CEL California Eastern Laboratories

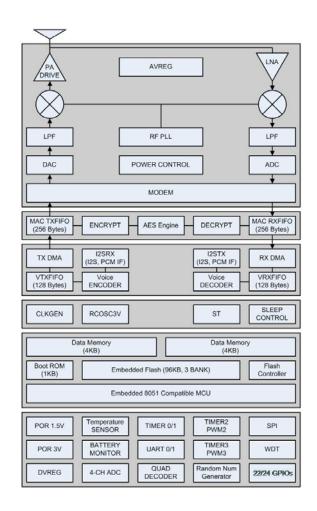
APPLICATIONS

- Home Automation and Security
- Automatic Meter Reading
- Factory Automation and Motor Control
- Medical Patient Monitoring
- Voice Applications
- Replacement for legacy wired UART
- Energy Management
- Remote Keyless Entry w/ Acknowledgement
- Toys
- PC peripherals

KEY FEATURES

- Embedded 8051 Compatible Microprocessor with 96KB Embedded Flash Memory for Program Space plus 8KB of Data Memory
- Scalable Data Rate: 250kbps for ZigBee, 500kbps and 1Mbps for custom applications.
- Voice Codec Support: µ-law/a-law/ADPCM
- High RF RX Sensitivity: -98dBm @1.5V
- High RF TX Power: +8dBm @1.5V
- 4 Level Power Management Scheme with Deep Sleep Mode (0.3µA)
- Single Voltage operation: 1.9 to 3.3V using an internal regulator (1.5V core)
- Software Tools and Libraries for the Development of Custom Applications

DESCRIPTION:


ZIC2410 is a true single-chip solution, compliant with ZigBee specifications and IEEE802.15.4, a complete wireless solution for all ZigBee applications. The **ZIC2410** consists of an RF transceiver with baseband modem, a hardwired MAC and an embedded 8051 microcontroller with internal flash memory. The device provides numerous general-purpose I/O pins,

peripheral functions such as timers and UART and is one of the first devices to provide an embedded Voice CODEC. This chip is ideal for very low power applications.

ZIC2410 Datasheet

The **ZIC2410** is available in two industry standard packages: a 48-pin QFN (7x7mm) or a 72-pin VFBGA (5x5mm) package.

CEL provides its customers with the *CEL ZigBee Stack*, software in a compiled library, as well as all the hardware & software tools required to develop custom applications. User application software can be compiled using any popular C-language compiler such as Keil.

- Single-chip 2.4GHz RF Transceiver
- Programmable Output Power up to +8dBm@1.5V
- High Sensitivity of –98dBm@1.5V
- Scalable Data Rate: 250Kbps for ZigBee, 500Kbps and 1Mbps for custom application
- On-chip VCO, LNA, and PA
- Low Operating Voltage of 1.5V
- Direct Sequence Spread Spectrum
- O-QPSK Modulation
- RSSI Measurement
- Compliant to IEEE802.15.4
- No External T/R Switch or Filter needed

Hardwired MAC

- Two 256-byte circular FIFOs
- FIFO management
- AES Encryption/Decryption Engine (128bit)
- CRC-16 Computation and Check

8051-Compatible Microcontroller

- 8051 Compatible (single cycle execution)
- 96KB Embedded Flash Memory
- 8KB Data Memory
- 128-byte CPU dedicated Memory
- 1KB Boot ROM
- Dual DPTR Support
- Multi-Bank Support for 96KB Program Memory (3Banks of 32KB)
- I2S/PCM Interface with two128-byte FIFOs
- µ-law/a-law/ADPCM Voice Codec
- Two High-Speed UARTs with Two 16-byte FIFOs (up to 1Mbps)
- 4 Timers/2 PWMs
- Watchdog Timer
- Sleep Timer
- Quadrature Signal Decoder
- 24 General Purpose I/Os
- Internal RC oscillator for Sleep Timer
- On-chip Power-on-Reset

- 4-channel 8-bit ADC
- SPI Master/Slave Interface
- ISP (In System Programming)
- Internal Temperature Sensor

Clock Inputs

- 16MHz Crystal for System Clock (optional 19.2MHz)
- 32.768KHz Crystal for Sleep Timer (optional)

Lcom

Power

- Internal Regulator for Single Voltage Operation w/ a large input voltage range (1.9~3.3V)
- À-Level Power Management Scheme with Deep Sleep Mode (0.3µA)
- Separate On-chip Regulators for Analog and Digital Circuitry.
- Battery Monitoring Support

Included Software

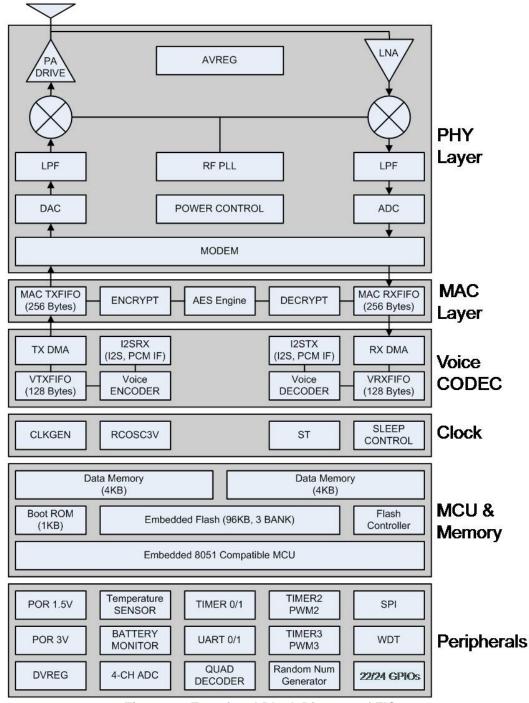
- Application Framework
- Software Tools
- IEEE and ZigBee Compliant Libraries

Package Options

- Lead-Free 48-pin QFN Package (shown below) (7mm x 7mm x 0.9mm)
- Lead-Free 72-pin VFBGA Package (5mm × 5mm x 0.9mm)

ORDERING INFORMATION

Ordering Part Number	Description	Minimum Order Quantity (MOQ)
ZIC2410QN48R	48-pin QFN Package (T/R)	Tape & Reel (2500 per reel)
ZIC2410FG72R	72-pin VFBGA Package (T/R)	Tape & Reel (2500 per reel)
ZIC2410-EDK-1	Demonstration Kit	1


Table of Contents

1	FUNCTIONAL DESCRIPTION	5
	1.1 FUNCTIONAL OVERVIEW	6
	1.2 MEMORY ORGANIZATION	7
	1.2.1 PROGRAM MEMORY	
		8
	1.2.3 GENERAL PURPOSE REGISTERS (GPR)	9
	1.2.4 SPECIAL FUNCTION REGISTERS (SFR) 1.3 RESET	
	1.4 CLOCK SOURCE	
	1.5 INTERRUPT SCHEMES	
	1.6 POWER MANAGEMENT	
	1.7 ON-CHIP PERIPHERALS	
	1.7.1 TIMER 0/1	
	1.7.2 TIMER 2/3, PWN 2/3	
	1.7.3 WATCHDOG TIMER	
	1.7.4 SLEEP TIMER	
	1.7.5 INTERNAL RC OSCILLATOR 1.7.6 UART0/1	
	1.7.7 SPI MASTER/SLAVE	
	1.7.8 VOICE	
	1.7.9 RANDOM NUMBER GENERATOR (RNG)	
	1.7.10 QUAD DECODER	52
	1.7.11 INTERNAL VOLTAGE REGULATOR	
	1.7.12 4-CHANNEL 8-BIT SENSOR ADC	
	1.7.13 ON-CHIP POWER-ON RESET	
	1.7.14 TEMPERATURE SENSOR 1.7.15 BATTERY MONITORING	
	1.8 MEDIUM ACCESS CONTROL LAYER (MAC)	
	1.8.1 RECEIVED MODE	
	1.8.2 TRANSMIT MODE	
	1.8.3 DATA ENCRYPTION AND DECRYPTION	
	1.9 PHYSICAL LAYER (PHY)	66
	1.9.1 INTERRUPT	
	1.9.2 REGISTERS	
	1.10 IN-SYSTEM PROGRAMMING (ISP)	
	1.11 ZIC2410 INSTRUCTION SET SUMMARY	
_	1.12 DIGITAL I/O	
2	AC & DC CHARACTERISTICS	93
	2.1 ABSOLUTE MAXIMUM RATINGS	
	2.2 DC CHARACTERISTICS	
	2.3 ELECTRICAL SPECIFICATIONS	
	2.3.1 ELECTRICAL SPECIFICATIONS with an 8MHz CLOCK	
	2.3.2 ELECTRICAL SPECIFICATIONS with a 16MHz CLOCK	
	2.3.3 AC CHARACTERISTICS	

3	PACKAGE & PIN DESCRIPTIONS	101
	3.1 PIN ASSIGNMENTS	101
	3.1.1 QN48 Package	101
	3.1.2 FG72 Package	104
	3.2 PACKAGE INFORMATION	107
	3.2.1 PACKAGE INFORMATION: ZIC2410QN48 (QN48pkg)	107
	3.2.2 PACKAGE INFORMATION: ZIC2410FG72 (FG72pkg)	110
	3.3 APPLICATION CIRCUITS	112
	3.3.1 APPLICATION CIRCUITS (QN48 package)	112
	3.3.2 APPLICATION CIRCUITS (FG72 package)	114
4	REFERENCES	116
	4.1 TABLE OF TABLES	116
	4.2 TABLE OF FIGURES	
	4.3 TABLE OF EQUATIONS	
5	REVISION HISTORY	119

1 FUNCTIONAL DESCRIPTION

Figure 1 shows the block diagram of ZIC2410. The ZIC2410 consists of a 2.4GHz RF, Modem (PHY Layer), a MAC hardware engine, a Voice CODEC block, Clocks, Peripherals, and a memory and Microcontroller (MCU) block.

