

Z86C11 CMOS Z8® 4K ROM MCU

June 1987

FEATURES

- Complete microcomputer, 4K bytes of ROM, 256 bytes of RAM, 32 I/O lines, and up to 60K bytes addressable external space each for program and data memory.
- 256 byte register file, including 236 general-purpose registers, four I/O port registers, and 16 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8-bit counter/ timers, each with a 6-bit programmable prescaler.

- Register Pointer so that short, fast instructions can access any of 16 working-register groups in 1.5 μs.
- On-chip oscillator which accepts crystal or external clock drive.
- Standby modes—Halt and Stop
- □ Single + 5V power supply—all pins TTL-compatible.
- 12 MHz, 16 MHz
- CMOS process

GENERAL DESCRIPTION

The Z86C11 microcomputer (Figures 1 and 2) introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the

Z86C11 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Figure 2. 40-pin Dual-In-Line Package (DIP), Pin Assignments

Under program control, the Z86C11 can be tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 4K bytes of internal ROM, a traditional microprocessor that manages up to 120K bytes of external

FIELD PROGRAMMABLE VERSION

The Z86E11 is a pin compatible "one time programmable" version of the Z86C11. The Z86C11 contains 4K bytes of EPROM memory in place of the 4K bytes of masked ROM in the Z86C11. The Z86E11 also contains a programmable memory

ARCHITECTURE

Z86C11 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z86C11 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z86C11 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a memory, or a parallel-processing element in a system with other processors and peripheral controllers linked by the Z-BUS[®] bus. In all configurations, a large number of pins remain available for I/O.

protect feature to provide program security by disabling all external accesses to the internal EPROM array. This is preliminary information, and is subject to change.

microprocessor that can address 120K bytes of external memory (Figure 3).

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The **256**-byte random-access register file is composed of **236** general-purpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

Figure 3. Functional Block Diagram

STANDBY MODE

The Z86C11's standby modes are:

□ Stop

🛛 Halt

The Stop instruction stops the internal clock and clock oscillation; the Halt instruction stops the internal clock but not clock oscillation.

A reset input releases the standby mode.

POWER DOWN INSTRUCTIONS

The Z86C91 has two instructions to reduce power consumption during standby operation. HALT turns off the processor and UART while the counter/timers and external interrupts IRQ0, IRQ1, and IRQ2 remain active.

When an interrupt occurs the processor resumes execution after servicing the interrupt. STOP turns off the clock to the entire Z86C91 and reduces the standby current to 10

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of \overline{AS} . Under program control, \overline{AS} can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.

DS. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.

 $P0_0-P0_7$, $P1_0-P1_7$, $P2_0-P2_7$, $P3_0-P3_7$. *I/O Port Lines* (input/outputs, TTL-compatible). These 32 lines are divided into four 8-bit I/O ports that can be configured under program control for I/O or external

ADDRESS SPACE

Program Memory. The 16-bit program counter addresses 64K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 4096 bytes consist of on-chip mask-programmed ROM. At addresses 4096 and greater, the Z86C11 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts.

Data Memory. The Z86C11 can address 60K bytes of external data memory beginning at location 4096 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\text{DM}}$, an optional I/O function that can be programmed to appear on pin P3₄, is used to distinguish between data and program memory space.

Register File. The **256**-byte register file includes four I/O port registers (R0-R3), **236** general-purpose registers (R4-R **239**) and 16 control and status registers (R240-R255).

microamps. The stop mode is terminated by reset, which causes the processor to restart the application program at address 12.

To complete an instruction prior to entering standby mode, use the instructions:

LD TMR, #00 NOP STOP or HALT

memory interface (Figure 3).

RESET. *Reset* (input, active Low). RESET initializes the Z86C11. When RESET is deactivated, program execution begins from internal program location 000C_H.

R/W. Read/Write (output). R/W is Low when the Z86C11 is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallelresonant crystal (12 MHz maximum) or an external single-phase clock (12 MHz maximum) to the on-chip clock oscillator and buffer.

These registers are assigned the address locations shown in Figure 6.

Z86C11 instructions can access registers directly or indirectly with an 8-bit address field. The Z86C11 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 contiguous locations (Figure 6). The Register Pointer addresses the starting location of the active working-register group (Figure 7).

