

Z86C00/C10/C20 CMOS Z8[®] MCU

June 1987

FEATURES

- Complete microcomputer, 2K (86C00), 4K (86C10), or 8K (86C20) bytes of ROM, 124 bytes of RAM, and 22 I/O lines.
- 144-byte register file, including 124 general-purpose registers, four I/O port registers, and 14 status and control registers.
- Average instruction execution time of 1.5 us, maximum of 2.8 us.
- Vectored, priority interrupts for I/O and counter/timers.
- Two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler.

- Register Pointer so that short, fast instructions can access any of nine working-register groups in 1.0 us.
- □ On-chip oscillator which accepts crystal, external clock drive, LC, ceramic resonator.
- □ Standby modes -- Halt and Stop.
- Single +5V power supply —— all pins TTL compatible.
- 12 MHz.
- CMOS process.

GENERAL DESCRIPTION

Z86C10/C20 microcomputer (Figures 1 and 2) introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the

Z86C10/C20 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

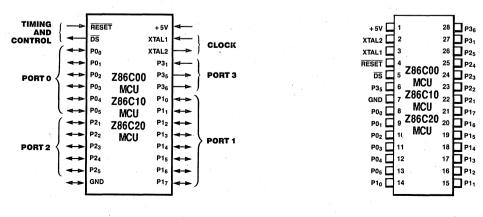


Figure 1. Pin Functions

Figure 2. Pin Assignments

PIN DESCRIPTIONS

DS. Data Strobe (output, active Low). Data Strobe is activated once for each memory transfer.

P0₀-P0₅, P1₀-P1₇, P2₁-P2₅, P3₁, P3₅, P3₆. *I/O Port lines* (bidirectional, TTL-compatible). These 22 I/O lines are grouped in four ports that can be configured under program control for I/O.

ARCHITECTURE

The MCU's architecture is characterized by a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are helpful in many applications. (Figure 3).

Microcomputer applications demand powerful I/O capabilities. The MCU fulfills this with 22 pins dedicated to input and output. These lines are grouped in four ports and are configurable under software control to provide timing, status signals, and parallel I/O.

RESET. Reset (input, active Low). RESET initializes the MCU. When RESET is deactivated, program execution begins from internal program location 000C_H.

XTAL1, XTAL2. *Crystal 1, Crystal 2* (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

Two basic internal address spaces are available to support this wide range of configurations: program memory and the register file. The 144-byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 14 control and status registers.

To unburden the program from coping with real-time problems such as counting/timing, two counter/timers with a large number of user-selectable modes are offered on-chip.

Figure 3. Functional Block Diagram

STANDBY MODE

The Z86C00/C10/C20's standby modes are:

- Stop
- Halt

The Stop instruction stops the internal clock and clock oscillation; the Halt instruction stops the internal clock but not clock oscillation.

A reset input releases the standby mode.

To complete an instruction prior to entering standby mode, use the instructions:

LD TMR, #00 NOP STOP or HALT

ADDRESS SPACES

Program Memory. The 16-bit program counter addresses 4K or 8K bytes of program memory space as shown in Figure 4.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain three 16-bit vectors that correspond to the three available interrupts.

Register File. The 144-byte register file includes four I/O port registers (R₀-R₃), 124 general-purpose registers (R₄-R₁₂₇) and 15 control and status registers (R₂₄₁-R₂₅₅). These registers are assigned the address locations shown in Figure 5.

Instructions can access registers directly or indirectly with an 8-bit address field. The MCU also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 6). The Register Pointer addresses the starting location of the active working-register aroup.

