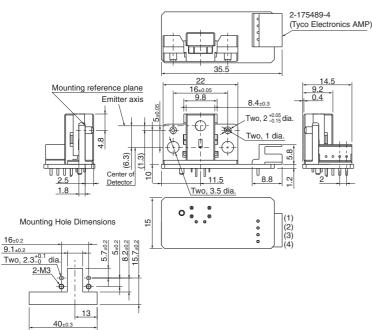
This announcement is based on product catalogue information previously shown before its discontinuation

Product information of the existing product may be different from the previous version


Microphotonic Devices (Micro-displacement Sensor) **74D-R01**

Be sure to read Precautions on page 24.

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

Recommended Mating Connectors:

Tyco Electronics AMP

175778-4 (crimp-type connector) 173977-4 (press-fit connector)

Features

- Easier control enabled by built-in processor circuit.
- Resolution: ±10 μm.
- Operating area: 6.5±1 mm.
- Adapts well to changes in reflection factor using division processing.

■ Applications

- Paper thickness detection
- Multi-feed detection
- Travel distance detection

Pin no.	Remarks	Name
1	PLS	LED pulse light emission control signal
2	Vcc	Power supply
3	OUT	Output
4	GND	Ground

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65
30 < mm ≤ 50	±0.8

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Value	Unit	Condition
Supply voltage	V _{CC}	7	VDC	
LED pulse light emission control signal	PLS	7	VDC	LED
LED light emission pulse	T _{FP}	100 (see note)	ms	
Operating temperature	T _{opr}	-10 to 65	°C	No freezing or condensation
Storage temperature	T_{stg}	-25 to 80	°C	

Note: Refer to Pulsed Forward Current Rated Curve.

■ Electrical and Optical Characteristics (Ta = -10°C to 65°C)

Item	Symbol	Rated value	Condition
Power supply voltage	V _{CC}	5 VDC ±10%	Ripple (p-p): 10 mV p-p max.
Current consumption	OUT	0.2 VDC to (V _{CC} -0.3) V	(see note 1)
Response delay time (High to Low)	tr	100 μs max.	(see note 2)
Response delay time (Low to high)	PLS	3.5 VDC to V _{CC}	

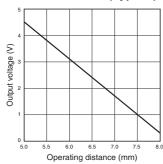
Note: 1. Load impedance (between OUT-GND) is set at more than 10 k Ω .

2. The time for output voltage to rise from 10% to 90% of the full output range.

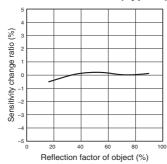
This announcement is based on product catalogue information previously shown before its discontinuation

Product information of the existing product may be different from the previous version

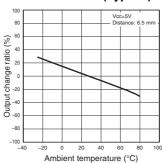
■ Characteristics (Ta = -10°C to 65°C)

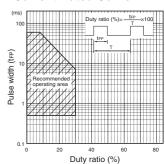

Object: N8.5 Munsell paper with a reflection factor of 70%.

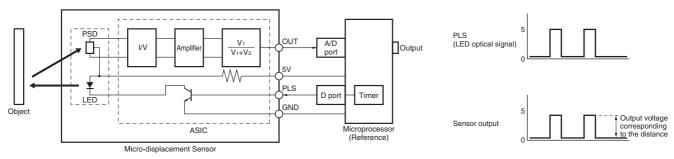
Item	Value
Operating area (see note 1)	6.5 ±1 mm
Sensitivity variation (see note 2)	–1.4 mV/μm ±10% max.
Resolution (see note 3)	±10 μm max. (Ta = 25°C)
Linearity (see note 4)	2% F.S. (full scale) max.


- Note: 1. Distance from Mounting Reference Plane to Target.
 - 2. The sensitivity is defined as slope of the line and it represents the variation in the output voltage per unit length between different products.
 - 3. This is the value of the electrical noise width in the output signal converted to a distance under the following conditions.
 - (1) A/D conversion time: 50 µs max.
 - (2) Ripple noise in the power supply voltage (Vcc): 10 mVp-p max.
 - (3) Low-pass filter time constant of the downstream signal processing circuit: 0.4 ms
 - (4) Distance from mounting reference plane to target: 6.5 mm
 - 4. This is the peak-to-peak value of the deviation of the signal output from a straight line.
 - A linearity of 2% F.S. indicates the following value:
 - (1) Distance full-scale converted value: $2 \text{ mm} \times 0.02 = 0.04 \text{ mm}$ (40 μ m)
 - (2) Output voltage converted value: 1.4 mV/ μ m \times 40 μ m = 56 mV (for a sensor with a sensitivity of 1.4 mV/ μ m)

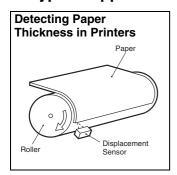
■ Engineering Data

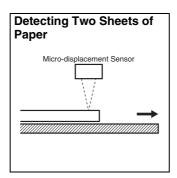

Operating Distance Characteristics (Typical)

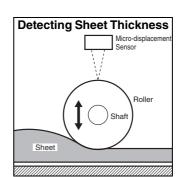

Dependency of Object on Reflection Factor (Typical)


Temperature Characteristics (Typical)

Pulsed Forward Current Rated Curve




■ Circuit Diagram



The sensor output is obtained by adding a pulse signal to the PLS terminal. An output cannot be obtained merely by adding a DC voltage to the PLS terminal. The output will be a pulse output synchronized with the PLS signal. The output must be held with a latching or sample-and-hold circuit in the microprocessor.

■ Typical Application