1.1 FUNCTIONAL OVERVIEW

In the receive mode, the received RF signal is amplified by the Low Noise Amplifier (LNA), down-converted to a quadrature signal and then to baseband. The baseband signal is filtered, amplified, converted to a digital signal by the ADC and transferred to a modem. The data, which is the result of signal processing such as dispreading, is transferred to the MAC block.

In transmit mode, the buffered data at the MAC is transferred to a baseband modem which, after signal processing such as spreading and pulse shaping, outputs a signal through the DAC. The Analog baseband signal is filtered by the low-pass filter, converted to RF signal by the up-conversion mixer, is amplified by PA, and finally applied to the antenna.

The MAC block provides IEEE802.15.4 compliant hardware and it is located between microprocessor and a baseband modem. MAC block includes FIFOs for transmitting/receiving packet, AES engine for security operation, CRC and related control circuit. In addition, it supports automatic CRC check and address decoding.

ZIC2410 integrates a high performance embedded microcontroller, compatible to an Intel i8051 microcontroller in an instruction level. This embedded microcontroller has 8-bit operation architecture sufficient for controller applications. The embedded microcontroller has 4-stage pipeline architecture to improve the performance over previous compatible chips making it capable of executing simple instructions during a single cycle.

The memory organization of the embedded microcontroller consists of program memory and data memory. The data memory has 2 memory areas. For more detailed explanation, refer to the data memory section (1.2.2.)

The ZIC2410 includes 22 GPIO for the QN48 packaged device and 24 GPIO for the FG72 packaged part and various peripheral circuits to aid in the development of an application circuit with an interrupt handler to control the peripherals. ZIC2410 uses 16MHz crystal oscillator for RF PLL and 8MHz clock generated from 16MHz in clock generator is used for microcontroller, MAC, and the clock of a baseband modem.

The ZIC2410 supports a voice function as follows. The data generated by an external ADC is input to the voice block via I2S interface. After the data is received via I2S it is compressed by the voice codec, and stored in Voice TXFIFO. The data in Voice TXFIFO is transferred to the MAC TXFIFO and then transmitted via PHY. In contrast, the received data in MAC RXFIFO is transferred to voice RXFIFO via DMA operation. The data in voice RXFIFO is decompressed by the internal voice codec. The decompressed data is then transferred to the external DAC via I2S interface.

1.2 MEMORY ORGANIZATION

1.2.1 PROGRAM MEMORY

The address space of the program memory is 64KB (0x0000~0XFFFF). Basically, the lower 63KB of program memory is implemented by Non-volatile memory. The upper 1KB from 0XFC00 to 0XFFFF is implemented by both Non-volatile memory and ROM. As shown in Figure 2 below, there are two types of memory in the same address space. The address space, which is implemented by Non-volatile memory, is used as general program memory and the address space, which is implemented by ROM, is used for ISP (In-System Programming).

As shown in (a) of Figure 2 below, when Power is turned on, the upper 1KB of program memory is mapped to ROM. As shown in (b) of Figure 2, if this program area (1KB) is used as non-volatile program memory, ENROM should be set to '0'. See the SFR section (1.2.4) for ENROM.

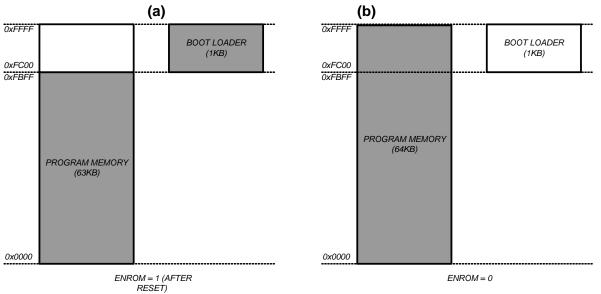


Figure 2 – Address Map of Program Memory

ZIC2410 includes non-volatile memory of 96KB. However, as described already, program memory area is 64KB. Therefore, if necessary, the upper 64KB of physical 96KB non-volatile memory is separated into two 32KB memory banks. Each bank is logically mapped to the program memory. When FBANK value is '0', lower 64KB of non-volatile memory is used as shown in (a) of Figure 3. When FBANK value is '1', lower 32 KB and upper 32KB of non-volatile memory are used as shown in (b) of Figure 3. See the SFR section (1.2.4) for FBANK.

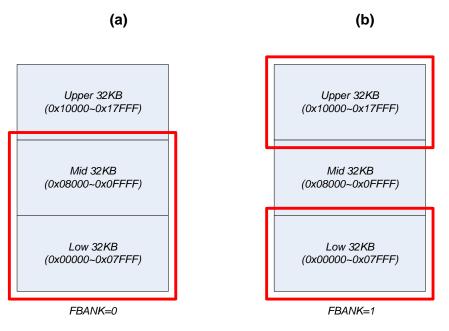
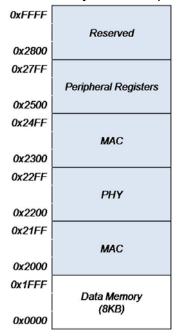



Figure 3 – Bank Selection of Program Memory

1.2.2 DATA MEMORY

ZIC2410 reserves 64 KB of data memory address space. This address space can be accessed

by the MOVX command.

Figure 4 shows the address map of this data memory.

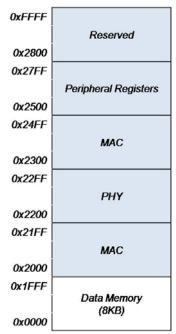


Figure 4 – Address Map of Data Memory

The data memory used in the application programs resides in the address range 0x0000-0x1FFF.

The registers and memory used in the MAC block reside in the address range 0x2000-0x21FF and 0x2300-0x24FF respectively. The registers to control or report the status of the PHY block reside in the address range 0x2200-0x22FF.

Registers related to the numberous peripheral functions of the embedded microprocessor reside in the address range of 0x2500-0x27FF.

1.2.3 GENERAL PURPOSE REGISTERS (GPR)

Figure 5 describes the address map of the General Purpose Registers (GPRs). GPRs can be addressed either directly or indirectly. As shown in the lower address space of Figure 5, a bank consists of 8 registers.

The address space above the bank area is the bit addressable area, which is used as a flag by software or by a bit operation. The address space above the bit addressable area includes registers used as a general purpose of a byte unit. For the detailed information, refer to the paragraphs following Figure 5 below.

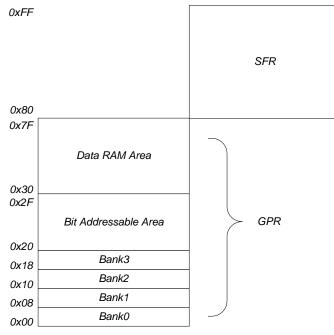


Figure 5 – GPRs Address Map

Register Bank 0-3: It is located from 0x00 to 0x1F (32 bytes). One bank consists of each 8 registers out of 32 registers. Therefore, there are total 4 banks. Each bank should be selected by software as referring the RS field in PSW register. The bank (8 registers) selected by RS value can be accessed by a name (R0-R7) by software. After reset, the default value is set to bank0.

Bit Addressable Area: The address is assigned to each bit of 16 bytes (0x20~0x2F) and registers, which is the multiple of 8, in SFR. Each bit can be accessed by the address which is assigned to these bits. 128 bits (16 bytes, 0x20~0x2F) can be accessed by direct addressing for each bit (0~127) and by a byte unit as using the address from 0x20~0x2F.

Data RAM Area: A user can use registers (0x30~0x7F) as a general purpose.

1.2.4 SPECIAL FUNCTION REGISTERS (SFR)

Generally, a register is used to store the data. MCU needs the memory to control the embedded hardware or the memory to show the hardware status. Special Function Registers (SFRs) process the functions described above. SFRs include the status or control of the I/O ports, the timer registers, the stack pointers and so on. Table 1 shows the address to all SFRs in ZIC2410.

All SFRs are accessed by a byte unit. However, when SFR address is a multiple of 8, it can be accessed by a bit unit.

Register Name	SFR Address	B7	B6	B5	B4	B3	B2	B1	B0	Initial Value
EIP	0xF8		VCEIP	SPIIP	RTCIP	T3IP	AESIP	T2IP	RFIP	0x00
В	0xF0									0x00
EIE	0xE8		VCEIE	SPIIE	RTCIE	T3IE	AESIE	T2IE	RFIE	0x00

Table 1 –	Special	Function	Register ((SFR) Ma	n
	opeciai	I unction	Register		

Register Name	SFR Address	B7	B6	B5	B4	B3	B2	B1	B0	Initial Value
ACC	0xE0									0x00
EICON						RTCIF				
WDT	0xD8 0xD2				WDTWE	WDTEN	WDTCLR		I TPRE	0x00 0x0B
PSW	0xD2 0xD0	CY	AC	F0	R		OV	F1	P	0x0B
WCON	0xD0 0xC0	Cr	AC	FU	ĸ	3	ISPMODE	ENROM	P	0x00 0x00
P3REN	0xC0 0xBC						ISPIVIODE	EINROIVI		0x00 0xFF
P3REN P1REN	0xBC 0xBA								-	0xFF 0xFF
POREN	0xBA									0xFF
IP	0xB9		PS1		PS0	PT1	PX1	PT0	PX0	0x00
P3OEN	0xB8		FOI		F30	FII	FAI	FIU	FAU	0x00
P10EN	0xB2									0x00
POOEN	0xB1									0x00
P3	0xB0									0x3F
TL3	0xAD									0x00
TL2	0xAC									0x00
TH3	0xAB									0x00
TH2	0xAA									0x00
T23CON	0xA9					TR3	M3	TR2	M2	0x00
IE	0xA8	EA	ES1		ES0	ET1	EX1	ET0	EX0	0x00
AUXR1	0xA2		-						DPS	0x00
FBANK	0xA1	RAM1	RAM0					FB/	ANK	0x00
EXIF	0x91	T3IF	AESIF	T2IF	RFIF					0x00
P1	0x90									0xFF
TH1	0x8D									0x00
TH0	0x8C									0x00
TL1	0x8B									0x00
TL0	0x8A									0x00
TMOD	0x89	GATE1	CT1		M1	GATE0	CT0	N	/0	0x00
TCON	0x88	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0x00
PCON	0x87							PD	IDLE	0x00
P0SEL	0x85							ExNoEdge	P0AndSEL	0x00
P0MSK	0x84									0xFF
DPH	0x83									0x00
DPL	0x82									0x00
SP	0x81									0x07
P0	0x80									0xFF

The following section describes each SFR related to microprocessor.