Note: Register Bank E0-EF can only be accessed through working register and indirect addressing modes.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Figure 4. Program Memory Map

Figure 6. The Register File

Figure 5. Data Memory Map

Figure 7. The Register Pointer

SERIAL INPUT/OUTPUT

Port 3 lines $P3_0$ and $P3_7$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5K bits/second for 8 MHz.

The Z86C11 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless

of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ₄) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ_3 interrupt request.

COUNTER/TIMERS

The Z86C11 contains two 8-bit programmable counter/ timers (T_0 and T_1), each driven by its own 6-bit programmable prescaler. The T_1 prescaler can be driven by internal or external clock sources; however, the T_0 prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request— IRQ_4 (T₀) or IRQ_5 (T₁)—is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_1 is user-definable and can be the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_0 output to the input of T_1 . Port 3 line P3₆ also serves as a timer output (T_{OUT}) through which T_0 , T_1 or the internal clock can be output.

I/O PORTS

The Z86C11 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines $P3_3$ and $P3_4$ are used as the handshake controls RDY_1 and \overline{DAV}_1 (Ready and Data Available).

Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines $P3_2$ and $P3_5$ are used as the handshake controls $\overline{DAV_0}$ and RDY_0 . Handshake signal assignment is dictated by the I/O direction of the upper nibble $P0_4$ - $P0_7$.

For external memory references, Port 0 can provide address bits A_8 - A_{11} (lower nibble) or A_8 - A_{15} (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble

Port 2 bits can be programmed independently as input or output. This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P3_1$ and $P3_6$ are used as the handshake controls lines \overline{DAV}_2 and RDY₂. The handshake signal assignment for Port 3 lines $P3_1$ and $P3_6$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $(P3_0-P3_3)$ and four output $(P3_4-P3_7)$. For serial I/O, lines $P3_0$ and $P3_7$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0, 1 and 2 (\overline{DAV} and RDY); four external interrupt request signals (IRQ_0 - IRQ_3); timer input and output signals (T_{IN} and T_{OUT}) and Data Memory Select (\overline{DM}).

Port 1 can be placed in the high-impedance state along with Port 0, \overrightarrow{AS} , \overrightarrow{DS} and \overrightarrow{RW} , allowing the Z86C11 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P3₃ as a Bus Acknowledge input, and P3₄ as a Bus Request output.

is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals \overline{AS} , \overline{DS} and R/\overline{W} .

INTERRUPTS

The Z86C11 allows six different interrupts from eight sources: the four Port 3 lines P30-P33, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86C11 interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2. using the recommended capacitors ($C_1 \le 15$ pf) from each

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR	Indirect register pair or indirect working-register
	pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r i	Working-register address only
IR	Indirect-register or indirect working-register address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
@	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. То accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

pin to ground. The specifications for the crystal are as follows:

AT cut, parallel resonant

Fundamental type, 12 MHz maximum

B Series resistance, $R_s \leq 100 \Omega$

Assignment of a value is indicated by the symbol "←". For example,

$dst \leftarrow dst + src$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit "n" of a given location. For example,

dst (7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six flags:

С	Carry flag				
Z	Zero flag				
S	Sign flag				
V	Overflow flag				
D	Decimal-adjust flag				
H	Half-carry flag				
Affected flags are indicated by:					

0	Cleared	to	zer	Ó

1 Set to one	
--------------	--

- Set or cleared according to operation
- Unaffected
- Х Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always true	
0111	C C	Carry	C = 1
1111	NC	No carry	C = 0
0110	Z	Zero	Z = 1
1110	NZ	Not zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No overflow	V = 0
0110	EQ	Equal	Z = 1
1110	NE	Not equal	Z = 0
1001	GE	Greater than or equal	(S X O R V) = 0
0001	LT	Less than	(S X O R V) = 1
1010	GT	Greater than	[Z OR (S XOR V)] = 0
0010	LE.	Less than or equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned greater than or equal	C = 0
0111	ULT	Unsigned less than	C = 1
1011	UGT	Unsigned greater than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned less than or equal	(C OR Z) = 1
0000		Never true	· · ·

