Issued March 1986 5702

data

N

Z8 Applications

~

o,
Introduction
The Z8601 is a single-chip microcomputer with four
8-bit I/0 ports, two counter/timers with associated o mEEET o
prescalers, asynchonous serial communication in- g | < | w ofil
terface with programmable baud ranges, and soph- CONTROL | < | 52 5 el be
isticated interrupt facilities. The Z8601 can access o }CLOCK
data in three memory spaces: 2K bytes of on-chip iy s S s
ROM and 62K bytes of external program memory, g 17 B4Ry
144 bytes of on-chip Register, and 62K bytes of =7 & 0 £TW ey
external data memory. RN s iy Fla et
The Z8671 is a Z8601 with a Basic/Debug Interpre- PROGRAMMERLE | < o] o Sl DI
ter and Debug monitor preprogrammed into the 2K VOor Asg | <> e o e dE
bytes of on-chip ROM. This application note discus- 3 Aaciiudiilt araris
ses some considerations in designing a low-com- 8 dnidad®V s BhE
plexity board that runs the Basic/Debug Interpreter v 3. B R
and Debug monitor with an external 4K bytes of i §12 VT
RAM and 2K bytes of ROM. The board stands i Sl gt e
alone, allowing users to connect it with a terminal Sl i P2 [*— | ports3
via an RS232 connector and run the Basic/Debug PORT1 | <> Pla P3; [| KSR OrpUn
Interpreter. e sy P LS ZQ%I%L(B%EE%L
The user of this board can run Basic/Debug with T ot oBi
little knowlege of the Z8601. The board, however, N 3 e it B
derives its power through its ability to execute 3 £ ke Gud) s
assembly language programs. To use the board to
its full potential, the Z8 Technical Manual (902-063) g
and the Z8 Assembly Language Programming b
Manual (902-041) should be read. The Z8671 Basic/
Debug Reference Manual (902-057) provides gener-
al information, statement syntax, memory alloca- | [
tions, and other material regarding Basic/Debug +5v[1] 40] P3,
and the Debug monitor provided by the Z8671. XTAL2[2] [39] p3,
Basic/Debug XTAL1[3] 38] P2,
Basic/Debug is a subset of Dartmouth Basic, which P3,[4] [37] P2,
interprets Basic statements and executes assembly P3,[5] [36] P2s
language programs located in memory. Basic/De- RESET[6] [35] P2,
bug can implement all the Dartmouth Basic com- RAW[7] [34] P2,
mands directly or indirectly. bs[E] 3] P2,
One advantage to programming in Basic/Debug is As[9] [32] P2,
the interactive programming approach realized be- P35 [10] 37] P2
cause Basic/Debug is interpreted, not assembled GND [1T] 28671 [30] P3,
or compiled. Modules are tested and debugged P3, [12] ot ¢ [29] Ps.
using the interactive monitor provided with Basic/ PO, [13] 28] P1,
Debug. Using Basic/Debug saves program de- Po, [14] 27] P1;
velopment time by providing higher-level language Po, [15] [26] P1s
statements that simplify program development. PO, [16] [25] P,
Using the INPUT and PRINT statements simplify Po, [17] [24] P,
debugging. PO, [18] 23] P1,
The 28671 microcomputer Pos [19] 22] P,
Basic/Debug controls the memory interface, serial Po; [20] [21] P
port, and other housekeeping functions performed

by the assembly language programmer.

The Z8671 uses ports 0 and 1 for communicating
with external memory. Port 1 provides the multi-
plexed address/data lines (ADy-AD5); port 0 sup-
plies the upper address bits (Ag-A;5). The Z8671

Pin assignments
TOP VIEW

5702

also uses the serial communications port for com-
municating with a terminal. Serial communication
takes two pins from port 3, leaving six I/O pins
from port 3 available to the user. The serial com-
munication interface uses one of the two counter/
timers on the Z8671 chip.

All other functions and features on the Z8601 are
available with the Z8671. The user may reconfigure
the Z8671 in software as a Z8601 if desired.
Applying the Z8671

Applications of the Z8671 range from a low-com-
plexity home microcomputer that is memory inten-
sive to an inexpensive, |/0O-oriented microcon-
troller.

For home computer users, Basic/Debug is used like
other available Basic interpreters. The Z8671,
however, has many advantages over other compu-
ters. For example, the programmer can use the
available functions such as interrupts to perform
sophisticated tasks that are beyond the scope of
other computer products. There is also a counter/
timer that is used as a watchdog counter, a time-of-
day clock, a variable pulse width generator, a pulse
width measurement device, or a random number
generator.