Stacks. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

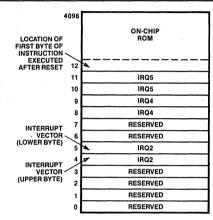


Figure 4. Program Memory Map

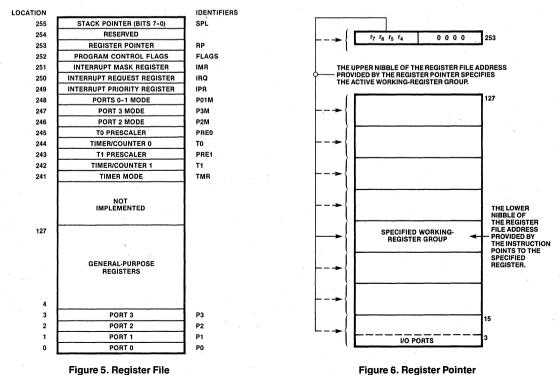


Figure 5. Register File

107

COUNTER/TIMERS

The MCU contains two 8-bit programmable counter/timers (T_0 and T_1), each driven by its own 6-bit programmable prescaler. The T_1 prescaler can be driven by internal or external clock sources; however, the T_0 prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request— IRQ_4 (T₀) or IRQ_5 (T₁)—is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T₁ is user-definable and can be the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock , a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T₀ output to the input of T₁. Port 3 line P3₆ also serves as a timer output (T_{OUT}) through which T₀, T₁ or the internal clock can be output.

I/O PORTS

The MCU has 22 lines dedicated to input and output grouped in four ports. Under software control, the ports can be programmed to provide address outputs, timing, status signals, and parallel I/O. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 0 can be programmed as an I/O port.

Port 1 can be programmed as a byte I/O port.

Port 2 can be programmed independently as input or output and is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Port 3 can be configured as I/O or control lines. $P3_1$ is a general purpose input or can be used for an external interrupt request signal (IRQ₂). $P3_5$ and $P3_6$ are general purpose outputs. $P3_6$ is also used for timer input (T_{IN}) and output (T_{OUT}) signals.

INTERRUPTS

The MCU allows three different interrupts from three sources, the Port 3 line $P3_1$ and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the three interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables

CLOCK

The on-chip oscillator has a high-gain parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).

Crystal source is connected across XTAL1 and XTAL2 using the recommended capacitors (C1 \leq 15 pf) from each pin to ground. The specifications are as follows:

all subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector locations reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

- AT cut, parallel resonant
- Fundamental type, 16 MHz maximum.
- Series resistance, Rs ≤ 100 n

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

inc
inc da no loc ref Fla flag C Z
s v
D
H Afi 0 1 *

F Flag register (control register 252)

RP Register pointer (control register 253)

IMR Interrupt mask register (control register 251) Assignment of a value is indicated by the symbol "←". For example,

dst ← dst + src

idicates that the source data is added to the destination ata and the result is stored in the destination location. The otation "addr(n)" is used to refer to bit "n" of a given cation. For example.

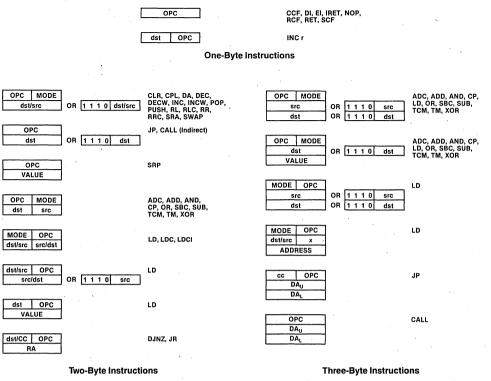
dst(7)

efers to bit 7 of the destination operand.

lags. Control Register R252 contains the following six ags:

С	Carry flag
Z	Zero flag
S	Sign flag

- Overflow flag
- Decimal-adjust flag
- Half-carry flag


ffected flags are indicated by:

- Cleared to zero
- Set to one
- Set or cleared according to operation
- Unaffected
- Х Undefined

CONDITION CODES

1	Value	Mnemonic	Meaning	Flags Set
	1000		Always true	. —
	0111	C	Carry	C = 1
	1111	NC	No carry	C = 0
	0110	Z	Zero	Z = 1
	1110	NZ	Not zero	Z = 0
	1101	PL	Plus	S = 0
	0101	MI	Minus	S = 1
	0100	OV	Overflow	V = 1
	1100	NOV	No overflow	V = 0
	0110	EQ	Equal	, Z = 1
	1110	NE	Not equal	Z = 0
	1001	GE	Greater than or equal	(S XOR V) = 0
	0001	LT	Less than	(S XOR V) = 1
	1010	GT	Greater than	[Z OR (S XOR V)] = 0
	0010	LE	Less than or equal	[Z OR (S XOR V)] = 1
	1111	UGE	Unsigned greater than or equal	C = 0
	0111	ULT	Unsigned less than	C = 1
	1011	UGT	Unsigned greater than	(C = 0 AND Z = 0) = 1
	0011	ULE	Unsigned less than or equal	(C OR Z) = 1
	0000		Never true	