Table 2 – Register Bit Conventions

Symbol	Access Mode
RW	Read/write
RO	Read Only

Bit	Name	Descriptions	<u>R/W</u>	<u>Reset</u> Value
		NTROL REGISTER, 0xC0)		
	register can coi	ntrol the upper 1KB of program memory.		0
7:3		Reserved		0
2	ISPMODE	ISP Mode Indication : When MS [1:0], an external pin, is '3', this field is set to 1 by hardware. It notifies the MCU whether ISPMODE or not.	RO	-
1	ENROM	When this field is '1', the upper 1KB (0xFC00~0xFFFF) is mapped to ROM. When this field is '0', the upper 1KB (0xFC00~0xFFFF) is mapped to non-volatile memory.	R/W	1
0		Reserved		0
-	NK (PROGRAM	MEMORY BANK SELECTION REGISTER, 0xA1)	1	
7:1		Reserved		0x00
0	FBANK	Program Memory Bank Select. 0: Bank0 (Default) 1: Bank1 2: Not Used 3: Not Used	R/W	0
ACC	UMULATOR (0			
		ed as A or ACC and it is related to all the operations.		
7:0	A	Accumulator	R/W	0x00
conta opera time,	ains the MSB dation, this regist	e used as a general-purpose register. After multiplication is process ata and 'A register' contains LSB data for the multiplication result. In the stores the value before division (dividend) and the remainder after , the divisor should be stored in 'A register' and result value (quotien B register. Used in MUL/DIV instructions.	division divisior	. At this
		S WORD (PSW, 0xD0) the status of the program. The explanation for each bit is as follows.		
7	CY	Carry flag	R/W	0
6	AC	Auxiliary carry flag	R/W	0
5	F0	Flag0. User-defined	R/W	0
4:3	RS	Register bank select. 0: Bank0 1: Bank1 2: Bank2 3: Bank3	R/W	0
2	OV	Overflow flag	R/W	0
1	F1	Flag1. User-defined	R/W	0
0	Р	Parity flag. Set to 1 when the value in accumulator has odd number of '1' bits.	R/W	0
Whei store a ger This	d in stack to inf neral purpose ((register value is		h can be ased afte	used for the data

Table 3 – Special Function Registers	

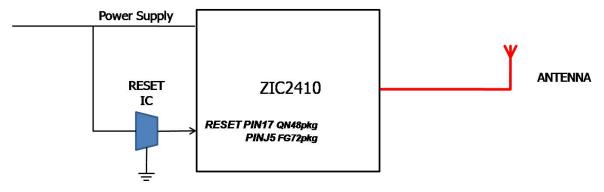
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value				
DAT	A POINTER (D	PH: 0x83, DPL: 0x82)						
		s of a high byte (DPH) and a low byte (DPL) to support 16-bit addres register or by two 8-bit registers respectively.	ss. It can	be				
7:0	DPH	Data pointer, high byte	R/W	0x00				
7:0	DPL	Data pointer, low byte	R/W	0x00				
		Y CONTROL REGISTER, 0xA2)						
		I to implement Dual DPTR functions. Physically, DPTR consists of D						
		DPTR0 and DPTR1 can be accessed depending on the DPS value of prevention they compare the accessed at the same time.	of AUXR1					
7:1		er words, they cannot be accessed at the same time.		0x00				
0	DPS	Dual DPTR Select: Used to select either DPTR0 or DPTR1. DPS When DSP is '0', DPTR0 is selected. When DSP is '1', DPTR1 is selected. B0)						
P3 (0)xB0)	Selected.						
		n be used as other functions besides general purpose I/O.						
	P3.7	This port register is used as a general purpose I/O port (12mA Drive).						
	/PWM3	When Timer3 is operated as a PWM mode, it outputs PWM wave (PWM3) of Timer3.						
7	/CTS1	When port register is used as UART1, it is used as a CTS signal (CTS1) of UART1.	R/W	0				
	/SPICSN	When used as a Master mode, SPI Slave Select signal is outputted. When used as a Slave mode, this port register receives SPI Slave Select signal. This signal activate in low						
	P3.6	This port register is used as a general purpose I/O port (12mA Drive)						
	/PWM2	When Timer2 is operated as a PWM mode, it outputs PWM wave (PWM2) of Timer2.						
6	/RTS1	When port register is used as UART1, it is used as a RTS signal (RTS1) of UART1.	R/W	0				
	/SPICLK	When used as a Master mode, SPI clock is outputted. When used as a Slave mode, this port register receives SPI clock.						
	P3.5	This port register is used as a general purpose I/O port.						
	/T1	When Timer1 is operated as a COUNTER mode, it is operated as a counter input signal (T1) of Timer1.	-					
5	/CTS0	When port register is used as UART0, it is used as a CTS signal (CTS0) of UART0.	R/W	1				
5	/SPIDO	In a Master mode or a Slave mode, this port register is used for outputting SPI data.						
	/QUADYB	When port register is used as QUAD function, it is used as the input signal of YB value.						
	P3.4	This port register is used as a general purpose I/O port.						
4	/ТО	When Timer0 is operated as a COUNTER mode, it is operated as a counter input signal (T0) of Timer0.	R/W	1				
	/RTS0	When port register is used as UART0, it is used as a RTS signal (RTS0) of UART0.						

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value			
	/SPIDI	In a Master mode or a Slave mode, this port register is used for receiving SPI data.					
	/QUADYA	When port register is used as QUAD function, it is used as the input signal of YA value.					
2	P3.3	P3.3 This port register is used as a general purpose I/O port.					
3	 ³ /INT1 P3.2 2 /INT0 P3.1 /TXD0 /QUADXB 	When port register is used as an input signal, it can receive an external interrupt (INT1).	R/W	1			
	P3.2	This port register is used as a general purpose I/O port.					
2	/INT0	When port register is used as an input signal, it can receive an external interrupt (INT0).	R/W	1			
	P3.1	This port register is used as a general purpose I/O port.					
1	/TXD0	When port register is used as UART0, it is used as a UART0 data output (TXD0).	R/W	1			
	/QUADXB	When port register is used as QUAD function, it is used as the input signal of XB value.					
	P3.0	This port register is used as a general purpose I/O port.					
0	/RXD0	R/W	1				
	/QUADXA	When port register is used as QUAD function, it is used as the input signal of XA value.					
	0x90) port register ca P1.7	n be used as other functions besides general purpose I/O.					
	P1.7	This port register is used as a general purpose I/O port.					
7	/P0AND	When P0AndSel value in P0SEL register is set to '1', P1.7 outputs the result of bit-wise AND operation of (P0 OR P0MSK).	R/W	1			
	/TRSW	It can be used as TRSW (RF TX/RX Indication signal) signal by setting the PHY register.					
	P1.6	This port register is used as a general purpose I/O port.					
6	/TRSWB	It can be used as TRSWB (TRSW Inversion) signal by setting the PHY register.	R/W	1			
5	P1.5	This port register is used as a general purpose I/O port.	R/W	1			
	P1.4	This port register is used as a general purpose I/O port.					
4	/QUADZB	When this port register is used as QUAD function, it is used as the input signal of ZB value.	R/W	1			
	/RTXTALI	This port register is used for connecting to the external crystal (32.768KHz), which is used in the Sleep Timer, by setting the PHY register.					
	P1.3	This port register is used as a general purpose I/O port.					
	F I.J						

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
	/RTXTALO	This port register is used for connecting to the external crystal (32.768KHz), which is used in the Sleep Timer, by setting the PHY register.		
	/RTCLKO	This port register is used to output the internal RCOSC by setting the PHY register.		
2	P1.2	This port register is used as a general purpose I/O port.	R/W	1
	P1.1	This port register is used as a general purpose I/O port.		
1	/TXD1	When this port register is used as UART1, it is used as UART1 data output (TXD1).	R/W	1
	P1.0	This port register is used as a general purpose I/O port.		
0	/RXD1	When this port register is used as UART1, it is used as UART1 data input (RXD1).	R/W	1
)x80) port register ca	n be used as other functions besides general purpose I/O.		
	P0.7	This port register is used as a general purpose I/O port.		
7	/I2STXMCL K	When this port register is used as I2S, it is operated as TX Master clock of I2S interface.	R/W	1
	P0.6	This port register is used as a general purpose I/O port.		
6	/I2STXBCL K	When this port register is used as I2S, it is operated as TX Bit clock of I2S interface.	R/W	1
	P0.5	This port register is used as a general purpose I/O port.		
5	/I2STXLRC K	When this port register is used as I2S, it is operated as TX LR clock of I2S interface.	R/W	1
	P0.4	This port register is used as a general purpose I/O port.		
4	/I2STXDO	When this port register is used as I2S, it is operated as TX data output of I2S interface.	R/W	1
_	P0.3	This port register is used as a general purpose I/O port.		_
3	/I2SRXMCL K	When this port register is used as I2S, it is operated as RX Master clock of I2S interface.	R/W	1
-	P0.2	This port register is used as a general purpose I/O port.		
2	/I2SRXBCL K	When this port register is used as I2S, it is operated as RX Bit clock of I2S interface.	R/W	1
	P0.1	This port register is used as a general purpose I/O port.	544	
1	/I2SRXLRC K	When this port register is used as I2S, it is operated as the RX LR clock of the I2S interface.	R/W	1
	P0.0	This port register is used as a general purpose I/O port.]	
0	/I2SRXDI	When this port register is used as I2S, it is operated as the RX data input of the I2S interface.	R/W	1
P0O outpu	EN, P1OEN and			e output
1		Reserved		0