As an inexpensive microcontroller, Basic/Debug
speeds program development time by calling
assembly language subroutines (for time critical
applications) and by supplying high-level Basic
language statements that simplify the program-
ming of noncritical subroutines.

Architecture

Two major design goals were set for this Z8671

Basic board. First, the board was to be simple.

Second, the board needed to allow the user to write

Basic programs and to utilize the features of the

Z8601.

Overview

The board has eight IC packages:

*x 28671 (Z8601 preprogrammed with Basic/
Debug)

* 5516 (2K bytes of static RAM)

or 6264 (8K bytes of static RAM)

2732 (4K bytes of EPROM)

1488 (RS232 line driver)

1489 (RS232 line receiver)

74LS00 or 74LS10 (NAND gate package)

7415138 (3 to 8 line decoder)

* 74LS374 (Octal Latch).

With these chips, a complete microcomputer sys-

tem can be built with the following features:

x 2K byte Basic/Debug interpreter in the internal
ROM.

» 2K or 8K bytes of user RAM

* 4K bytes of user-programmable EPROM

* Full-duplex serial operation with programmable
baud rates

* RS232 interface

* 8-bit counter/timer with associated 6-bit pre-
scalers

* 124 general-purpose registers internal to the
28671

* % % % %

Figure 1 28671 RAM interface

+V Y7 D
6
r—-{ ot e b
5
—— G28 Ys O
A15 >
- (] G2A Ya O
20 3
£ c 3 P
19 2
POs P B Y2 D
18 1 14
POs |~ A Y1 O—
Pos 2 A1 vob
po, 16 7415138 ad
CE2
po, 2 191 At0
po, | 14 22} pg
PO, 13 23 | a8
] s
28671 7418374
o, |22_A07 18] N i i 4 o
= 5516-2
o ~ g o 70 31 A5
P1s = LEd PY) sa |2 L3 WA
2090
Pl 2 id 5D oy =l e CE1
g T R 1 a2
7 21
Py 23 = z 3D 3Q g Al RW
| e il PP 202 8] ro
/08 1/07 1/06 1/05 1/04 1/03 1/02 1/01
Plo 21 ~ 3 1D 10Q Z_J
o A O - 17| 16| 15| 14| 13| 11| 10| o
s _AW &S ol T AD7 ADO
8 7 9

141/0 lines available to the user

3 lines for external interrupts

3 sources of internal interrupts

Sophisticated, vectored interrupt structure with
programmable priority levels. Each can be indi-
vidually enabled or disabled, and all interrupts
can be globally enabled or disabled

*» External memory expansion up to 124K bytes

* Memory-mapped I/0O capabilities.

This microcomputer can be used as a microcontrol-
ler, in which case a terminal is attached, via the
RS232 interface, and Basic/Debug is used to create,
test, and debug the system. When the system is
debugged, the program is put into the EPROM, the
terminal disconnected, and the board run standing
alone. The terminal can be reattached at any time
to monitor the subroutines running on the board.
The proposed boards meet the design require-
ments of simplicity and of allowing the user to
write and debug programs in Basic while maintain-
ing access to the Z8671 on-chip features.

* % % %

Interfacing the Z8671 with external memory
A simple RAM interface using the 5516 (2K byte)
static Ram is shown in Figure 1, and a ROM

5702

interface using the 2732 (4K byte) EPROM in Figure
2. It is a fairly standard circuit with the 74LS374
being used to latch the low byte of the address and
a 74LS138 providing address decoding. The major
difference between the two is that the ROM circuit
prevents memory accesses during a write cycle
thus avoiding bus contention. This is carried out
using the R/W signal as an enable on the address
decoder. For a circuit using ROM and RAM this
method cannot be used because the address de-
coder is used for both ROM and RAM. Examples of
a mixed circuit can be seen in the full board designs
(Figures 4 and 5).

Mapping the ROM at address 1000H to 1FFFH
maintains compatability with Basic/Debug’s Auto
Start-up procedure. If this feature is not required
then the address decoder can be omitted and CE
can be obtained from the high order address bits.
Unique address space decoding can also be omit-
ted for the RAM circuit but the Z8671, which sizes
the RAM on power-up, could think that it has more
RAM than there really is. This could cause prob-
lems with the GOSUB stack corrupting the Basic
program and so care must be taken if a large Basic
program is being run from RAM.