INSTRUCTION FORMATS

Two-Byte Instructions

Three-Byte Instructions

INSTRUCTION SUMMARY

	Addr Moc	le Opcode	Flags Affected					
and Operation	dst sro	— Вуте с (Hex)	С	z	s	v	D	н
ADC dst,src dst ← dst + src + C	(Note 1)	1	*	*	#	#	0	*
ADD dst,src dst ← dst + src	(Note 1)	0□	*	*	*	*	0	*
AND dst,src dst ← dst AND src	(Note 1)	5□		*	\$	0		
CALL dst SP ← SP – 2 @SP ← PC; PC ← d	DA IRR st	D6 D4						
CCF C ← NOT C	-	EF	*	_	-	_	_	_
CLR dst dst ← 0	R IR	B0 B1						
COM dst dst ← NOT dst	R IR	60 61		ŵ	*	0		
CP dst,src dst – src	(Note 1)	A	*	*	\$	#		_
DA dst dst ← DA dst	R IR	40 41	*	*	*	Х		
DEC dst dst ← dst – 1	R IR	00 01		*	*	*		
DECW dst dst ← dst - 1	RR IR	80 81		*	*	*		
DI IMR (7) ← 0		8F				-		
DJNZ r,dst $\mathbf{r} \leftarrow \mathbf{r} - 1$ if $\mathbf{r} \neq 0$ PC \leftarrow PC + dst Range: +127, -12i	RA	rA r = 0 - F						_
EI IMR (7) ← 1		9F						
HALT	```	7F						
INC dst dst ← dst + 1	r R IR	rE r = 0 - F 20 21		*	*	*		
INCW dst dst ← dst + 1	RR IR	A0 A1		*	*	*		
IRET FLAGS ← @SP: SP ·	← SP + 1	BF	*	*	*	*	*	*

$PC \leftarrow @SP: SP \leftarrow SP$	+ 2: IMR (7) ← 1	
	± 2 , $\operatorname{nvn}(r) \leq 1$	

Instruction	Addr Mode		Opcode	Flags Affected					
and Operation	dst	src	Byte (Hex)	С	z	s	v	D	н
JP cc,dst	DA		cD						
if cc is true PC ← dst	IRR		c = 0 - F 30						
JR cc,dst if cc is true, PC ← PC + dst Range: + 127, - 128	RA		cB c = 0 - F						
LD dst,src dst ← src	r r R	lm R r	rC r8 r9 r = 0 - F	`					
	r X r Ir	X r Ir r	C7 D7 E3 F3						
	R R IR IR	R IR IM IM R	E4 E5 E6 E7 F5						
LDC dst,src dst ← src	r Irr	lrr r	C2 D2						_
LDCI dst,src dst \leftarrow src r \leftarrow r + 1; rr \leftarrow rr + 1	lr Irr	lrr Ir	C3 D3			- <u>-</u> -			
LDE dst,src dst ← src	r Irr	lrr r	82 92	-					_
LDEI dst,src dst ← src r ← r + 1; rr ← rr + 1	lr Irr	lrr Ir	83 93			_			
NOP			FF			_		_	
OR dst,src dst ← dst OR src	(No	te 1)	4□		*	*	0		
POP dst dst ← @SP; SP ← SP + 1	R IR		50 51						_
PUSH src SP ← SP - 1; @SP ←	- src	R IR	70 71	_			-	-	_
RCF C ← 0			CF	0		_			_
RET PC ← @SP; SP ← SP	+ 2	- -	AF					_	
RL dst	R		90 91	*	*	*	*		

INSTRUCTION SUMMARY (Continued)

	Addr	Mode	Opcode	Flags Affected					
Instruction and Operation	dst	src	Byte (Hex)	С	Z	S	۷	D	Н
RLC dst	ריין R סר וR		10 11	*	*	*	*	-	
RR dst			E0 E1	*	*	*	*	_	
RRC dst	ר א ה R וR		C0 C1	*	*	*	*	_	
SBC dst,src dst ← dst ← src ← C	(No	te 1)	3□	*	*	*	*	1	*
SCF C ← 1			DF	1	_			-	
SRA dst	ר א רשיים איניים רשיים איניים א		D0 D1	*	*	*	0		
SRP src RP ← src		lm	31		, 				
STOP			6F						
SUB dst,src dst ← dst ← src	(No	te 1)	2□	*	*	*	*	1	*
SWAP dst	lR IR		F0 F1	Х	*	*	Х		
TCM dst,src (NOT dst) AND src	(No	te 1)	6□		*	*	0	_	_