Bit	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
7:0	P30EN	It controls the TX buffer function for each pin in Port3. When each bit field is set to '0', the TX buffer of the corresponding pin outputs the value.	R/W	0x00
6:0	P10EN	It controls the TX buffer function for each pin in Port1. When each bit field is set to '0', the TX buffer of the corresponding pin outputs the value. P1.7 only acts as output.	R/W	0x00
7:0	P00EN	It controls the TX buffer function for each pin in Port0. When each bit field is set to '0', the TX buffer of the corresponding pin outputs the value.	R/W	0x00
PORE	EN, P1REN, P3	REN (0xB9, 0xBA, 0xBC) BREN enable Pull-up of port 0, 1 and 3. When each bit area is cleare ding port is enabled.	ed to '0', i	the Pull-
7		Reserved		1
7:0	P3REN	It controls the Pull-up function for each pin in Port3. When each bit field is set to '0', the Pull-up function of the corresponding pin is operated.	R/W	0xFF
6:0	P1REN	It controls the Pull-up function for each pin in Port1. When each bit field is set to '0', the Pull-up function of the corresponding pin is operated. *P1.7 doesn't have a control field because it is operated as an output.	R/W	0x7F
7:0	POREN	It controls the Pull-up function for each pin in Port0. When each bit field is set to '0', the Pull-up function of the corresponding pin is operated.	R/W	0xFF
P0M	SK (P0 INPUT	MASK REGISTER, 0x84)		
7:0	POMSK	This register is used for masking the input of P0 pin (Refer to P0AndSel in P0SEL register).	R/W	0xFF
POSE	EL (P0 INPUT S	SELECTION REGISTER, 0x85)		
7:2		Reserved		0
1	ExNoEdge	Controls the wake up of the MCU by an external interrupt when in the power-down mode. When this field is '0', the MCU wakes up when INT0 or INT1 signal is high (This is the normal case in the MCU.) When this field is '1', the MCU is woken up by the wakeup signal of the SleepTimer. Remote control function can be implemented by the interrupt service routine of the MCU when the WAKEUP signal occurs by adjusting the RTDLY value in the Sleep Timer while either INT0 or INT1 is low.	R/W	0
0	P0AndSel	When this field is set to '1', P0 and P0MSK are ORed per bit. The bits of the result value are to be ANed and then output to P1.7. This function is used to implement remote control function.	R/W	0

1.3 RESET


The ZIC2410 should be reset to be operated. There are three kinds of reset sources. The first one is to use an external reset pin (RESET#). When applying a low signal to this pin for more than 1ms, ZIC2410 is reset. Second, ZIC2410 can be reset by an internal POR when it is powered up as using the internal Power-On-Reset (POR) block. Third, as a reset by the watchdog timer, a reset signal is generated when the internal counter of watchdog timer reaches a pre-set value.

Parameter	MIN	ТҮР	MAX	UNIT
1.5V POR Release		1.18		V
1.5V POR Hysteresis		0.11		V

NOTE

Reference circuit of ZIC2410 is as follows. When the ZIC2410 is operated below minimum operating voltage, a reset error will occur because of the unstable voltage. It is recommended to use an external reset IC to improve stability in low voltage conditions.

[Application Circuit by adjusting RESET-IC]

[Reset Circuit by adjusting ELM7527NB]

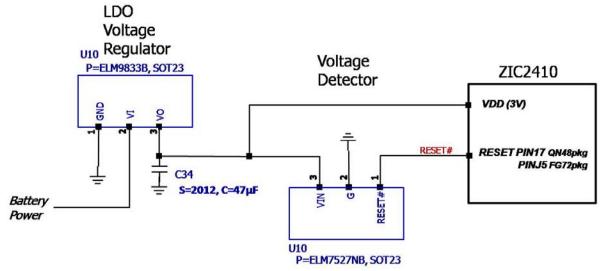
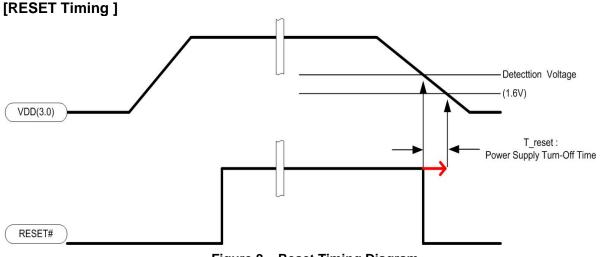



Figure 7 – Reset Circuit Using ELM7527NB

Checking the RESET-IC Circuit

- 1. In the application circuit of ZIC2410, please connect RESET# PIN to Pull-up register and should not connect it to capacitor.
- 2. When applying RESET-IC, detection voltage should be set over 1.9V.
- 3. The interval (T_reset) until from the time which reset signal by Reset IC has been adjusted to the time which the voltage of VDD (3.0) is dropped to 1.6V should be longer than 1ms.
- 4. T_reset time is adjusted when modifying capacitor value connected to VDD (3.0).

1.4 CLOCK SOURCE

The ZIC2410 can use either a 16MHz or a 19.2MHz crystal as the system clock source. An external 32.768 KHz crystal or the internal clock generated from internal the RCOSC is used for the Sleep Timer clock.

For the internal 8051 MCU Clock in the ZIC2410, either 8MHz or 16MHz can be used. When selecting the 8051 MCU Clock (8MHz, 16MHz), the CLKDIV0 register should be set as follows.

Please note the crystal oscillator input (XOSCI) can also be driven by a CMOS clock source.

CLKDIV0 (OPERATING FREQUENCY CONTROL REGISTER, 0x22C3)

Table 5 – Clock Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
7:0	CLKDIV0	This register is used to control the clock of the internal 8051 MCU. When this register is set to 0xFF, the clock is set to 8MHz; when set to 0x00, the clock is set to 16MHz. All other values except 0xFF and 0x00 are reserved.	R/W	0xFF

1.5 INTERRUPT SCHEMES

The program interrupt functions of the embedded MCU are similar to other microprocessors. When an interrupt occurs, the interrupt service routine at the corresponding vector address is executed. When the interrupt service routine process is completed, the program is resumed from the point of time at which the interrupt occurred. Interrupts can be initiated from the internal operation of the embedded microprocessor (e.g. the overflow of the timer count) or from an external signal.

The ZIC2410 has 13 interrupt sources. Table 6 describes the detailed information for each of the interrupt sources. The 'Interrupt Address' indicates the address where the interrupt service routine is located. The 'Interrupt Flag' is the bit that notifies the MCU that the corresponding interrupt has occurred. 'Interrupt Enable' is the bit which decides whether each interrupt has been enabled. 'Interrupt Priority' is the bit which decides the priority of the interrupt. The 'Interrupt Number' is the interrupt priority fixed by the hardware. That is, when two or more interrupts having the same 'Interrupt Priority' value, occur simultaneously, the lower 'Interrupt Number' is processed first.

Interrupt	Interrupt Type	Interrupt	Interrupt Flag	Interrupt	Interrupt
<u>Number</u>		Address	<u></u>	<u>Enable</u>	<u>Priority</u>
0	External Interrupt0	0003H	TCON.IE0	IE.EX0	IP.PX0
1	Timer0 Interrupt	000BH	TCON.TF0	IE.ET0	IP.PT0
2	External Interrupt1	0013H	TCON.IE1	IE.EX1	IP.PX1
3	Timer1 Interrupt	001BH	TCON.TF1	IE.ET1	IP.PT1
4	UART0 Interrupt (TX) UART0 Interrupt (RX)	0023H	Note 1	IE.ES0	IP.PS0
7	UART1Interrupt (TX) UART1 Interrupt (RX)	003BH	Note 1	IE.ES1	IP.PS1
8	PHY Interrupt	0043H	EXIF.PHYIF	EIE.RFIE	EIP.RFIP
9	Timer2 Interrupt	004BH	EXIF.T2IF	EIE.T2IE	EIP.T2IP
10	AES Interrupt	0053H	EXIF.AESIF	EIE.AESIE	EIP.AESIP
11	Timer3 Interrupt	005BH	EXIF.T3IF	EIE.T3IE	EIP.T3IP
12	Sleep Timer Interrupt	0063H	EICON.RTCIF	EIE.RTCIE	EIP.RTCIP
13	SPI Interrupt	0068H	Note 2	EIE.SPIIE	EIP.SPIIP
14	Voice Interrupt	0073H	Note 3	EIE.VCEIE	EIP.VCEIP

Table 6 – Interrupt Descriptions

Note 1: In the case of a UART Interrupt, bit [0] of the IIR register (0x2502, 0x2512) in the UART block is used as a flag. Also, the Tx, Rx, Timeout, Line Status and Modern Status interrupts can be distinguished by bit [3:1] value. For more detailed information, refer to the UART0/1 description in Section 1.7.6.

Note 2: In the case of an SPI interrupt, there is another interrupt enable bit in the SPI register besides EIE.SPIIE. In order to enable an SPI interrupt, both SPIE in the SPCR (0x2540) register and EIE.SPIIE should be set to '1. SPIF in the SPSR (0x2541) register acts as an interrupt flag.

Note 3: In case of a Voice interrupt, there are interrupt enable registers and interrupt flag registers in the voice block. The interrupt enable register are VTFINTENA (0x2770), VRFINTENA (0x2771) and VDMINTENA (0x2772). The interrupt flag register are VTFINTVAL (0x2776), VRFINTVAL (0x2777), and VDMINTVAL (0x2778). There are 24 interrupt sources. When both an interrupt enable signal and an interrupt flag signal are set to '1,' voice interrupt is enabled.