INSTRUCTION FORMATS

INSTRUCTION SUMMARY

	Addr Mode	•	e Flags Affected					ed	N	Addr Mode		•	Fla	Flags Affected				
Instruction and Operation	dst src	Byte (Hex)	С	z	s	v	D	н	Instruction and Operation	dst s	src	Byte (Hex)	С	z	s	v	DН	
ADC dst,src dst ← dst + src + C	(Note 1)	1	*	*	*	*	0	*	CP dst,src dst – src	(Note	1)	A	*	*	*	*		
ADD dst,src dst ← dst + src	(Note 1)	0	*	*	*	*	0	*	DA dst dst ← DA dst	R IR		40 41	*	*	*	Х		
AND dst,src dst ← dst AND src	(Note 1)	5□		*	*	0			DEC dst dst ← dst – 1	R IR		00 01		*	*	*		
CALL dst SP ← SP – 2 @SP ← PC; PC ← ds	DA IRR	D6 D4							DECW dst dst ← dst – 1	RR IR		80 81		*	*	*		
CCF C← NOT C	• • • • • • • • • • • • • • • • • • • •	EF	*						DI IMR (7) ← 0	4		8F	· ·					
CLR dst dst ← 0	R IR	B0 B1						_	DJNZ r,dst r ← r – 1 if r ≠ 0	RA		rA = 0 - F						
COM dst dst ← NOT dst	R IR	60 61		*	*	0	·	_	PC ← PC + dst Range: +127, -128	-								

110

INSTRUCTION SUMMARY (Continued)

In other other	Addr	Mode	•	Flags Affected							
Instruction and Operation	dst	src	Byte (Hex)	С	z	s	۷	D	н		
EI IMR (7) ← 1			9F				_				
HALT			7F								
INC dst dst ← dst + 1	r R IR		r = 0 - F 20 21		*	*	*				
INCW dst dst ← dst + 1	RR IR		A0 A1		*	*	*				
IRET FLAGS ← @SP; SP ← PC ← @SP; SP ← SP			BF ← 1	*	*	*	*	*	*		
JP cc,dst if cc is true PC ← dst	DA IRR	-	c = 0 - F								
JR cc,dst if cc is true, PC ← PC + dst Range: +127, -128	RA		cB c = 0 - F			_					
LD dst,src dst ← src	r r R	lm R r	rC $r8$ $r9$ $r = 0 - F$ $C7$								
	r X Ir R R	Xr Ir R IR	C7 D7 E3 F3 E4 E5 E6					· ·			
	IR IR	IM R	E7 F5				,				
LDC dst,src dst ← src	r Irr	lrr r	C2 D2			_ ,		.			
LDCI dst,src dst ← src r ← r + 1; rr ← rr + 1	lr Irr	lrr Ir	C3 D3								
LDE dst,src dst ← src	r Irr	lrr r	82 92					_			
LDEI dst,src dst ← src r ← r + 1; rr ← rr + 1	lr Irr	lrr ir	83 93	-	_			_	<u> </u>		
NOP			FF	_	_			_			
OR dst,src dst ← dst OR src	(Not	e 1)	4□		*	*	0	_			
POP dst dst ← @SP; SP ← SP + 1	R IR		50 51			_					
PUSH src SP ← SP – 1; @SP ←	- src	R IR	70 71								