Instruction	Addr Mode		Opcode	Flags Affected					
and Operation	dst	src	(Hex)	С	z	s	۷	D	н
TM dst,src dst AND src	(Note 1)		7		*	*	0		
XOR dst,src dst ← dst XOR src	(No	te 1)	B□		*	*	0		

NOTE: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a □ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

	Α	ddr Mode	lower					
	dst	src	Opcode Nibble					
1	r	r	2					
	r	lr	3					
	R	R	4					
	R	IR	5					
	R	IM	6					
	IR	IM	7					

REGISTERS

Figure 11. Control Registers

REGISTERS (Continued)

OPCODE MAP

	0	1	2	3	4	5	6	7	8	9		A	В	С	D	E	F
D	6.5 DEC R ₁	6.5 DEC IR ₁	6,5 ADD r ₁ .r ₂	6.5 ADD r ₁ .lr ₂	10.5 ADD R ₂ .R ₁	10.5 ADD IR ₂ .R ₁	10,5 ADD R ₁ .IM	10,5 ADD IR ₁ .IM	6,5 LD r ₁ ,R ₂	^{16,5} LD r ₂ ,R ₁	12/ DJ r1	10.5 I NZ .RA	12/10.0 JR cc,RA	6,5 LD r ₁ ,IM	12/10.0 JP cc,DA	6.5 INC r1	
1	6.5 RLC R ₁	6.5 RLC IR ₁	6.5 ADC r ₁ .r ₂	6,5 ADC r ₁ ,lr ₂	10,5 ADC R ₂ ,R ₁	10,5 ADC IR ₂ ,R ₁	10,5 ADC R ₁ ,IM	10,5 ADC IR ₁ ,IM									
2.	6.5 INC R ₁	6,5 INC IR ₁	6,5 SUB r ₁ ,r ₂	6,5 SUB r ₁ ,Ir ₂	10,5 SUB R ₂ ,R ₁	10,5 SUB IR ₂ ,R ₁	10,5 SUB R ₁ .IM	10,5 SUB IR ₁ ,IM									
5	8.0 JP IRR ₁	6,1 • SRP IM	6,5 SBC r ₁ ,r ₂	6,5 SBC r ₁ .lr ₂	10,5 SBC R ₂ ,R ₁	10,5 SBC IR ₂ ,R ₁	10,5 SBC R ₁ ,IM	10,5 SBC IR ₁ ,IM									
ł	8,5 DA R ₁	8,5 DA IR ₁	6,5 OR r ₁ ,r ₂	6,5 OR r ₁ ,lr ₂	10,5 OR R ₂ ,R ₁	10,5 OR IR ₂ ,R ₁	10,5 OR R ₁ ,IM	10,5 OR IR ₁ ,IM									-
5	10,5 POP R ₁	10.5 POP IR ₁	6,5 AND r1,r2	6,5 AND r ₁ .lr ₂	10,5 AND R ₂ ,R ₁	10,5 AND IR ₂ ,R ₁	10,5 AND R ₁ .IM	10,5 AND IR ₁ ,IM									
6	6.5 COM R ₁	6,5 COM IR ₁	6,5 TCM r ₁ ,r ₂	6,5 TCM r ₁ ,lr ₂	10,5 TCM R ₂ ,R ₁	10,5 TCM IR ₂ ,R ₁	10,5 TCM R ₁ .IM	10,5 TCM IR ₁ ,IM									6 ST
7	10/12,1 PUSH R ₂	12/14,1 PUSH IR ₂	6,5 TM : r _{1,} r ₂	6,5 TM r ₁ .lr ₂	10,5 TM R ₂ ,R ₁	10,5 TM IR ₂ ,R ₁	10,5 TM R ₁ .IM	10,5 TM IR ₁ ,IM									7 HA
3	10,5 • DECW RR ₁	10,5 DECW IR ₁	12,0 LDE r ₁ ,lrr ₂	18,0 LDEI Ir ₁ ,Irr ₂													6 C
)	6,5 RL R ₁	6,5 RL IR ₁	12,0 LDE r ₂ ,lrr ₁	18,0 LDEI Ir ₂ ,Irr ₁												7	6 E
\	10,5 INCW RR ₁	10,5 INCW IR ₁	6,5 CP r _{1,r2}	6,5 CP r ₁ .lr ₂	10,5 CP R ₂ ,R ₁	10,5 CP IR ₂ ,R ₁	10.5 CP R ₁ .IM	10,5 CP IR ₁ ,IM					-				14 Ri
3	6,5 CLR R ₁	6,5 CLR IR ₁	6,5 XOR r ₁ ,r ₂	6,5 XOR r ₁ .lr ₂	10,5 XOR R ₂ .R ₁	10,5 XOR IR ₂ .R ₁	10.5 XOR R ₁ .IM	10,5 XOR IR ₁ ,IM									16 IR
	6,5 RRC R ₁	6,5 RRC IR ₁	12,0 LDC r ₁ ,lrr ₂	18,0 LDCI Ir ₁ ,Irr ₂				10,5 LD r ₁ ,x,R ₂									6 R(
)	6,5 SRA R ₁	6,5 SRA IR ₁	12,0 LDC r ₂ ,Irr ₁	18,0 LDCI Ir ₂ ,Irr ₁	20,0 CALL* IRR ₁		20,0 CALL DA	10,5 LD r ₂ ,x,R ₁									6 S (
	6,5 RR R ₁	6,5 RR IR ₁	4	6,5 LD r ₁ ,IR ₂	10,5 LD R ₂ ,R ₁	10,5 LD IR ₂ ,R ₁	10,5 LD R ₁ .IM	10,5 LD IR ₁ ,IM									6 C
	8.5 SWAP R1	8,5 SWAP IR1		6,5 LD lr ₁ ,r ₂		10,5 LD R ₂ ,IR ₁						Į.		∀	∀	∀	6 N(