Table 7 – INTERRUPT Registers

Bit	Name		R/W	<u>Reset</u>			
			<u></u>	<u>Value</u>			
The I interr the s	IE (INTERRUPT ENABLE REGISTER, 0xA8) The EA bit in the IE register is the global interrupt enable signal for all interrupts. In addition, each interrupt is masked by each interrupt enable bit. Therefore, in order to use an interrupt, both EA and the specific interrupt enable bit should be set to '1'. When the bit for each interrupt is '0', that interrupt is disabled. When the bit for each interrupt is (1', that interrupt is enabled)						
interi	interrupt is disabled. When the bit for each interrupt is '1', that interrupt is enabled. Global interrupt enable						
7	EA	 0: No interrupt will be acknowledged. 1: Each interrupt source is individually enabled or disabled by setting its corresponding enable bit. 	R/W	0			
6	ES1	UART1 interrupt enable 1: interrupt enabled.	R/W	0			
5		Reserved		0			
4	ES0	UART0 interrupt enable 1: interrupt enabled.	R/W	0			
3	ET1	Timer1 interrupt enable 1: interrupt enabled.	R/W	0			
2	EX1	External interrupt1 enable 1: interrupt enabled.	R/W	0			
1	ET0	Timer0 interrupt enable 1: interrupt enabled.	R/W	0			
0	EX0	External interrupt0 enable 1: interrupt enabled.	R/W	0			
		PRIORITY REGISTER, 0xB8)					
is '1',		ing to each interrupt is '0', the corresponding interrupt has londing interrupt has higher priority.	ower priority				
7		Reserved		0			
6	PS1	UART1 interrupt priority	R/W	0			
_		1: UART1 interrupt has higher priority.		-			
5		Reserved		0			
4	PS0	UART 0 interrupt priority 1: UART0 interrupt has higher priority.	R/W	0			
3	PT1	Timer1 interrupt priority 1: Timer1 interrupt has higher priority.	R/W	0			
2	PX1	External interrupt1 interrupt priority 1: External interrupt1interrupt has higher priority.	R/W	0			
1	PT0	Timer0 interrupt priority 1: Timer0 interrupt has higher priority.	R/W	0			
0	PX0	External interrupt0 interrupt priority 1: External interrupt0 interrupt has higher priority.	R/W	0			
lf a b		INTERRUPT ENABLE REGISTER, 0xE8) sponding interrupt is disabled and if a bit is '1', correspondin ing table	ig interrupt	is enabled.			
7		Reserved	R/W	0			
6	VCEIE	Voice Interrupt Enable. 0: Interrupt disabled 1: Interrupt enabled	R/W	0			
5	SPIIE	SPI Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0			
4	RTCIE	Sleep Timer Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0			
3	T3IE	Timer3 Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0			
2	AESIE	AES Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0			

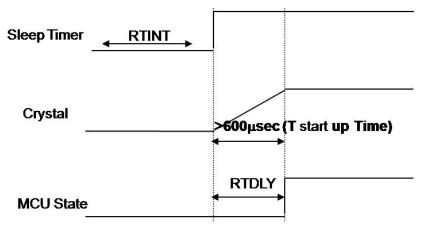
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value	
1	T2IE	Timer2 Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0	
0	RFIE	RF Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0	
lfab		INTERRUPT PRIORITY REGISTER, 0xF8) prresponding interrupt has lower priority. If a bit is '1', the	corresponding	g interrupt	
7		Reserved		0	
6	VCEIP	Voice Interrupt Priority 1: Voice interrupt has higher priority. 0: Voice interrupt has lower priority.	R/W	0	
5	SPIIP	SPI Interrupt Priority 1:SPI interrupt has higher priority. 0:SPI interrupt has lower priority.	R/W	0	
4	RTCIP	Sleep Timer Interrupt Priority 1: Sleep Timer interrupt has higher priority. 0: Sleep Timer interrupt has lower priority.	R/W	0	
3	T3IP	Timer3 Interrupt Priority 1: Timer3 interrupt has higher priority. 0: Timer3 interrupt has lower priority.	R/W	0	
2	AESIP	AES Interrupt Priority 1: AES interrupt has higher priority. 0: AES interrupt has lower priority.	R/W	0	
1	T2IP	Timer2 Interrupt Priority 1: Timer2 interrupt has higher priority. 0: Timer2 interrupt has lower priority.	R/W	0	
0	RFIP	RF Interrupt Priority 1: RF interrupt has higher priority. 0: RF interrupt has lower priority.	R/W	0	
This	register store	D INTERRUPT FLAG REGISTER, 0x91) is the interrupt state corresponding to each bit. When the	interrupt corre	esponding	
to a t	T3IF	d, the flag is set to '1'. Timer3 Interrupt Flag. 1: Interrupt pending	R/W	0	
6	AESIF	AES Interrupt Flag. 1: Interrupt pending	R/W	0	
5	T2IF	Timer2 Interrupt Flag. 1: Interrupt pending	R/W	0	
4	RFIF	RF Interrupt Flag. 1: Interrupt pending	R/W	0	
3:0		Reserved		0	
EICC	N (EXTEND	ED INTERRUPT CONTROL REGISTER, 0xD8)			
7		Reserved		0	
6:4		Reserved		0	
3	RTCIF	Sleep Timer Interrupt Flag. 1: Interrupt pending	R/W	0	
2:0		Reserved 0			

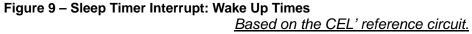
1.6 POWER MANAGEMENT

There are three Power-Down modes in the ZIC2410. Each mode can be set by PDMODE [1:0] bits in PDCON (0x22F1) register and Power-Down mode can be started by setting PDSTART bit to 1. Each mode has a different current consumption and different wake-up sources. Table 8 describes the three Power-Down modes.

PDMODE [1:0]	Description	Wake-Up Source	<u>Regulator for Digital</u> <u>block</u>	<u>Current</u>
0	No power- down	-	-	-
1	PM1 mode	Hardware Reset, Sleep Timer interrupt, External interrupt	ON	25μΑ
2	PM2 mode	Hardware Reset, Sleep Timer interrupt, External interrupt	OFF (After wake-up, register configuration is required)	<2µA
3	PM3 mode	Hardware Reset, External interrupt	OFF (After wake-up, register configuration is required)	0.3μΑ

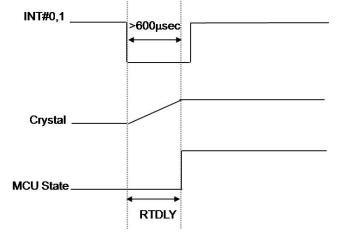
Table 8 – Power Down Modes

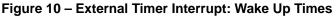

The following describes the time it takes from Power-Down mode to system operation for each of the wake-up sources.


① Hardware Reset Wake Up

Hardware Reset Wake Up time in PM1, PM2 and PM3 is around 1001μ sec. For more detailed information, refer to the Figure 35.

② Sleep Timer Interrupt Wake Up


The following shows the timing of the Sleep Timer Interrupt Wake Up. As shown in Figure 9 below, the time of Power Down mode is set by register RTINT and register RTDLY should be set at greater than or equal to '0x11' in order to stabilize the crystal. In the case of PM1 and PM2, the minimum time until the system is operating after going into the Power Down mode, is around 534μ sec (RTINT:0x01, RTDLY:0x11).



③ External interrupt Wake Up

The following shows the time of External Interrupt Wake Up. The time, until system is operated, is different based on the releasing time of external interrupt. For example, external interrupt can be released before RTDLY minimum time or after RTDLY minimum time. By considering these two causes, it is recommended to set RTDLY to over 600μ sec at least. In addition, Register RTDLY should be set over '0x11' at least to stabilize crystal.

Based on the CEL' reference circuit.

The following table describes the status of voltage regulator, oscillator, and sleep timer in normal mode (PM0) and each Power-Down mode.

	TUDIC			
Power Mode	AVREG	DVREG	Main OSC	Sleep Timer
PM0	ON	ON	ON	ON
PM1	OFF	ON	OFF	ON
PM2	OFF	OFF	OFF	ON
PM3	OFF	OFF	OFF	OFF

Table 9 – Status in Power-Down Modes

When exiting from a Power-Down mode initiated by a Sleep Timer interrupt, RTDLY (0x22F4) register specifies the delay time for oscillator stabilization. If the delay time is too short, the oscillator can become unstable and cause a problem of fetching a wrong instruction command in the MCU.

In addition, there are two Power-Down modes that can be only used in the MCU. One is PD (Power-Down) mode and the other is IDLE mode. PD (Power-Down) mode of MCU is enabled by setting PD in PCON register to '1'. In PD (Power-Down) mode, all the clocks of MCU are stopped and current consumption is minimized. When interrupt, which is allowed for wake-up, occurs, it exits from PD mode. After exiting, first, the corresponding interrupt service routine is executed. And then, the next instruction after the instruction for setting PD to '1' is executed.

In IDLE mode, clocks of all the blocks in the MCU except the peripherals are stopped. The current consumption is 2.7mA. When an interrupt occurs (except a timer interrupt or an external interrupt) the IDLE bit is cleared and the device exits from the IDLE mode. The required interrupt service routine is then executed and the next instruction (after the instruction setting IDLE to '1') is executed.

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
PCON (POWER CONTROL REGISTER, 0x87)				
7:2		Reserved		0
1	PD	Power-down Mode. When this field is set to '1', all the clocks in MCU are stopped.	R/W	0
0	IDLE	Idle Mode. When this field is set to '1', all the clocks in MCU except peripherals are stopped. Only peripherals operate normally.	R/W	0

When ZIC2410 goes into Power-Down mode by setting PDSTART field of PDM register, PD bit of PCON register should also be set. To go into PD (Power-Down) mode, PDMODE field should be set as 1, 2, or 3. After that, PD bit of PCON register should be set to 1 by the following instruction that set PDMODE. For more detailed information, please refer to the Figure 11.

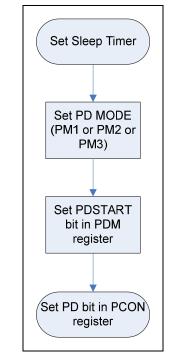


Figure 11 – Power-Down mode setting procedure

1.7 ON-CHIP PERIPHERALS

On-chips peripherals in ZIC2410 are as follows.