Figure 2 28671 EPROM interface

O Q" U@

4

Y7
® 6 |a Y6
J.—S_c G2B Y5
=_c4 G2A Y4
asp—2-c 2
PO; ﬂl = |5 Y2
PO |12 ! % Y1
POs |18 Yo
PO, 17 JA12 74LS138
po, |18
P, |18
PO, 14
L
_—— p1, |286__AD7 18 8074!.837480
Pl s LA 5 70
P15 |28 416D 6Q
Pl 31sp 5Q
P 22 81 4Q
p1, 22 LA 3Q
p1, |22 a0 55
Pigi|a Stio 10
ADO A OC
5% RW &S R
8 7 9 =

21 CE
AT
i
21 a0
22
A9
p<] P
1
A7
21 a6
3 2732-20
A5
el VA
5
. A3
6 —J0
A2 OF
A Y
Lo 788 0
07 06 05 04 03 02 01 00

17| 16| 15| 14] 13| 11| 10

9
ADO

Interfacing the Z8671 with RS232 port

The Z8671 uses its serial communication port to
communicate with the RS232 port. Driver and re-
ceiver circuits are required to supply the proper

signals to the RS232 interface. The circuit of Figure
3 shows the interface between the Z8671 and the
1488 and 1489 for serial communication via the
RS232 interface.

5702

Figure 3 Z8671 Interface for serial

communications
fog :
1488 |
pa, |4 N b
7 ; =
1
28671 __L 83
= | RS232
: == | CONNECTOR
P3| ouT
1489
1
IN
XTAL2 XTAL1
2|15pF 15pF |3
O
7.3728 MHz
PARALLEL RESONANT

The serial interface is a simple type using only Sl,
SO and GND. The control signals CTS, DSR etc are
therefore not required.

The Z8671 uses one timer and its associated pre-
scaler for baud rate control. When the Z8671 is
reset, it reads location FFFD and uses the byte
stored there to select the baud rate. The boards
described in this application note use EPROM to
select the baud rate. On reset, the Z8671 reads
FFFD, which is in the EPROM, and decodes the
baud rate from the contents of that location. The
baud rate can be changed in software.

Figures 4 and 5 show the full board designs im-
plemented for this application note.

Figure 4 Z8 Basic/Debug system with 4K EPROM and 2K RAM

13

Fann e L0

RESET

o 1489 3
232 _p BA
In RECEIVER
5
P
Rs232 2 - JZ
QAT DRIVER

7.3728 MHz
Parallel Resonant

P3g

RESET XTAL1 XTAL2 2
20 5
%
P07 . > 2
POs - vip
18
i AN voD
17 18 18
ro, 24 <
AN 21 TE a
poy HE AN
15 19 19
PO, A10 A10
14 2 2
Po, A9 A0
13 23 3
POy A8 A8
28671 A s
A7 A7
7415374
1 1 2 2
Py |22 A7 L3 P 80 f>— AB P A6
.20 5516-2
1 16 3 3
2y & A b 7Q] AS AS
a4 4
Pg 28 14360 s ft A s
5 5
[Py 350 sa 12— A3 a3
6 6
P1a |24 4 op— A2 A2 = 12
7 7 7
prp |2 30 32 Al Al
4 8 8
oy 2 0 20> — a0 o |2 ~—ro amw 12
2 2
Pl 3o 10—
ADO oc 07 06 05 04 03 02 01 00 /08 V07 V06 YOS 04 UO3 V02 101
AW = nl B EREEREE 7] 6] 18] 14 13] n] 10] o
— ADO
7) =

5702

v

R aK7
Y7
7.3728MHz 6
Paralle! Resonant G1 Y6

OO 0O

Figure 5 Z8 Basic/debug system with 4K EPROM and 8K RAM

RESET

ASZ32_gy - 2
1 RECEIVER

5 s, Fowl bis 0 7Q
e i JEE. oo saf>
P 2 ik Y saf
o, |24 i e wl®
RS232 43-—1 ‘a“: 2 p1a |2 - a0 30 e
our DRIVER e, |2 2 F £ 5
P1o j2L 1 Y af?

05 RW AS ADO n J_

A5 273220

A2 TS

P Y wln
o lo |« |o o |s o B[R] |8
b4

AD Lo T L 1] WE

07 _06 05 04 03 02 01 00 108 _1'07 06 105 104 103 102 101

17] 16| 15| 14| 13| 11| 10 9 191 18] 17| 6] 18] 13} 12] 1

Uncommitted I/O pins and other pins

Using the above design, port 2 is available for user
applications. Any of the port 2 pins can be indi-
vidually configured for input or output. There are
also six pins in port 3 available to the user. The port
3 input pins can be used for interrupts.

