-8 的管脚图如下图所示:

			·
编号	管脚名称	I/O	管脚功能
1	VOUT	О	BOOST 升压输出端
2	SW	0	开关节点
3	GND	-	功率地
4	BAT	I	电池正极输入口
5	KEY	I	按键输入端
6	LED1	0	放电时电池状态 LED 显示
7	LED2	0	充电时电池状态 LED 显示
8	VCC	1	电源供电口输入端

6极限工作参数


-0.3V ~+ 6V	● 引脚电压	•
-40°C ~ +85°C	● 工作温度范围	•
-55°C ~ +150°C	● 存储温度范围	•
+150°C	● 结温范围	•
+265°C	● 焊接温度(10s 内)	•

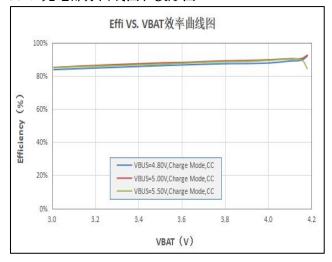
注 1: 超过上述极限工作参数范围可能导致芯片永久性的损坏。长时间暴露在上述任何极限条件下可能会影响芯片的可靠性和寿命。

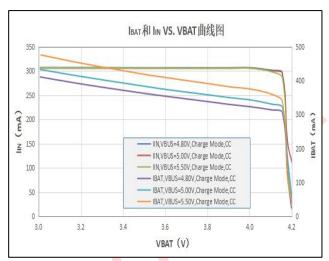
注 2: NS4801 可以在 0℃到 70℃的限定范围内保证正常的工作状态。超过-40℃至 85℃温度范围的工作状态受设计和工艺控制影响。

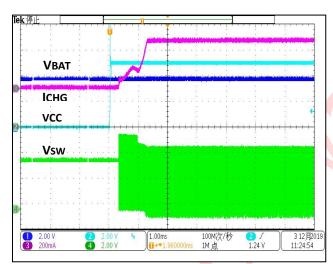
7 结构框图

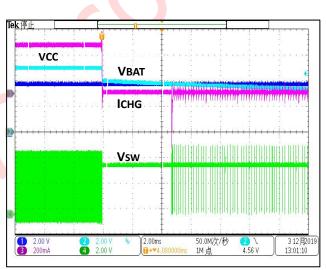
8 电气特性

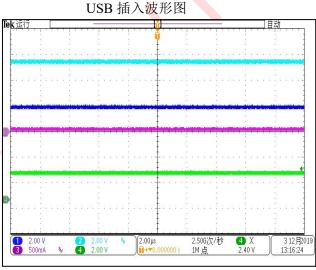
工作条件: T=25°C, V_{CC}=5V, C_{IN}=1uF, C_{OUT}=10uF, C_{BAT}=10uF, L=2.2uH, RC=2R&2.2nF。