• TIMER 0/1	1.7.1
• TIMER 2/3,PWM 2/3	1.7.2
Watch-dog timer	1.7.3
Sleep Timer	1.7.4
 Internal RC Oscillator for Sleep Timer 	1.7.5
 Two High-Speed UARTs with Two 16-byte FIFOs (up to 1Mbps) 	1.7.6
SPI Master/Slave Interface	1.7.7
 I2S/PCM Interface with two128-byte FIFOs 	1.7.8.1
 μ-law / a-law / ADPCM Voice Codec 	1.7.8.2
Random Number Generator	1.7.9
Quad Decoder	1.7.10
Internal Voltage Regulator	1.7.11
 4-channel 8-bit sensor ADC 	1.7.12
On-chip Power-on-Reset	1.7.13
Temperature Sensor	1.7.14
Battery Monitoring	1.7.15

1.7.1 TIMER 0/1

The Embedded MCU has two 16-bit timers which are compatible with Intel 8051 MCU (Timer0, Timer1). These timers have 2 modes: one is operated as a timer and the other is operated as a counter. When it is operated as a timer, there are 4 operating modes.

Each timer is a 16-bit timer and consists of two 8-bit register. Therefore, the counter can be either 8-bit or 16-bit set by the operating mode.

In counter mode, the input signal T0 (P3.4) and T1 (P3.5) are sampled once every 12 cycles of the system clock. If the sampled value is changed from '1' to '0', the internal counter is incremented. In this time, the duty cycle of T0 and T1 doesn't affect the increment. Timer0 and Timer1 are accessed by using 6 SFR's.

These registers are used to control each timer function and monitor each timer status.

The following table describes timer registers and modes.

<u>Bit</u>	<u>Name</u>	Descriptions		<u>Reset</u> Value
TCO	N (TIMER C	ONTROL REGISTER, 0x88)		
7	TF1	Timer1 Overflow Flag : When this field is '1', a Timer1 interrupt occurs. After the Timer1 interrupt service routine is executed, this field value is cleared by the hardware.	R/W	0
6	TR1	Timer1 Run Control : When this bit is set to '1', Timer1 is enabled.	R/W	0
5	TF0	Timer0 Interrupt Flag : When this field is '1': Interrupt is pending After Timer0 interrupt service routine is executed, this field is cleared by hardware.	R/W	0
4	TR0	Timer0 Run : When this bit is set to '1', Timer0 is enabled.	R/W	0
3	IE1	External Interrupt1 Edge Flag : When this field is '1', External interrupt1 is pending. After the interrupt service routine is executed, this field is cleared by hardware.	R/W	0

Table 11 – Timer and Timer Mode Registers

	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value		
		External Interrupt1 Type Control: This field specifies the type of				
		External interrupt1.	D 44/	0		
2	IT1	1 = Edge type. When the falling edge of INT1 is detected, the	R/W	0		
		interrupt occurs.				
├────╂		0 = Level type. When INT1 is low, the interrupt occurs.				
4	150	External Interrupt0 Edge Flag: When this field is '1', External	R/W	0		
1	IE0	interrupt0 is pending. After the interrupt service routine is executed,	R/W	0		
├────┤		this field is cleared by hardware. External Interrupt0 Type Control: This field specifies the type of				
		External interruptor type control. This field specifies the type of External interrupt1.				
0	IT0	1 = Edge type. When the falling edge of INT1 is detected, the	R/W	0		
U	110	interrupt occurs.	1.7.4.4	0		
		0 = Level type. When INT0 is low, the interrupt occurs.				
ТМО	D (TIMER N	IODE CONTROL REGISTER, 0x89)				
	_ (Timer Gate Control : When TR1 is set to '1' and GATE1 is '1',				
7	GATE1	Timer1 is enabled while INT1 pin is in high. When GATE1 is set to	R/W	0		
		'0' and TR1 is set to '1', Timer1 is enabled		-		
<u> </u>	Timer1 Counter Mede Select: When this field is not to '1' Timer1		R/W	0		
6	CIT	CT1 is enabled as counter mode.				
		Timer1 mode select:				
		0: Mode0, 12-bit Timer				
5:4	M1	1: Mode1, 16-bit Timer	R/W	0		
		2: Mode2, 8-bit Timer with auto-load				
		3: Mode3, two 8-bit Timer				
		Timer0 Gate Control: When TR0 is set to '1' and GATE0 is '1',				
3	GATE0	Timer0 is enabled while INT0 pin is in high. When GATE1 is set to	R/W	0		
		'0' and TR1 is set to '1', Timer0 is enabled				
2	CT0	When this field is set to '1', Timer0 is enabled as counter mode.	R/W	0		
		Timer0 Mode Select:				
1.0	Mo	0: Mode0, 12-bit Timer		0		
1:0	MO	1: Mode1, 16-bit Timer	R/W	0		
		2: Mode2, 8-bit Timer with auto-load				
	3: Mode3, two 8-bit Timer TL0/TL1/TH0/TH1 (TIMER REGISTERS, 0x8A, 0x8B, 0x8C, 0x8D)					
		sters, (TH0, TL0) and (TH1, TL1), can be used as 16-bit timer register	for Time	n and		
				i o anu		
Timer1 or can be used as 8-bit register respectively.7:0TH0Timer0 High Byte DataR/W0x00						
7:0	TL0	Timer0 Low Byte Data	R/W	0x00		
7:0	TH1	Timer1 High Byte Data	R/W	0x00		
7:0	TL1	Timer 1 Low Byte Data	R/W	0x00		

In mode0, the 12-bit register of timer0 consists of 7-bit of TH0 and the lower 5-bit of TL0. The higher 1-bit of TH0 and higher 3-bit of TL0 are disregarded. When this 12-bit register is overflowed, set TF0 to '1'. The operation of timer1 is same as that of timer0.

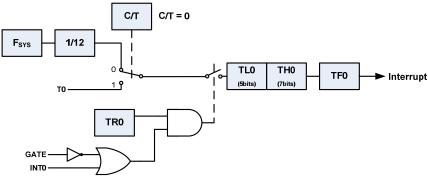


Figure 12 – Timer0 Mode0

In Mode1, the operation is same as it of Mode0 except all timer registers are enabled as a 16-bit counter.

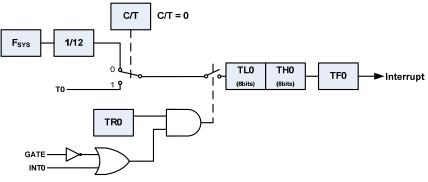
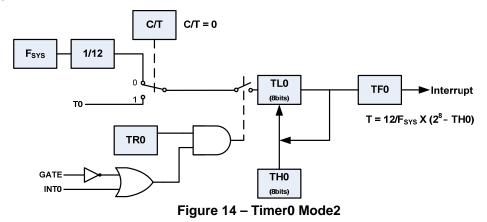



Figure 13 – Timer0 Mode1

In mode2, TL0 of Timer0 is enabled as an 8-bit counter and TH0 reloads TL0 automatically.

TF0 is set to '1' by overflowing of TL0. TH0 value retains the previous value regardless of the reloading. The operation of Timer1 is same as that of Timer0.

In Mode3, Timer0 uses TL0 and TH0 as an 8-bit timer respectively. In other words, it uses two counters. TL0 controls as the control signals of Timer0. TH0 is always used as a timer function and it controls as TR1 of Timer1. The overflow is stored in TF1. At this time, Timer1 is disabled and it retains the previous value.

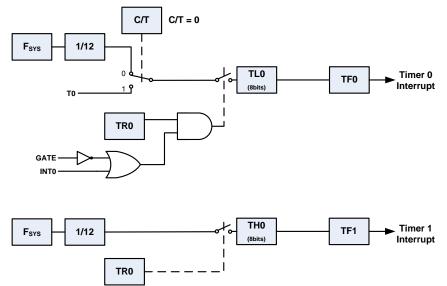


Figure 15 – Timer0Mode3

1.7.2 TIMER 2/3, Pulse Width Modulator (PWM) 2/3

TIMER 2/3

The embedded MCU includes two 16-bit timers (Timer 2 and Timer 3).

<u>Bit</u>	<u>Name</u>	Descriptions		<u>Reset</u> Value			
	T23CON (TIMER2/3 CONTROL REGISTER, 0xA9)						
	register is us	sed to control Timer2 and Time3.					
7:4		Reserved	R/W	0			
3	TR3	Timer3 Run: When this field is set to '1', Timer3 is operational.	R/W	0			
2	М3	Timer3 PWM Mode : When this field is set to '1', Timer3 is put into PWM mode.	R/W	0			
1	TR2	Timer2 Run: When this field is set to '1', Timer2 is operational.	R/W	0			
0	M2	Timer2 PWM Mode : When this field is set to '1', Timer2 is put into PWM mode.	R/W	0			
TL2/	TL3/TH2/TH	3 (TIMER2/3 TIMER REGISTER, 0xAC, 0xAD, 0xAA, 0xAB)					
Regi	ster (TH2, TI	L2) and (TH3, TL3) are 16-bit timer counter register for Timer2 and Tin	ner3.				
7:0	TH2	Timer2 High Byte Data	R/W	0x00			
7:0	TL2	Timer2 Low Byte Data	R/W	0x00			
7:0	TH3	Timer3 High Byte Data	R/W	0x00			
7:0	TL3	Timer3 Low Byte Data	R/W	0x00			

Timer2 acts as a general 16-bit timer. Time-out period is calculated by Equation 1.

Equation 1 – Time-out Period Calculation (Timer2)

$$T_2 = \frac{8 \times (256 \times TH2 + TL2 + 1)}{2}$$

fsystem

If the time-out period is set too short, excessive interrupts will occur causing abnormal operation of the system. It is recommended to set a sufficient time-out period for Timer2 (> 100µs).

Timer3 acts as a general 16-bit timer. Time-out period of Timer3 is calculated by Equation 2.