·									
	Addr	Mode	Opcode	F	lag	s A	ffe	cte	be
Instruction and Operation	dst	src	Byte (Hex)	С	z	s	v	D	н
RCF C ← 0			CF	0	_				
RET PC ← @SP; SP ← SF	° + 2		AF	. —	_			_	
RL dst] R IR	;	90 91	*	*	\$	*		
RLC dst	- R]• IR		10 11	* *	*	#	*	_	_
RR dst	⊐ R IR		E0 E1	*	*	#	*		_
RRC dst]-]- R		C0 C1	*	*	*	#	-	_
SBC dst,src dst ← dst ← src ← C	(No	te 1)	3□	\$	*	#	#	1	*
SCF C ← 1	:.		DF	1		·		_	_
	Ъ В IR		D0 D1	*	*	#	0		_
SRP src RP ← src		Im	31		-			_	
STOP			6F						
SUB dst,src dst ← dst ← src	(No	te 1)	2□	*	*	*	*	1	*
SWAP dst	∎ R ∎ IR		F0 F1	Х	*	*	X	_	
TCM dst,src (NOT dst) AND src	(No	te 1)	6		*	*	0		_
TM dst,src dst AND src	(No	te 1)	7	_	*	*	0	_	_
XOR dst,src dst ← dst XOR src	(No	te 1)	B□		*	*	0		-

NOTE: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a □ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

Addr	Mode	Lower
dst	src	Opcode Nibble
r	r	2
· r	lr	3
R	R	4
R	IR	5
R	IM	6
IR	IM	7

REGISTERS

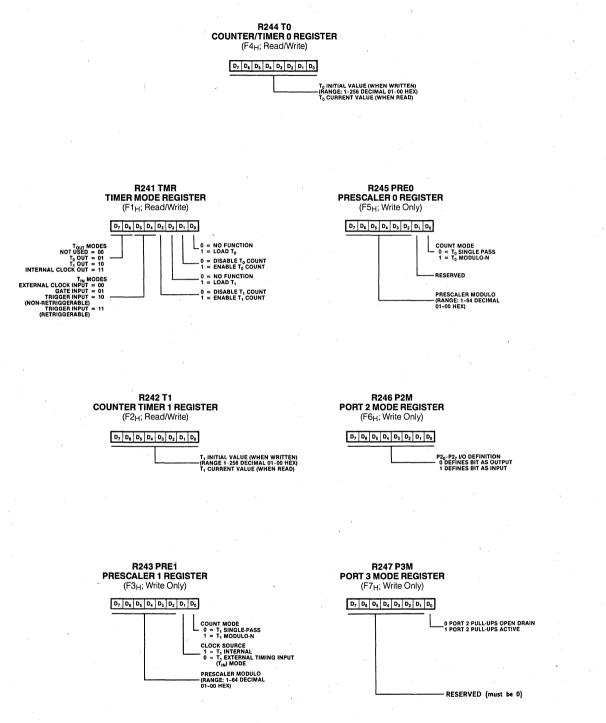
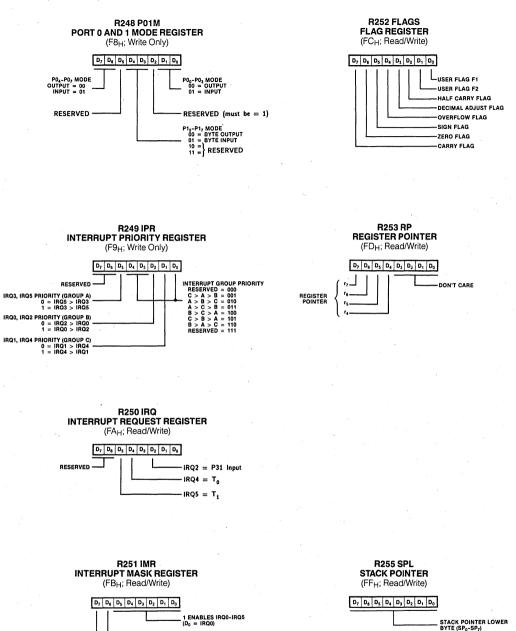
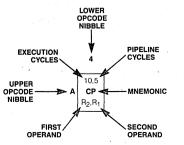


Figure 11. Control Registers

REGISTERS (Continued)




Figure 11. Control Registers (Continued)