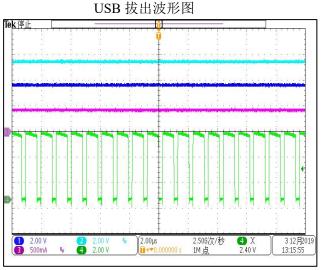

符号	参数名称	条件	最小值	典型值	最大值	单位
V _{CC}	工作电压范围		4.4	5	6	٧
VCC_{OVP}	输入过压保护		5.8	6	6.2	٧
VCC _{UV}	输入欠压保护		4.3	4.4	4.5	V
IIN _{LIMIT}	输入限流电流			1.5*I _{CC}		А
V _{SHORT}	VOUT 短路保护电压	边充边放模式下	3.9	4	4.1	V
I _{STDB}	待机电流			25		uA
I _{KEY}	KEY 键上拉电流			3		uA
T _{KEY_S}	单击 KEY 键探测时间			50		mS
		充电部分				
f _{osc}	工作频率		0.8	1	1.2	MHz
V _{FLOAT}	稳定输出电压			4.2		V
ΔV_{RECHAG}	再充电电池门限电压	V _{FLOAT} V _{RECHAG}	0.15	0.2	0.25	V
I _{CG}	恒流充电电流	V _{BAT} =3.7V		0.4		Α
I _{TRIKL}	涓流充电电流	V _{BAT} < V _{TRIKL}		35		mA
V _{TRIKL}	涓流充电阈值电压	V _{BAT} 上升	2.9	3	3.1	V
V _{TRHYS}	涓流充电迟滞电压			0.1		V
.,	7 7 四级四庆中日	V _{cc} 从低到高	60	100	140	mV
V_{ASD}	V _{CC} -V _{BAT} 闭锁阈值电压	V _{cc} 从高到低	5	30	50	mV
I _{TERM}	充电截止电流门限			20		mA
T _{LIM}	限定温度模式中的结温			100		$^{\circ}$
	N 0	放电部分				
V_{BAT}	电池工作电压		2.9		4.35	V
V _{OUT}	额定输出电压	V _{BAT} =3.7V	4.95	5.05	5.15	V
V _{UV_BAT}	电池欠压闭锁阈值电压	V _{BAT} 下降	2.85	2.9	2.95	V
V _{HYS_BAT}	电池欠压闭锁迟滞	V _{BAT} 上升	0.2	0.3	0.4	V
fosc	工作频率		0.8	1	1.2	MHz
I _{OUT}	输出电流			300		mA
I _{END}	放电结束电流			5		mA
_	输出无负载			4.5		
T_{SHUT}	关闭 LED 和 VOUT 时间			16		S
V _{SHORT}	短路保护电压			4.25		V
T _{SS}	软启动时间			2		mS

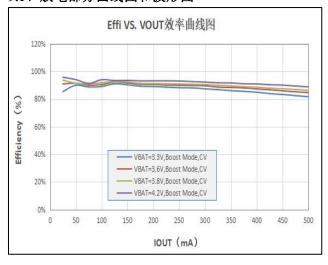


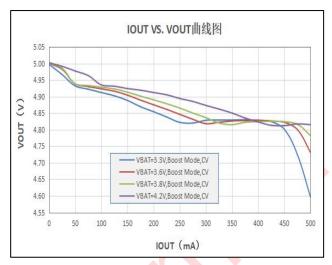

9 典型特性曲线

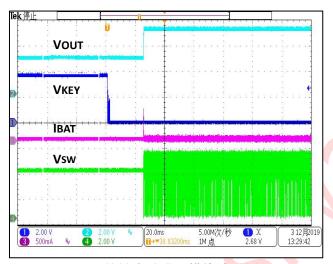

下列特性曲线中, T=25°C, V_{CC}=5V, C_{IN}=1uF, C_{OUT}=10uF, C_{BAT}=10uF, L=2.2uH, RC=2R&2.2nF。

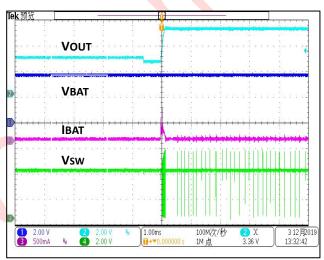

9.1、充电部分曲线图和波形图



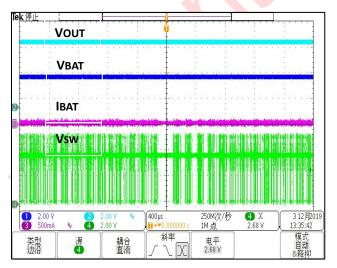


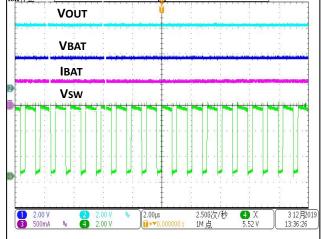

涓流充电波形图


恒流充电波形图



9.1、放电部分曲线图和波形图





KEY 按键启动升压模块波形图

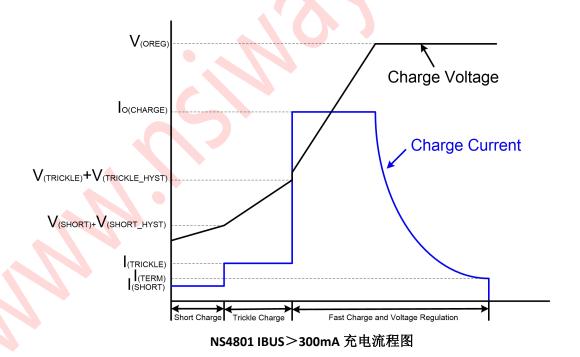
插入负载自动识别波形图

VBAT=3.7V、空载波形(非待机)