Bytes per Instruction

Legend: R = 8-bit address r = 4-bit address R_1 or $r_1 = D$ st address R_2 or $r_2 = S$ rc address

Sequence: Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

to GND -0.3V to +7.0V Operating Ambient

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.

Standard conditions are as follows:

 $\blacksquare +4.5 \leq Vcc \leq +5.5V$

☑ GND = 0V

0 $C \le T_A \le +70$ C for S (Standard temperature)

■ -40 C ≤ T_A ≤+100 C for E (Extended temperature)

DC CHARACTERISTICS

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 12. Test Load 1

Symbol	Parameter	Min	Тур	Max	Unit	Condition
VCH	Clock Input High Voltage	3.8		V _{CC}	V	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	-0.3	•	0.8	V	Driven by External Clock Generator
VIH	Input High Voltage	2.0		V _{CC}	V	
VIL	Input Low Voltage	-0.3		0.8	V	
V _{RH}	Reset Input High Voltage	3.8		V _{CC}	V	
V _{RL}	Reset Input Low Voltage	-0.3		0.8	V	
VOH	Output High Voltage	2.4			V	$I_{OH} = -250 \mu A$
VOH	Output High Voltage	VCC -100mV			V	IOH = -100µA
VOL	Output Low Voltage			0.4	V	$I_{OL} = +2.0 \text{ mA}$
կլ	Input Leakage	- 10		10	μA	$0V \leq V_{IN} \leq + 5.25V$
IOL	Output Leakage	- 10		10	μA	$0V \le V_{IN} \le + 5.25V$
IIR	Reset Input Current			- 50	μA	$V_{CC} = +5.25V, V_{RL} = 0V$
Icc	Supply Current			30	mA	All outputs and I/O pins floating , 12 MH:
ICC1	Standby Current		5		mA	Halt Mode
ICC2	Standby Current			10	μA	Stop Mode

I_{CC}2 requires loading TMR (%F1) with any value prior to STOP execution.