Equation 2 – Time-out Period Calculation (Timer3)

$\mathsf{T}_3 = \frac{3 \times (256 \times TH3 + TL3 + 1)}{fsystem}$

If the time-out period is set too short, excessive interrupts will occur causing abnormal operation of the system. It is recommended to set a sufficient time-out period for Timer3.

PWM 2/3

TIMER 2/3 can be used as Pulse Width Modulators, PWM2 and PWM3 respectively based on setting the M2, M3 bits in T23CON register. P 3.6 outputs PWM2 signal and P3.7 outputs PWM3 signal

The following table describes the frequency and High Level Duty Rate in PWM mode.

Table 15 – Trequency and Duty Nate ITT WW Wode					
Channel	Frequency (Hz)	High Level Duty Rate (%)			
PWM2	$\frac{fsystem}{256 \times (TH2 + 1)}$	$\frac{TL2}{256} \times 100$			
PWM3	$\frac{fsystem}{256 \times (TH3+1)}$	$\frac{TL3}{256} \times 100$			

Table 13 – Frequency and Duty Rate in PWM Mode

Note: This equation does not apply for TH values of 0, and 1. For these values the frequency should be as follows: TH=0: 15.625 KHz; TH=1: 7.812 KHz.

1.7.3 WATCHDOG TIMER

The Watchdog Timer (WDT) monitors whether the MCU is or is not operating normally. If a problem occurs, the WDT will immediately reset the MCU.

In fact, when the system does not clear the WDT counter value, WDT considers that a problem has occurred, and therefore, resets the MCU automatically. The WDT is used when a program is not completed normally because a software error has been caused by the environment such as electrical noise, unstable power or static electricity.

When Powered-up, the internal counter value of WDT is set to '0' and watchdog timer is operated. If overflow is caused in the internal counter, a system reset is initiated with a timeout period is about 0.5 second. A user may reset the WDT by clearing WDTEN bit of WDTCON. When WDT is operating, an application program must clear the WDT periodically to prevent the system from being reset unwantedly.

				_
<u>Bit</u>	<u>Name</u>	Descriptions		<u>Reset</u> Value
WD	CON (WAT	CHDOG TIMER CONTROL REGISTER, 0xD2)		
7:5		Reserved	R/W	0
4	WDTWE	WDT Write Enable : To set WDTEN to '1', this field should be set to '1'.	R/W	0
3	WDTEN	WDT Enable: To use WDT, this bit should be set to '1'.	R/W	0
2	WDTCLR	WDT Clear : Watchdog Timer resets a system when the internal counter value is reached to the defined value by WDTPRE value. This field does not allow system to be reset by clearing the internal counter. When this field is set to '1', this field value is cleared automatically.	R/W	0
1:0	WDTPRE	Watchdog Timer Prescaler: Sets the prescaler value of WDT.	R/W	0

Table 14 – Watchdog Timer Register

Reset interval of WDT is calculated by the Equation 3. For example, when WDTPRE value is '0' and system clock of MCU is 8MHz, reset interval of WDT is 65.536ms.

Equation 3 – Watchdog Reset Interval Calculation

Watchdog Reset Interval = $\frac{256 \times 2^{(11+WDTPRE)}}{f_{system}}$

siem

1.7.4 SLEEP TIMER

The Sleep Timer can generate time interval such as 1 or 2 seconds with a 32.768 KHz clock source. The Sleep Timer (ST) is used to exit from the Power-Down mode.

The clock source desired can be generated from an external crystal or the internal RC oscillator.

ST is activated as setting RTEN bit to '1' and the interrupt interval can be programmed by setting RTCON [6:0], RTINT1 and RTINT0 register.

<u>Bit</u>	Name	Descriptions		<u>Reset</u> Value	
RTC	ON (SLEEP T	IMER CONTROL REGISTER, 0x22F5)			
7	RTCSEL	Sleep Timer Select : When this field is set to '1', internal RCOSC is used as a clock source. When this field is set to '0', external 32.768KHz crystal is used as a clock source. When this field is set to '0' and external crystal is not turned on, ST does not act.	R/W	1	
6:0	8:0 RTINT This field determines ST interrupt interval with RTINT0 and [22:16] RTINT1		R/W	0x00	
RTIN	T1 (SLEEP T	IMER INTERRUPT INTERVAL 1, 0x22F6)			
7:0	RTINT [15:8]	This field determines the ST interrupt interval with RTINT0 and RTCON [6:0]	R/W	0x00	
RTINTO (SLEEP TIMER INTERRUPT INTERVAL 0, 0x22F7)					
7:0	RTINT [7:0]	This field determines ST interrupt interval with RTINT1 and RTCON [6:0]	R/W	0x08	

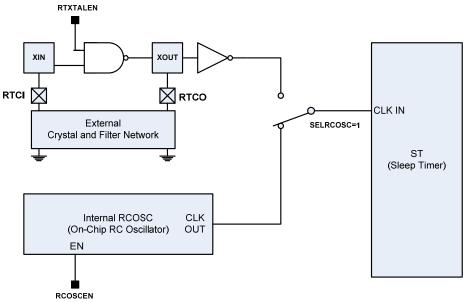
Table 15 – Sleep Timer Registers

Sleep Timer Interrupt Interval

RTCON [6:0], RTINT1 and RTINT0 register represent RTINT [22:0] (23-bit) and the timer interval is determined by this value. If ST clock source acts as 32.786KHz, one ST cycle is 1/32768 second and the timer interval is RTINT * (1/32768) second. Therefore, ST interrupt occurs per (RTINT * 30.5) µs and maximum is 256 second.

RTDLY (SLEEP TIMER DELAY REGISTER, 0x22F4)

This register is used when the MCU exits from a power-down state initiated by the ST interrupt.


RTDLY specifies the delay time for oscillator stabilization. When the MCU exits from powerdown mode, the MCU executes the next instruction after the delay time.

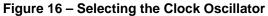

<u>Bit</u>	Name	Descriptions	<u>R/W</u>	<u>Reset</u> Value
7:0	RTDLY	Delay Time = RTDLY \times 4 / 32.768KHz when ST clock source is 32.768KHz. The value of RTDLY should be greater than 2.	R/W	0x11

Table 16 – Sleep Timer Delay Registers

1.7.5 INTERNAL RC OSCILLATOR

An Internal RC oscillator generates the internal clock and provides the clock to Sleep Timer block in the embedded MCU. The Internal RC oscillator can be controlled by the 3rd bit in the PDCON (0x22F1) register. When this bit is set to '1', internal RC Oscillator is enabled. The default value is '1'.

1.7.6 UART0/1

Serial communication is categorized as synchronous mode or asynchronous mode in terms of its data transmission method.

The embedded MCU has both UART0 and UART1 to enable two-way communication.

These devices support asynchronous mode. The following registers are used to control UART.

Bit	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value			
RBR (UARTO RECEIVE BUFFER REGISTER, 0x2500)							
7:0	RBR	Read the received data	R/O	0x00			
THR	THR (UART0 TRANSMITTER HOLDING REGISTER, 0x2500)						
7:0	THR	This register stores the data to be transmitted. The address is the same as the RBR register. When accessing this address, received data (RBR) is read and the data to be transmitted is stored.	W/O	0x00			
DLL	(UART0 DI\	/ISOR LSB REGISTER, 0x2500)					
7:0	DLL	This register can be accessed only when the DLAB bit in the LCR register is set to '1'. This register shares a 16-bit register with the DLM register (below) occupying the lower 8 bits. This full 16-bit register is used to divide the clock.	R/W	0x00			
writte	en to DLL re	ata is written to the DLM register, it should be written in this register. gister, the clock divisor begins. Baud rate is calculated by the followin					
		ock_speed / (7 × divisor_latch_value)					
	UARTO INT	ERRUPT ENABLE REGISTER, 0x2501)					
7:4		Reserved		0			
3	EDSSI	Enable MODEM Status Interrupt. When this field is set to '1', Modem status interrupt is enabled.	R/W	0			
2	ELSI	Enable Receiver Line Status Interrupt.	R/W	0			
1	ETBEI	Enable Transmitter Holding Register Empty Interrupt	R/W	0			
0	ERBEI	Enable Received Data Available Interrupt	R/W	0			
DLM	(UART0 DI	VISOR LATCH MSB REGISTER, 0x2501)					
7:0	DLM	This register can be accessed only when the DLAB bit in the LCR register is set to '1'. This register shares a 16-bit register with the DLL register (above) occupying the higher 8 bits. This full 16-bit register is used to divide the clock.	R/W	0x00			
IIR (UART0 INTERRUPT IDENTIFICATION REGISTER, 0x2502)							
7:4		Reserved	R/O	0			
3:1	INTID	Interrupt Identification. Refer to the Table 18.	R/O	0			
0	PENDING	Shows whether the interrupt is pending or not. When this field is '0', the interrupt is pending.	R/O	1			
	Note: IIR register uses the same address as FCR register in Table 19 below. IIR register is read-only and FCR register is write-only.						