VBAT=3.7V、负载 300mA 波形

10 应用说明

10.1 充电部分


NS4801 内置 V_{CC} 限流开关,主要作用是限制 V_{CC} 最大输入电流,防止 V_{CC} 和 V_{OUT} 之间漏电。 V_{CC} 限流电流设定为恒流模式充电电流的 1.5 倍,即 $I_{limit}=1.5\cdot I_{chg}$ (450mA)。限流开关主要功能有欠压保护,过压保护,边充边放路径管理,过流保护,短路保护等。

当 V_{cc} 电压在 4.4V~6V 之间时,限流开关开始工作,为了防止 V_{cc} 插入时产生比较大的尖峰电流,限流开关集成了软启动功能,有效的限制了限流开关的启动电流。

当 Vcc<4.2V 或 Vcc>6V 时,限流开关自动关断,同时充电模块和 LED 也自动关断。 NS4801 在边充边放模式下,优先保证放电。

10.2 充电模式

NS4801 内部高度集成了充电降压模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。在 涓流模式下,芯片采用线性充电模式,充电电流为 35mA;而在恒流模式下,芯片采用 PWM 调制充电,恒 定输入充电电流为 300mA;在充电整个过程中 LED2 始终以 1Hz 的频率闪烁表明充电正在进行中。在恒压模式下,充电电流逐渐减小,当充电电流减小至 20mA 以下时,充电周期结束,LED2 指示切换至常亮,表明充电结束。当电池电压再次降到 4V 以下,系统自动检测 VBAT 电压并开始充电充电周期。

充电部分的保护和功能主要有: 电流软启动功能和过流限流功能。

NS4801 内部集成温度保护功能,当芯片的结温超过 100℃时自动降低充电电流,若芯片温度持续增高至 150℃,则充电电流减小至 0mA。过温保护电路可以防止芯片因故障导致的过热损坏,提高芯片的可靠性。

10.3 升压输出部分

NS4801 内部集成了高低 MOS 管,能够在 USB 拔出后自动升压至 5.05V,并提供 500mA 的电流输出,效率高达 93%以上。芯片采用 1MHz 的开关频率,可有效减小外部电感和电容的尺寸和参数。当 USB 为插入,芯片处于待机模式,此时的待机电流≤25uA,Vour 电压稳定在 2.8V,此时的 LED1 不显示。当有负载接入或 KEY 按键触发时,升压模块检测后开始升压工作。此时的 LED1 常亮,表示放电进行中。

放电模块可以提供 500mA 的额定输出电流,当输出电流大于额定电流后,使得输出电压下降至 4V 时,会触发短路保护。当负载电流减小至 5mA 以下且保持 16S 后, LED 自动关闭,放电截止。

NS4801 提供了输出短路保护,电池欠压等多重保护功能,可以有效的保护电池及系统的安全。在应用中如果发生短路保护时,系统自动关闭,在短路异常解除后,重新接入负载触发或 KEY 按键触发恢复升压模块工作。另外 NS4801 内置阻断 MOS 管,有效防止输出电流的倒灌。

在放电过程中,如果电池电压下降至 3V 时,LED1 开始以 1Hz 闪烁,表明电池电量不足,需要充电; 当电池电压下降至 2.9V 时,系统自动关闭,LED1 灭,并锁定在欠压闭锁状态,放电模块不再工作。只有 插入 USB 或单击 KEY 按键触发才可以解除。接触后,如果电池电压大于 3.2V,在无 USB 插入的情况下, 放电模块继续工作。

