
lssued March 1986 5702

Zg Applications
data

Introduction
The 28601 is a singlei-chip microcomputer with four
8-bit l/O ports, two counter/timers with associated
prescalers, asynchonous serial communicat ion in-
terface with programmable baud ranges, and soph-
isticated interrupt facilities. The 28601 can access
data in three memory spaces: 2K bytes of on-chip
ROM and 62K bytes of external program memory,
1zl4 bytes of on-chip Register, and 62K bytes of
external data memory.
The 28671 is a 28601 with a Basic/Debug Interpre-
ter and Debug monitor preprogrammed into the 2K
bytes of on-chip ROM. This appl icat ion note discus-
ses some considerat ions in designing a low-com-
plexity board that runs the Basic/Debug Interpreter
and Debug monitor with an external 4K bytes of
RAM and 2K bytes of ROM. The board stands
alone, al lowing users to connect i t wi th a terminal
via an RS232 connector and run the Basic/Debug
Interpreter.
The user of this board can run Basic/Debug with
l i t t le knowlege of the 28601. The board, however,
derives its power through its ability to execute
assembly language programs. To use the board to
i ts ful l potent ial , the Z8 Technical Manual (902-063)
and the Z8 Assembly Language Programming
Manual (902-041)should be read. The 28671 Basic/
Debug Reference Manual (902-057) provides gener-
al information, statement syntax, memory al loca-
t ions, and other mater ial regarding Basic/Debug
and the Debug monitor provided by the 28671.
Basic/Debug
Basic/Debug is a subset of Dartmouth Basic, which
interprets Basic statements and executes assembly
language programs located in memory. Basic/De-
bug can implement al l the Dartmouth Basic com-
mands direct ly or indirect ly.
One advantage to programming in Basic/Debug is
the interact ive programming approach real ized be-
cause Basic/Debug is interpreted, not assembled
or compi led. Modules are tested and debugged
using the interact ive monitor provided with Basic/
Debug. Using Basic/Debug saves program de-
velopment t ime by providing higher- level language
statements that s impl i fy program development.
Using the INPUT and PRINT statements simpl i fy
debugg ing .
The 28671 microcomputer
Basic/Debug controls the memory interface, ser ial
port, and other housekeeping functions performed
by the assembly language programmer.
The 28671 uses ports 0 and 1 for communicat ing
with external memory. Port 1 provides the multi-
plexed address/data lines (ADo-ADz); port 0 sup-
plies the upper address bits (Ae-Ars). Tne 28671

,,",*o I
AND (coNrRoL

I

PORTO
{NIBBLE

PBOGRAMMABLE)
l/O or As-A15

PORT 1
l/O or AD6-AD7

Pin functions

o2

G N D

P3z

Poo

Po,

Poz

Po.

Po.

Pos

Pou

P0r

P3u

D2

ot

P2,

P2o

P1 ,

P 1 -

P 1 z

P 1 ,

P 1 o

Pin assagnments
TOPVIEW

POg P2,

P04 P2o

Pos
2g671

P2s

Poo MCU P2u

5702
also uses the serial communications port for com-
municat ing with a terminal. Serial communicat ion
takes two pins from port 3, leaving six l/O pins
from port 3 available to the user. The serial com-
munication interface uses one of the two counter/
timers on the 28671 chip.
All other functions and features on the 28601 are
avaif able with the 28671. The user may reconfigure
the 28671 in software as a 28601 if desired.
Applying the 28671
Applicatiorrs of the 28671 range from a low-com-
plexity home microcomputer that is memory inten-
sive to an inexpensive, l/O-oriented microcon-
trol ler.
For home computer users, Basic/Debug is used like
other avaifable Basic interpreters. The Z.8671,
however, has many advantages over other compu-
ters. For example, the programmer can use the
available functions such as interrupts to perform
sophisticated tasks that are beyond the scope of
other computer products. There is also a counter/
timer that is used as a watchdog counter, a time-of-
day clock, a variable pulse width generator, a pulse
width measurement device, or a random number
generator.
As an inexpensive microcontroller, Basic/Debug
speeds program development t ime by cal l ing
assembly language subroutines (for time critical
appl icat ions) and by supplying high-level Basic
language statements that simplify the program-
ming of noncritical subroutines.