Use the sequence: LD TMR, #00 NOP STOP

Figure 13. External I/O or Memory Read/Write

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing

	s		12	MHz	16	MHz	
Number	Symbol	Parameter	Min	Max	Min	Max	Notes*†°
1	TdA(AS)	Address Valid to AS t Delay	35		20		2,3
2	TdAS(A)	AS ↑ to Address Float Delay	45		- 30		2,3
3	TdAS(DR)	AS t to Read Data Required Valid		220		180	1,2,3
4	TwAS	AS Low Width	55		35		2,3
5	TdAz(DS)	Address Float to DS ↓	0		. 0		
6	TwDSR	DS (Read) Low Width	185		135		1,2,3
7	TwDSW	DS (Write) Low Width	110		80		1,2,3
8	TdDSR(DR)	DS ↓ to Read Data Required Valid		130		75	1,2,3
9	ThDR(DS)	Read Data to DS 1 Hold Time	0		0		
10	TdDS(A)	DS ↑ to Address Active Delay	45		20		2,3
11	TdDS(AS)	DS ↑ to AS ↓ Delay	55	• •	20		2,3
12	TdR/W(AS)	R/₩ Valid to AS ↑ Delay	30		20		2,3
13	TdDS(R/W)	DS ↑ to R/W Not Valid	35		20		2,3
14	TdDW(DSW)	Write Data Valid to DS (Write) I Delay	35		25		2,3
15	TdDS(DW)	DS t to Write Data Not Valid Delay	35		20		2,3
16	TdA(DR)	Address Valid to Read Data Required	alid	255		200	1,2,3
′ 17	TdAS(DS)	AS ↑ to DS ↓ Delay	55		40		2,3

NOTES:

1. When using extended memory timing add 2 TpC.

2. Timing numbers given are for minimum TpC.

3. See clock cycle time dependent characteristics table.

* All units in nanoseconds (ns).

† Test Load 1

° All timing references use 2.0V for a logic "1" and 0.8V for a logic "0".

Figure 14. Additional Timing

AC CHÁRACTERISTICS

Additional Timing Table

			12 M	ИНz	16	MHz	1	
Number	Symbol	Parameter	Min	Max	Min	Max	Notes*	
1	ТрС	Input Clock Period	83	1000	62.5	1000	1	
2	TrC,TfC	Clock Input Rise and Fall Times		15		10	1	
3	TwC	Input Clock Width	70		21		1	
4	TwTinL	Timer Input Low Width	70		50		2	'
5	TwTinH	Timer Input High Width	3TpC	e de la composition de	ЗТрС		2	
6	TpTin	Timer Input Period	8TpC		8ТрС		2	
7	TrTin,TfTin	Timer Input Rise and Fall Times		100		100	2	
8A	TwiL	Interrupt Request Input Low Time	70		50		2,4	
8B	Twill	Interrupt Request Input Low Time	3TpC		ЗТрС		2,5	
9	TwiH	Interrupt Request Input High Time	ЗТрС		ЗТрС		2,3	

NOTES:

1. Clock timing references use 3.8V for a logic "1" and 0.8V for a logic "0".

2. Timing references use 2.0V for a logic "1" and 0.8V for a logic "0".

3. Interrupt request via Port 3.

4. Interrupt request via Port 3 (P31-P33).

5. Interrupt request via Port 3 (P30).

* Units in nanoseconds (ns).

AC CHARACTERISTICS

Handshake Timing

		12MHz, 16MHz								
Number	Symbol	Parameter	Min	Max	Notes ^{†*}					
1	TsDI(DAV)	Data In Setup Time	0							
2	ThDI(DAV)	Data In Hold Time	145	· ·						
3	TwDAV	Data Available Width	110							
4	TdDAVIf(RDY)	DAV I Input to RDY I Delay	20	115	1,2					
5	TdDAVOf(RDY)	DAV ↓ Output to RDY ↓ Delay	0		1,3					
6	TdDAVIr(RDY)	DAV † Input to RDY † Delay		115	1,2					
7	TdDAVOr(RDY)	DAV † Output to RDY † Delay	0		1,3					
8	TdDO(DAV)	Data Out to DAV ↓ Delay	Трс		1					
9	TdRDY(DAV)	RDY ↓ Input to DAV ↑ Delay	0	130	1					

NOTES:

1. Test load 1

2. Input handshake

3. Output handshake

All timing references use 2.0V for a logic "1" and 0.8V for a logic "0".
Units in nanoseconds (ns).