RESERVED 1 ENABLES INTERRUPTS

OPCODE MAP

								Lower Nib	ble (Hex)				•		
	0	1	2	3	4	5	6	7	8	9	Α	в	c	D	E	F
)	6.5 DEC R ₁	6.5 DEC IR1	6.5 ADD r1.r2	6.5 ADD r _{1.} lr ₂	10.5 ADD R ₂ .R ₁	10.5 ADD IR ₂ .R ₁	10.5 ADD R ₁ .IM	10.5 ADD IR ₁ .IM	6.5 LD r ₁ .R ₂	6.5 LD r ₂ .R ₁	12/10.5 DJNZ r ₁ .ŘA	12/10.0 JR cc.RA	6.5 LD . r ₁ .IM	12/10.0 JP cc.DA	6.5 INC r1	
	6.5 RLC R ₁	6.5 RLC IR ₁	6.5 ADC r ₁ .r ₂	6.5 ADC r ₁ .lr ₂	10.5 ADC R ₂ .R ₁	10.5 ADC IR ₂ .R ₁	10.5 ADC R ₁ .IM	10.5 ADC IR ₁ .IM								
	6.5 INC R ₁	6.5 INC IR ₁	6.5 SUB r _{1.r2}	6.5 SUB r ₁ .lr ₂	10.5 SUB R ₂ .R ₁	10.5 SUB IR ₂ .R ₁	10.5 SUB R ₁ .IM	10.5 SUB IR ₁ .IM		· .						1
	8.0 " JP IRR ₁	6.1 SRP IM	6.5 SBC r _{1.r2}	6.5 SBC r ₁ .lr ₂	10.5 SBC R ₂ .R ₁	10.5 SBC IR ₂ .R ₁	10.5 SBC R ₁ .IM	10.5 SBC IR ₁ .IM	2							
	8.5 DA R ₁	8.5 DA IR ₁	6.5 OR r ₁ .r ₂	6.5 OR r ₁ .lr ₂	10.5 OR R ₂ .R ₁	10.5 OR IR ₂ .R ₁	10.5 OR R ₁ .IM	10.5 OR IR ₁ .IM								
	10.5 POP R ₁	10.5 POP IR ₁	6.5 AND r ₁ .r ₂	6.5 AND r ₁ .lr ₂	10.5 AND R ₂ .R ₁	10.5 AND IR ₂ .R ₁	10.5 AND R ₁ .IM	10.5 AND IR ₁ .IM		A						
	6.5 COM R ₁	. 6.5 COM IR ₁	6.5 TCM r ₁ .r ₂	6.5 TCM r ₁ .lr ₂	10.5 TCM R ₂ .R ₁	10.5 TCM IR ₂ .R ₁	10.5 TCM R ₁ .IM	10.5 TCM IR ₁ .IM								6,0 STC
	10/12.1 PUSH R ₂	12/14.1 PUSH IR ₂	6.5 TM [1.[2	6.5 TM r ₁ .lr ₂	10.5 TM R ₂ .R ₁	10.5 TM IR ₂ .R ₁	10.5 TM R ₁ .IM	10.5 TM IR ₁ .IM								7,0 HA
	10.5 DECW RR ₁	10.5 DECW IR ₁														6. D
	6.5 RL R ₁	6.5 RL IR ₁								**						6. • E I
	10.5 INCW RR ₁	10.5 INCW IR ₁	6.5 CP r ₁ .r ₂	. 6.5 CP r ₁ .lr ₂	10.5 CP R ₂ .R ₁	10.5 CP IR ₂ .R ₁	10.5 CP R ₁ .IM	10.5 CP IR ₁ .IM								14. RE
	6.5 CLR R ₁	6.5 CLR IR ₁	6.5 XOR r ₁ .r ₂	6.5 XOR r ₁ .lr ₂	10.5 XOR R ₂ .R ₁	10.5 XOR IR ₂ .R ₁	10.5 XOR R ₁ .IM	10.5 XOR IR ₁ .IM								16. IRE
	6.5 RRC R ₁	6.5 RRC IR ₁	12.0 LDC r ₁ .lrr ₂	18.0 LDCI Ir ₁ .Irr ₂				10.5 LD r ₁ .x.R ₂								6.5 RC
	6.5 SRA R ₁	6.5 SRA IR ₁	12.0 LDC r ₂ .lrr ₁	18.0 LDCI Ir ₂ .Irr ₁	20.0 CALL* IRR ₁		20.0 CALL DA	10.5 LD r ₂ .x.R ₁								, 6. SC
	6.5 RR R ₁	,6.5 RR IR ₁		6.5 LD r ₁ .IR ₂	10.5 LD R ₂ .R ₁	10.5 LD IR ₂ .R ₁	10.5 LD R ₁ .İM	10.5 LD IR ₁ .IM	N.							6. CC
	8.5 SWAP R ₁	8.5 SWAP IR ₁		6.5 LD Ir ₁ .r ₂		10.5 LD R ₂ .IR ₁			V	V		V	V		V	6.0 NO