Architecture
Two major design goals were set for this 28671
Basic board. First , the board was to be simple.
Second, the board needed to allow the user to write
Basic programs and to utilize the features of the
28601.
Ove'rview
The board has eight lC packages:
* 28671 (28601 preprogrammed wi th Bas ic /

Debug)
* 5516 (2K bytes of static RAM)

or 6264 (8K bytes of static RAM)
* 2732 (4K bytes of EPROM)
* 1488 (RS232 l ine dr iver)
* 1489 (RS232l ine receiver)
* 74LS00 or 74LS10 (NAND gate package)
* 74LS138 (3 to g line decoder)
* 7 4L537 4 {Octal Latch).
With these chips, a complete microcomputer sys-
tem can be built with the following features:
* 2K byte Basic/Debug interpreter in the internal

ROM.
* 2K or 8K bytes of user RAM
* 4K bytes of user-programmable EPROM
* Ful l -duplex ser ial operat ion with programmable

baud rates
* RS232 interface
* 8-bit counter/timer with associated 6-bit pre-

scalers
* 124 general-purpose registers internal to the

28671

Figure 1 28671RAM interface

cE2
A 1 0

A9

A8

A7

A6
55tG2

A5

M

A3 cE

A2

A1 R^r'V

AO
y08 u07 u06 vos vo4 vo3 vo2 vo1

A o 1

* 141/O l ines avai lable to the user
* 3 lines for external interrupts
* 3 sources of internal interrupts
* Sophisticated, vectored interrupt structure with

programmable pr ior i ty levels. Each can be indi-
vidual ly enabled or disabled, and al l interrupts
can be global ly enabled or disabled

* External memory expansion up to 124K bytes
* Memory-mapped l /O capabi l i t ies.
This microcomputer can be used as a microcontrol-
ler, in which case a terminal is at tached, via the
R5232 interface, and Basic/Debug is used to create,
test, and debug the system. When the system is
debugged, the program is put into the EPROM, the
terminal disconnected, and the board run standing
alone. The terminal can be reattached at any t ime
to monitorthe subrbut ines running on the board.
The proposed boards meet the design require-
ments of s impl ic i ty and of al lowing the user to
wri te and debug programs in Basic whi le maintain-
ing access to the Z,8671on-chip features.

Interfacing the 28671 with external memory
A simple RAM interface using the 5516 (2K byte)
stat ic Ram is shown in Figure 1, and a ROM

Interfacing the 28671 with RS232 port
The 28671 uses its serial communication port to
communicate with the RS232 port. Driver and re-
ceiver circuits are required to supply the proper

5702
interface using the 2732 (4K byte) EPROM in Figure
2. lt is a fairly standard circuit with the 74L5374
being used to latch the low byte of the address and
a 74LS138 providing address decoding. The major
difference between the two is that the ROM circuit
prevents memory accesses during a write cycle
thus avoiding bus contention. This is carried out
using the R/W signal as an enable on the address
decoder. For a circuit using ROM and RAM this
method cannot be used because the address de-
coder is used for both ROM and RAM. Examples of
a mixed circui t can be seen in the ful l board designs
(Figures 4 and 5).
Mapping the ROM at address 1000H to 1FFFH
maintains compatability with Basic/Debug's Auto
Start-up procedure. lf this feature is not required
then the address decoder can be omitted and eE
can be obtained from the high order address bits.
Unique address space decoding can also be omit-
ted for the RAM circuit but the 28671, which sizes
the RAM on power-up, could think that i t has more
RAM than there really is. This could cause prob-
lems with the GOSUB stack corrupting the Basic
program and so care must be taken if a large Basic
program is being run from RAM.

signals to the RS232 interface. The circuit of Figure
3 shows the interface between the 28671 and the
1488 and 1t189 for ser ial communicat ion via the
R5232 interface.