Software

Getting started

The Z8671 board needs +5V and ground to run all
components on the board except the 1488 EIA line
driver. The 1488 needs +12V and —12V in addition
to ground. (If not using terminal, the EIA driver/
receiver circuit is disconnected. Consequently, the
+12V and —12V lines are not required.)

The RS232 port can interface to any ASCIlI Terminal
if the baud rate setting is matched to the value
programmed into the EPROM. With power sup-
plied to the board and the terminal connected to it,
the reset button resets the Z8671 and the prompt
character appears (“:").

The board is ready for a Basic command when the
“:" appears. The following sequence is a simple
I/0 example:

:10input a

:20 “a=";a

run

i

a=b5

:list

10 inputa

20 “a=";a

When a number is entered as the first character of a
line, the Basic monitor stores the line as part of a
program. In this example, “10 input a” is entered.
Basic stores this instruction in memory and prints
another “:” prompt. The Run command causes

execution of the stored program. In this example,
Basic asked for input by printing “?”. A number (5)
is typed at the terminal. Basic accepts the number,
stores it in the variable “a”, and executes the next
instruction. The next instruction (20 “a=";a) is an
implied print statement; writing an actual “print”
command is not necessary here. This line of code
produced the output “a=5". The command “list”
caused Basic to display the program stored in
memory on the terminal.

Reading directly from memory

Basic lets the user directly read any byte or word in
memory using the Print command and “@"” for
byte references or “ 1 ” for word references:

:print @8

32

:printhex (@8)

20

:printhex (1 8)

2000

The first statement prints the decimal value of
Register 8. The next statement prints the hexade-
cimal value of Register 8 and the last statement
prints the hexadecimal value of Register 8 (20H)
and Register 9 (00H).

Writing directly to memory

Basic lets the user write directly to any register or
RAM location in memory using the Let command
and either “@" or “ 1 ".

I@o/o a=%ff

: 1 8192=255

:print @10

255

:printhex (1 %2000)

FF

The Let command is implied to save memory space
but can be included. The first statement loads the

5

5702

hexadecimal value FF into register 10 decimal (AH).
The next instruction loads the decimal value 255
into register 8192 decimal (2000H). The print com-
mands write to the terminal the values that were
put in with the first two instructions.

Memory environment

Table 1 gives the memory configuration for the
28671 application examples. Chip select is control-
led from the address decoder for the RAM and the
address/decode logic for the EPROM. In both cases
several outputs of the 74LS138 are left free and
these can be used for memory expansion or to
decode addresses from peripheral devices. Map-
ping the EPROM at 1000H to 1FFFH maintains
compatability with the Z8671 Auto Start-up feature
and the mapping from 8000H to FFFFH allows the
Z8671 to read the baud rate from the EPROM at
address FFFDH (address FFDH in the EPROM).

Table 1 The memory environment

Decimal Hex Contents
0-2047 0-7FF Internal ROM
(Basic/Debug)

4098-8191 & | 1000-1FFF & | EPROM (2732)
32768-65535| 8000-FFFF
8192-10239 | 2000-27FF RAM (56516)
8192-16383 | 2000-3FFF RAM (6264)

Switching from RAM to EPROM

Register 8 and Register 9 contain the address of the
first byte of a user program or, if there is no
program, the address where the Z8671 will put the
first byte of a user program. In this application
example, when the Z8671 is reset and the EPROM
does not contain the address, Register 8 and Regis-
ter 9 contains a Basic program which points into
RAM. EPROM is selected by changing the contents
of Register 8 from 20H to 10H (see Table 2).

Table 2 The registers

Decimal Hex Contents

22-23 16-17 Current Line Number

8-9 8-9 Address of the First
Byte of User Program

For more details on the register assignments, refer
to the Pointer Registers-RAM System section of the
Z8 Basic/Debug Software Reference Manual.

After the instruction “ 1 8=%1000" is executed, the
Z8671 accesses the EPROM on the Basic/Debug
Board.

The example below shows how to switch from
RAM to EPROM. The example uses two separate
programs, one in RAM and one in EPROM. The
RAM program is listed first, then the EPROM.
:printhex (1 8)

2000

:list

10 “executing out of RAM”

: 1 8=%1000

:printhex (1 8)

1000

:list

10 “executing out of EPROM”

Baud control

The baud rate is selected automatically by reading
location FFFDH and decoding the contents of that
location when the Z8671 is reset (the Z8 Basic/
Debug Software Reference Manual contains the

6

baud rate switch settings in Appendix B). This
application example holds the baud rate settings in
its EPROM. The least significant bits of location
FFFD hex will provide baud rates as follows:

Baud rate Value read
110 110
150 000
300 111
1200 101
2400 100
4800 011
9600 010
19200 001

After a reset, the baud rate is programmed by
loading a new value into counter/timer O (see the
Z8 Technical Manual, section 1.5.7). A Reset always
changes the baud rate back to the rate selected
from the contents of location FFFD.