10.4 KEY 按键和自动识别负载功能

NS4801 内置自动识别负载功能;在待机模式下,触发电流下限电流值为2mA,上限电流值为70mA,在此范围内可以触发升压模块工作,输出电压为5.05V。

芯片自带 KEY 按键功能引脚,提供客户更多选择,单击 KEY 按键可以触发升压模块,。而当 VBAT 电压≤2.9V 时,不进行升压。

10.5 LED 显示

10.5.1、充电部分 LED2 显示

在 VCC 的输入电压在 4.5V 至 6V 之间,且大于电池电压时,系统进入充电状态。LED2 显示充电状态。

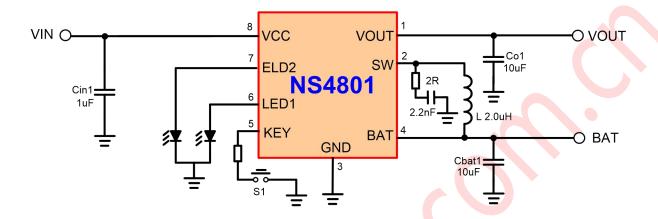
电池电压	电量	LED1 状态	LED2 状态
0V≤VBAT<4.2V	0%~100%	OFF	1Hz Flash
VBAT=4.2V	100%	OFF	ON

10.5.2、放电部分 LED1 显示

在电池放电时,LED1显示放电状态

电池电压	电量	LED1 状态	LED2 状态
VBAT≥3.2V	5%~100%	ON	OFF
2.9V <vbat<3.2v< td=""><td>0%~5%</td><td>1Hz Flash</td><td>OFF</td></vbat<3.2v<>	0%~5%	1Hz Flash	OFF
VBAT≤2.9V	0%	OFF	OFF

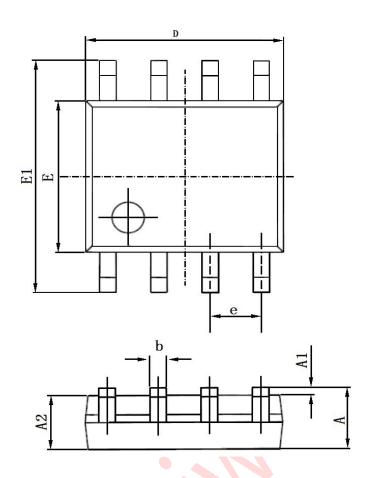
10.5.3、待机状态 KEY 按键显示

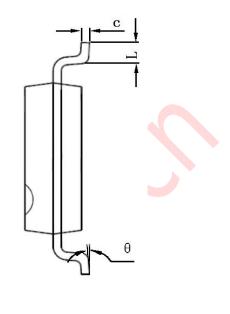

在待机状态下,只有 VBAT 电压大于 3.2V 时,才能启动升压模块,可通过单击 KEY 启动升压模块, LED1 灯由灭切换至常亮。如果空载,则 LED1 常亮 16S 后关闭,进入待机模式。

在 VBAT 电压小于 3.2V, 升压模块无法启动, LED1 灭。

电池电压	电量	LED1 状态	LED2 状态
VBAT≥3.2V	5%~100%	ON	OFF
2.9V <vbat<3.2v< td=""><td>-</td><td>OFF</td><td>OFF</td></vbat<3.2v<>	-	OFF	OFF

10.6 典型应用方案


10.7 PCB 布局建议


PCB 布局应遵循如下规则以确保芯片的正常工作。

- 1.功率线(地线、SW线、VIN线)应该尽量做到短、直和宽;
- 2.输入电容,输出电容和电池电容应尽可能靠近芯片管脚;
- 3.功率开关节点(SW Node)通常是高频电压幅值方波,所以应保持较小铺铜面积,且模拟元件应远离功率开关节点区域以防止掺杂电容噪音;
 - 4.电感吸收电容和电阻必须要加, RC的参数推荐分别为 2R 和 2.2nF;

11 封装信息

	DimensionsIn Millimeters		DimensionsIn Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
ь	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	00	80	00	80	

12 版本修改历史

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。