Figure 2 28671EPROM interface

Y7

Gl Y6

c2B Y5

G2A Y4

c Y 3

e Y 2

r Y 1

YO

7415138

P0z

Po5

m-

P0a

Po3

Po2

Pol

Poe

P 1 z

P1o

P 1 s

P l c

P 1 :

P1z

P l r

P l o

A_S

A 1 2 l 7 . L s r 3 s l 1 8

1 6 2 1 cT
4 1 1

4 1 0

A9

A8

A7

46
27E2-m

A5

M

A3

A 2 G

A1

AO

01 06 05 04 03 02 0't 00

74LS:t7a
8D 80

7D 70

6D 60

5D 50

4D 40

3D 30

zD 20

l D 1 0

5702

Figure 3 ZS6TI lnterface for serial
communications

3
7

_7__
i nszrz
i ooNNEcroR

1spF 1spF

rtiF
--.lol-
7.3728MH2

PARAIIEL RESONANT

XTAL2 XTAL1

The serial interface is a simple type using only Sl,
SO and GND. The control signals CTS, DSR etiare
therefore not required.
The 28671 uses one timer and its associated pre-
scaler for baud rate control. When the 28671 is
reset, it reads location FFFD and uses the byte
stored there to select the baud rate. The boards
described in this application note use EPROM to
select the baud rate. On reset, the 28671 reads
FFFD, which is in the EPROM, and decodes the
baud rate from the contents of that location. The
baud rate can be changed in software.
Figures 4 and 5 show the ful l board designs im-
plemented for this application note.

Figure 4 ZSBaslclDebug system with 4K EPROM and 2K RAM

BES€T fAL] NAL2

rc7

&
G

rc.

&

&

tu,

q
m1

P l t

%

E) P l .

P l t

P l u

P r ,

CE

2&.4

a o d E

0 7 0 5 0 5 & 0 3 0 2 0 r m @ r07 ffi 16 r& 163 r02 r01

5702

Figure 5 Z8 Basic/debug system with 4K EPROM and 8K RAM

R€SET XTAL] XTAL2

&1

P l o

P] :

P l z

P l ,

P l o

6 s R w N

aro 6E

A5 m.ti

{ 5

N W E

Uncommitted l/O pins and other pins
Using the above design, port2 is avai lable for user
appl icat ions. Any of the port 2 pins can be indi-
vidual ly conf igured for input or output. There are
also six pins in port 3 avai lable to the user. The port
3 input pins can be used for interrupts.

Software
Getting started
The 28671 board needs +5V and ground to run al l
components on the board except the 1488 EIA line
driver. The 1488 needs +12V and -12V in addit ion
to ground. (l f not using terminal, the EIA dr iver/
receiver circuit is disconnected. Consequently, the
+12V and -12V l ines are no t requ i red .)
The RS232 port can interface to any ASCII Terminal
i f the baud rate sett ing is matched to the value
programmed into the EPROM. With power sup-
pl ied to the board and the terminal connected to i t ,
the reset button resets the 28671 and the prompt
character appears (" : "

) .
The board is ready for a Basic command when the
" i" appeats. The following sequence is a simple
l /O example :
: 1 0 i n p u t a
: 2 0 " a : " ; a
: r u n
?5
a : 5
: l ist
1 0 i n p u t a
2 0 " a : " ; a

When a number is entered as the f i rst character of a
l ine, the Basic monitor stores the l ine as part of a
program. In th is example , "10 input a" i s en tered .
Basic stores this instruct ion in memory and pr ints
another " :" prompt. The Run command causes

execution of the stored program. ln this example,
Basic asked for input by pr int ing "?' . A number (5)
is typed at the terminal. Basic accepts the number,
stores it in the variable " a" , and executes the next
instruction. The next instruction (2O "a=";a) is an
implied print statement; writing an actual "print"

command is not necessary here. This line of code
produced the output "a:5". The command " l ist"

caused Basic to display the program stored in
memory on the terminal.
Reading directly from memory
Basic lets the user directly read any byte or word in
memory using the Print command and !@" tor
byte references or " |

" tor word references:
:pr int @8
32
:pr inthex (@8)
20
:pr inthex (f 8)
2000

The first statement prints the decimal value of
Register 8. The next statement prints the hexade-
cimal value of Register 8 and the last statement
prints the hexadecimal value of Register 8 (20H)
and Register 9 (00H).
Writing directly to memory
Basic lets the user write directly to any register or
RAM locat ion in memory using the Let command
and e i ther "@" or "

I
" .