Burning an EPROM

The EPROM contains the baud rate section byte in
location FFDH. The other locations in memory are
used for program storage. See section 6.3 of the
Basic/Debug Manual for the format used to store
programs in memory. This format is used to store
programs in EPROM.

Example
The following is a printout of a game Super Brain
written in Basic/Debug.
10 @243=7
20 @242=10
30 @241=14
40 x=usr(84): a=@242—1: x=usr(84): b=@242—-1
50 x=usr(84): c=@242—1: x=usr(84): d=@242-1
55 “":i=0
100 “guess ”,: in e,f,g,h
110 i=i+1
300 j=%7f22: k=%7f2a
301t=0
302 r=0: p=0
310if 1 j=1 kp=p+1
320 j=j+2: k=k+2:t=t+1: if4>1310
330 j=%7f22: k=%7f2a
331t=0
340if 1 j= 1 kr=r+10: 1j=1j+10:1=3
341 j=]+2
350 t=t+1: if 4>t310
351 j=%7f22
352t=0
360 k=k+2: if%7f31>k340
363 j=%7f22: k=%7f2a
366if1j>917j=1j—10
367 j=j+2
368 if%7f29>j366
370 “right”;r; “place”;p
380 if4>p100
390 y=999
400 “rightin”;i;“guesses; play anothery/n"”:
input x
410 if x=y10
Lines 10 through 50 comprise the random number
generator for the program. The three lines:
10 @243=7
20 @242=10
30 @241=14
initialize counter/timer 1 to operate in modulo—10
count. Refer to the Z8 Technical Manual for com-
plete information on initializing timers.
The “user (84)" function waits for keyboard input,
the ASCII value of the key is returned in a variable

with the following command:
110 x=usr(84): “"

:15 printhex(x)

run

5

35

In the above example, the program waits at line 10
until keyboard input, in this case the number 5. The
input value is stored in ASCIl format in the variable
“x".The line:

40 x=usr(84): a=@242—1: x=usr(84): b=@242—-1
waits for input, reads the current value of timer 1,
subtracts 1 (to get a number between 0 and 9), and
stores the number in variable a. Then it waits for
keyboard input at the second user function call,
reads the current value of timer 1, subtracts 1, and
stores the number in variable b. Line 50 of the
example program gets two more random numbers
and stores them in variables c and d. The four-digit
random number is located in variables a,b,c, and d.

Line 300 assigns the location of variable a to
variable j and the location of variable e (the first
variable in the guess string) to the variable k. The
strategy is to access these variables indirectly and
to increment pointers j and k to access the vari-
ables.

A colon is used to separate commands on the same

line. This is useful in packing the program into a

small amount of memory space. The code, howev-

er, is harder to read. See section 5 of the Basic/

Debug manual for more information on memory

packing techniques.

Below is a sample run of the Super Brain Program:

run

(<RETURN> on the keyboard is entered four times
here)

guess 70,1,2,3

right 2 place 0

guess 74,5,6,7

right 2 place 1

guess 70,2,4,6

right 3 place 2

guess 74,2,1,6

right 4 place 4

rightin 4 guesses

play another? y/n

’n

Conclusion

The design of these application examples met the
major design goals of simplicity and functionality.
The first goal is accomplished by prudent selection
of support components, excluding any unneces-
sary chips. The board allows the user to exercise
the full power and flexibility of the Z8601 not used
by Basic/Debug. The user can write and debug
Basic programs without detailed knowledge of the
Z8601.

The Basic application example demonstrates a
memory interface that is applicable for all Z8 Fami-
ly members.

The software section explains the memory environ-
ment and gives several examples of Basic/Debug.
These examples are a good introduction to the
board and to Basic/Debug.

The Z8671 is a customized extension of the Z8601
single-chip microcomputer. The simplicity of the

5702

Basic application example demonstrates the flex-
ibility of the Z8601 microcomputer in an expanded
memory environment.

5702

RS data

R.S. Components Ltd. PO Box 99, Corby, Northants, NN17 9RS Telephone: 0536 201234
eAn Electrocomponents Group Company ©RS Components Ltd. 1984