Bytes per Instruction

Legend: R = 8-bit address

r = 4-bit address $R_1 \text{ or } r_1 = \text{Dst} \text{ address}$ $R_2 \text{ or } r_2 = \text{Src} \text{ address}$

~

Sequence: Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

*2-byte instruction: letch cycle appears as a 3-byte instruction

Upper Nibble (Hex)

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect	
to GND	0.3V to +7.0V
Operating Ambient	
Temperature	See Ordering Information
Storage Temperature	65°C to +150°C

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.

Standard conditions are as follows:

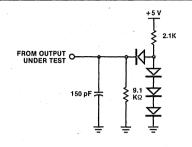
 $\blacksquare +4.5 \le \text{Vcc} \le +5.5$

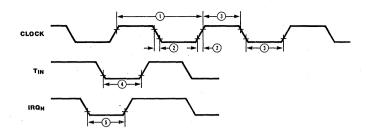
■ GND = 0V

 $\blacksquare 0^{\circ}C \leq T_A \leq +70^{\circ}C$

DC CHARACTERISTICS

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.




Figure 12. Test Load 1

Symbol	Parameter	Min	Тур	Max	Unit	Condition
V _{CH}	Clock Input High Voltage	3.8		Vcc	V	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	-0.3		0.8	V	Driven by External Clock Generator
VIH	Input High Voltage	2.0		V _{CC}	V	
VIL	Input Low Voltage	-0.3		0.8	V	1
V _{RH}	Reset Input High Voltage	3.8		VCC	V	
V _{RL}	Reset Input Low Voltage	-0.3		0.8	V	
VOH	Output High Voltage	2.4			V	$I_{OH} = -250 \mu A$
VOH	Output High Voltage	VCC -100 mV			V	lOH = -100μA
V _{OL}	Output Low Voltage			0.4	V	$I_{OL} = +2.0 \text{mA}$
h	Input Leakage	- 10		10	μA	$0V \le V_{IN} \le + 5.25V$
IOL	Output Leakage	- 10		10	μΑ	$0V \le V_{IN} \le + 5.25V$
IIR	Reset Input Current			- 50	μA	$V_{CC} = +5.25V, V_{RL} = 0V$
Icc	Supply Current			2	mA	All outputs and I/O pins floating
ICC1	Standby Current		5		mA	Halt Mode
ICC2	Standby Current			10	μA	Stop Mode

NOTE:

Icc2 low power requires loading TMR (%F1) with any value prior to stop execution. Use sequence:

LD TMR, #%00. NOP STOP

Figure 14. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

			Z8	6C10	
Number	Symbol	Parameter	Min	Max	Notes*
1	ТрС	Input Clock Period	83	100,000	1
2	TrC,TfC	Clock Input Rise and Fall Times		15	1
3	TwC	Input Clock Width	70		1
4	TwTinL	Timer Input Low Width	70		2
5	TwiL	Interrupt Request Input Low Time	70		2,3

NOTES:

Clock timing references use 3.8V for a logic "1" and 0.8V for a logic "0".
 Timing references use 2.0V for a logic "1" and 0.8V for a logic "0".
 Interrupt request via Port 3.

* Units in nanoseconds (ns).