:@o/o a:o/oft
: t 8192:255
:pr in t @10
255
:pr inthex (1%2000)
FF

The Let command is implied to save memory space
but can be included. The first statement loads the

5702
hexadecimalvalue FF into register 10 decimal (AH).
The next instruction loads the decimal value 255
into register 8192 decimal (2000H). The pr int com-
mands wri te to the terminal the values that were
put in with the first two instructions.

Memory environment
Table 1 gives the memory configuration for the
2,S6Tl application examples. Chip select is control-
led from the address decoder for the RAM and the
address/decode logic for the EPROM. In both cases
several outputs of the 74LS138 are left free and
these can be used for memory expansion or to
decode addresses from peripheral devices. Map-
ping the EPROM at 1000H to 1FFFH maintains
compatability with the 28671 Auto Start-up feature
and the mapping from 8000F1 to FFFFH allows the
28671 to read the baud rate from the EPROM at
address FFFDH (address FFDH in the EPROM).

Table 1 The memory environment

Switching from RAM to EPROM
Register 8 and Register 9 contain the address of the
first byte of a user program or, if there is no
program, the address where the 28671 will put the
first byte of a user program. ln this application
example, when the 28671 is reset and the EPROM
does not contain the address, Register 8 and Regis-
ter 9 contains a Basic program which points into
RAM. EPROM is selected by changing the contents
of Register I from 20H to 10H (see Table 2).

Table 2 The registers

Decimal Hex Contents
22-23
8-9

16-17
8-9

Current Line Number
Address of the First
Byte of User Proqrarr

For more detai ls on the register assignments, refer
to the Pointer Registers-RAM System section of the
Z8 Basic/Debug Software Reference Manual.
After the instruct ion "

t 8:%1000" is executed, the
28671 accesses the EPROM on the Basic/Debug
Board.
The example below shows how to switch from
RAM to EPROM. The example uses two separate
programs, one in RAM and one in EPROM. The
RAM program is l isted f i rst , then the EPROM.
:pr inthex (t 8)
2000
: l ist
10 "execut ing out of RAM"
: 1 8 : % 1 0 0 0
:pr inthex (| 8)
1000
: l i s t
10 "execut ing out of EPROM"

Baud control
The baud rate is selected automatical ly by reading
locat ion FFFDH and decoding the contents of that
location when the 28671 is reset (the 28 Basic/
Debug Software Reference Manual contains the

6

baud rate switch sett ings in Appendix B). This
appl icat ion example holds the baud rate sett ings in
i ts EPROM. The least s igni f icant bi ts of locat ion
FFFD hex wi l l provide baud rates as fol lows:

Baud rate
1 1 0
1 5 0
300

1200
2400
4800
9600

1 9200

Value read
1 1 0
000
1 1 1
1 0 1
1 0 0
0 1 1
0 1 0
001

After a reset, the baud rate is programmed by
loading a new value into counter/ t imer 0 (see the
Z8 Technical Manual, sect ion 1.5.7). A Reset always
changes the baud rate back to the rate selected
from the contents of locat ion FFFD.

Burning an EPROM
The EPROM contains the baud rate sect ion byte in
locat ion FFDH. The other locat ions in memory are
used for program storage. See section 6.3 of the
Basic/Debug Manual for the format used to store
programs in memory. This format is used to store
programs in EPROM.
Example
The fol lowing is a pr intout of a game Super Brain
wri t ten in Basic/Debug.
10 @243:7
20 @242=10
30 @241:14
40 x:usr(841: a:@242-1 : x:usr(841: b:@242-1
50 x:usr(84): c:@242- 1: x:usr(841: d:@242-1
5 5 " " : i : 0

100 "guess ", : in e,f ,g,h
1 1 0 i : i + 1
300 j :Yo7 122 : k:o/"7 t2a
301 t :0
302 r :0 : p :0
3 1 0 i f t j : f k P : P * i
3 2 0 j : j + 2 : k : k * 2 : t : t * 1 r i f 4 > 1 3 1 0
330 j : Y"7 1 22 : k: "/o7 f 2 a
331 t :0
3 4 0 i f t j : f k r : r * 1 0 : f j : f j + 1 0 : l : 3
341j: j+2
350 t : t* 1 : i f 4>1310
351j:"7.712,
352 t :0
360 k: k+ 2 : ifo/o7f31>k340
363 i : "7"7 1 22 : k: "/"7 f 2 a
366 i f t j>e T j : t j -10
367 j : j+2
368it"/"7t29>j366
370 "r ight"

; r ;
" place" ;p

380 i f4>p100
390 Y:999
400 " r igh t in " ; i ; "guesses ; p lay another y /n" :

inpu t x
O ' ' 9 ; 1 v : y 1 0
Lines 10 through 50 comprise the random number
generator for the program. The three l ines:
10 @243:7
20 @242:10
30 @241:14
ini t ia l ize counter/ t imer 1 to operate in modulo-10
count. Refer to the Z8 Technical Manual for com-
plete information on ini t ia l iz ing t imers.
The "user (84)" function waits for keyboard input,
the ASCII value of the key is returned in a var iable

Decimal Hex Contents
o-2047

4098-8191 &
32768-65535
81 92-1 0239
81 92-1 6383

O-7FF

1 000-1 FFF &
SOOO-FFFF
2000-27FF
2000-3FFF

In te rna lROM
(Basic/Debug)
EPROM l2t32l

RAM (5516)
RAM (6264)

with the fol lowing command:
:10 x :usr (841: " "

:15 pr in thex(x)
: r u n
5
35

In the above example, the program waits at l ine 10
unt i l keyboard input, in this case the number 5. The
input value is stored in ASCII format in the var iable" x " . T h e l i n e :
40 x: usr(841 : a: @242- 1 : x: usr(841) : b: @242- 1
waits for input, reads the current value of t imer 1,
subtracts 1 (to get a number between 0 and 9), and
stores the number in var iable a. Then i t waits for
keyboard input at the second user funct ion cal l ,
reads the current value of t imer 1, subtracts 1, and
stores the number in var iable b. Line 50 of the
example program gets two more random numbers
and stores them in var iables c and d. The four-digi t
random number is located in var iables a,b,c, and d.
Line 300 assigns the locat ion of var iable a to
variable j and the locat ion of var iable e (the f i rst
var iable in the guess str ing) to the var iable k. The
strategy is to access these variables indirect ly and
to increment pointers j and k to access the var i-
ables.
A colon is used to separate commands on the same
l ine. This is useful in packing the program into a
smal l amount of memory space. The code, howev-
er, is harder to read. See sect ion 5 of the Basic/
Debug manual for more information on memory
packing techniques.
Be low is a sample run o f the Super Bra in Program:
: r u n
(<RETURN) on the keyboard is entered four t imes

here)
guess ?0,1 ,2,3
r ight 2 place 0
guess ?4,5,6,7
r ight 2 place 1
guess ?0,2,4,6
r ight 3 place 2
guess ?4,2,1 ,6
r igh t 4 p lace 4
r ight in 4 guesses
play another? y/n
?n

Conclusion
The design of these appl icat ion examples met the
major design goals of s impl ic i ty and funct ional i ty.
The f i rst goal is accomplished by prudent select ion
of support components, excluding any unneces-
sary chips. The board allows the user to exercise
the full power and flexibility of the 28601 not used
by Basic/Debug. The user can write and debug
Basic programs without detai led knowledge of the
28601.
The Basic appl icat ion example demonstrates a
memory interface that is appl icable for al l Z8 Fami-
ly members.
The software sect ion explains the memory environ-
ment and gives several examples of Basic/Debug.
These examples are a good introduct ion to the
board and to Basic/Debug.
The 28671 is a customized extension of the 28601
single-chip microcomputer. The simplicity of the

5702
Basic application example demonstrates the flex-
ibility of the 28601 microcomputer in an expanded
memory environment.

5702

RSdata

R.S. Compononts Ltd. PO Box 99, Corby, Northants, NN17 gRS

e
On Electrocomponents Group Company

Telephone: 0536 201234
@RS Components Ltd. 1984