_

INTID	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control		
011	1 st	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the LSR (Line Status Register).		
010	2 nd	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level		
110	2 nd	Timeout Indication	There is at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 character times.	Reading from the FIFO (Receiver Buffer Register)		
001	3 rd	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Writing to the Transmitter Holding Register or reading IIR		
000	4th	Modem Status	CTS, DSR, RI or DCD	Reading the Modem status register		

Table 18 – UART0 Interrupt Lists

Table 19 – UART0 Control Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value					
	FCR (UART0 FIFO CONTROL REGISTER, 0x2502)								
Note: FCR register uses the same address as IIR register in Table 17 above. IIR register is read-only									
and FCR register is write-only.									
7:6	URXFTRI G	Trigger Level of Receiver FIFO. Interrupt occurs when FIFO receives the the number of data bytes based on this field's value below. For example, when URXFTRIG field is set to '3', interrupt does not occur until FIFO receives 14 bytes. 0: 1byte 1: 4 bytes 2: 8 bytes 3: 14 bytes	W/O	3					
5:3		Reserved	W/O	0					
2	UTXFRST	When this field is set to '1', Transmitter FIFO is cleared and the circuits related to it are reset.	W/O	0					
1	URXFRST	When this field is set to '1', Receiver FIFO is cleared and the circuits related to it are reset.	W/O	0					
0		Reserved	W/O	0					
LCR	(UARTO LIN	NE CONTROL REGISTER, 0x2503)							
7	DLAB	Divisor Latch Access Enable . When this field is set to '1', Divisor register (DLM, DLL) can be accessed. When this field is set to '0', general register can be accessed.	R/W	0					
6	SB	Set Break . When this field is set to '1', serial output is forced to be '0' (break state)	R/W	0					
5	SP	Stick Parity . When PEN and EPS are '1' with this field set to '1', a parity of '0' is transmitted. In reception mode, it checks whether parity value is '0' or not. When PEN is '1' and EPS is '0' with this field is to '1', parity of '1', is transmitted. In reception mode, it checks whether parity value is '1' or not.	R/W	0					
4	EPS	Even Parity Enable . When this field is set to '1', parity value is even. When set to '0', parity value is odd.	R/W	0					
3	PEN	Parity Enable . When this field is set to '1', parity is calculated for the byte to be transmitted and transferred with it. In reception mode, checks parity. When this field is '0', parity is not generated.	R/W	0					

-

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
2	STB	Number of Stop Bits . When this field is set to '1', 2 stop bit is used. When transmitting a word (character) of 5 bit length, 1.5 stop bit is used. When this field is '0', 1 stop bit is used.	R/W	0
1:0	WLS	Word Length Select. 0: 5bit Word 1: 6bit Word 2: 7bit Word 3: 8bit Word	R/W	3

There are more registers such as the Modem Control Register, the Line Status Register, the Modem Status Register and the Port Enable Register in the UART0 block. This document doesn't include these registers because they are not commonly used. For more detailed information on their use, please contact CEL.

The following registers are to control UART1.

Table 20 – UART1 Registers

				Reset			
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	Value			
RBR (UART1 RECEIVE BUFFER REGISTER, 0x2510)							
7:0	RBR	Read the received data	R/O	0x00			
THR	THR (UART1 TRANSMITTER HOLDING REGISTER, 0x2510)						
7:0	THR	This register stores the data to be transmitted. The address is the	W/O	0x00			
		same as the RBR register. When accessing this address, received					
		data (RBR) is read and the data to be transmitted is stored.					
DLL (UART1 DIVISOR LSB REGISTER, 0x2510)							
7:0	DLL	This register can be accessed only when the DLAB bit in the LCR	R/W	0x00			
		register is set to '1'. This register shares a 16-bit register with the					
1.0	DLL	DLM register (below) occupying the lower 8 bits. This full 16-bit	1.7.4.4				
		register is used to divide the clock.					
Note	e: After the d	ata is written to the DLM register, it should be written in this register. V	Vhen the	data is			
writte	en to DLL reg	gister, the clock divisor begins. Baud rate is calculated by the following	g equatio	n.			
		ock_speed / (7 × divisor_latch_value)					
IER	(UART1 INT	ERRUPT ENABLE REGISTER, 0x2511)					
7:4		Reserved		0			
3	EDSSI	Enable MODEM Status Interrupt.	R/W	0			
-		When this field is set to '1', Modem status interrupt is enabled.					
2	ELSI	Enable Receiver Line Status Interrupt.	R/W	0			
1	ETBEI	Enable Transmitter Holding Register Empty Interrupt	R/W	0			
0	ERBEI	Enable Received Data Available Interrupt	R/W	0			
DLM	(UART1 DI	VISOR LATCH MSB REGISTER, 0x2511)					
	DLM	This register can be accessed only when the DLAB bit in the LCR	R/W	0x00			
7:0		register is set to '1'. This register shares a 16-bit register with the					
7.0		DLL register (above) occupying the higher 8 bits. This full 16-bit					
		register is used to divide the clock.					
IIR (JART1 INTE	RRUPT IDENTIFICATION REGISTER, 0x2512)					
7:4		Reserved	R/O	0			
3:1	INTID	Interrupt Identification. Refer to the Table 21.	R/O	0			
0	PENDING	Shows whether the interrupt is pending or not. When this field is '0',	R/O	1			
		the interrupt is pending.					
Note: IIR register uses the same address as FCR register in Table 22 below. IIR register is read-only							
and FCR register is write-only.							

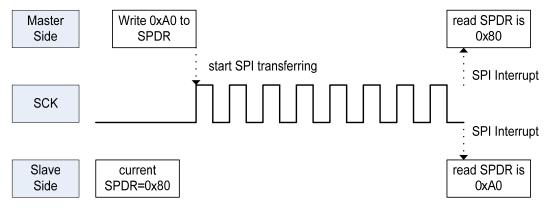
Table 21 – UART1 Interrupt Lists

INTID	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
011	1 st	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the LSR (Line Status Register).
010	2 nd	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level
110	2 nd	Timeout Indication	There is at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 character times.	Reading from the FIFO (Receiver Buffer Register)
001	3 rd	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Writing to the Transmitter Holding Register or reading IIR
000	4th	Modem Status	CTS, DSR, RI or DCD	Reading the Modem status register

Table 22 – UART1 Control Registers

Bit	Name	Descriptions	<u>R/W</u>	<u>Reset</u> Value
FCR	(UART1 FIF	FO CONTROL REGISTER, 0x2512)		value
		ter uses the same address as IIR register in Table 20 above. IIR register	ter is rea	d-only
		r is write-only.		,
7:6	URXFTRI G	Trigger Level of Receiver FIFO. Interrupt occurs when FIFO receives the the number of data bytes based on this field's value below. For example, when URXFTRIG field is set to '3', interrupt does not occur until FIFO receives 14 bytes. 0: 1byte 1: 4 bytes 2: 8 bytes	W/O	3
5.2		3: 14 bytes		
5:3 2	UTXFRST	Reserved When this field is set to '1', Transmitter FIFO is cleared and the circuits related to it are reset.	W/O W/O	0
1	URXFRST	When this field is set to '1', Receiver FIFO is cleared and the circuits related to it are reset.	W/O	0
0		Reserved	W/O	0
LCR	(UART1 LIN	NE CONTROL REGISTER, 0x2513)		
7	DLAB	Divisor Latch Access Enable . When this field is set to '1', Divisor register (DLM, DLL) can be accessed. When this field is set to '0', general register can be accessed.	R/W	0
6	SB	Set Break . When this field is set to '1', serial output is forced to be '0' (break state)	R/W	0
5	SP	Stick Parity . When PEN and EPS are '1' with this field set to '1', a parity of '0' is transmitted. In reception mode, it checks whether parity value is '0' or not. When PEN is '1' and EPS is '0' with this field is to '1', parity of '1', is transmitted. In reception mode, it checks whether parity value is '1' or not.	R/W	0
4	EPS	Even Parity Enable . When this field is set to '1', parity value is even. When set to '0', parity value is odd.	R/W	0
3	PEN	Parity Enable . When this field is set to '1', parity is calculated for the byte to be transmitted and transferred with it. In reception mode, checks parity. When this field is '0', parity is not generated.	R/W	0
2	STB	Number of Stop Bits . When this field is set to '1', 2 stop bit is used. When transmitting a word (character) of 5 bit length, 1.5 stop bit is used. When this field is '0', 1 stop bit is used.	R/W	0

Bit	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
1:0	WLS	Word Length Select. 0: 5bit Word 1: 6bit Word 2: 7bit Word 3: 8bit Word	R/W	3


There are more registers such as the Modem Control Register, the Line Status Register, the Modem Status Register and the Port Enable Register in the UART1 block. This document doesn't include these registers because they are not used commonly. For more detailed information on their use, please contact CEL.

1.7.7 SPI MASTER/SLAVE

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). The operation is different in either Master mode or Slave mode

In the Master mode, the data transmission is done by writing to the SPDR (SPI Data Register, 0x2542). After transmission, data reception is initiated by a byte transmitted to the Slave device from the Master SPI clock. When the SPI interrupt occurs, the value of the SPDR register becomes the received data from the SPI slave device. Even though the SPDR TX and RX have the same address, no data collision occurs because the processes of writing and reading data happen sequentially.

In the Slave mode, the data must be ready in the SPDR when the Master calls for it. Data transmission is accomplished by writing to the SPDR before the SPI clock is generated by the Master. When the Master generates the SPI clock, the data in the SPDR of the Slave is transferred to the Master. If the SPDR in the Slave is empty, no data exchange occurs. Data reception is done by reading the SPDR when the next SPI interrupt occurs.

Figure 17 – SPI Data Transfer

Table 23 – SPI Control Registers					
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value	
SPC	R (SPI CON	TROL REGISTER, 0x2540)			
7	SPIE	SPI Interrupt Enable . When this field is set to '1', SPI interrupt is enabled.	R/W	0	
6	SPE	SPI Enable. When this field is set to '1', SPI is enabled.	R/W	0	
5		Reserved		0	
4	MSTR	Master Mode Select . When this field is set to '1', a Master mode is selected.	R/W	1	
3	CPOL	Clock Polarity . If there is no data transmission while this field is set to '0', SCK pin retains '0'. If there is no data transmission while this field is set to '1', SCK pin retains '1'. This field is used to set the clock and data between a Master and Slave with CPHA field. Refer to information below for a more detailed explanation.	R/W	0	
2	СРНА	Clock Phase . Used to set the clock and data between a Master and Slave with CPOL field. See details below.	R/W	0	
1:0	SPR	SPI Clock Rate Select . With ESPR field in SPER register (0x2543), selects SPI clock (SCK) rate when the device is configured as a Master. Refer to the ESPR field in Table 25.	R/W	0	

Table 23 – SPI Control Registers

There are four methods of data transfer based on the settings of CPOL and CPHA. Polarity of SPI serial clock (SCK) is determined by CPOL value and it determines whether SCK activates high or low.

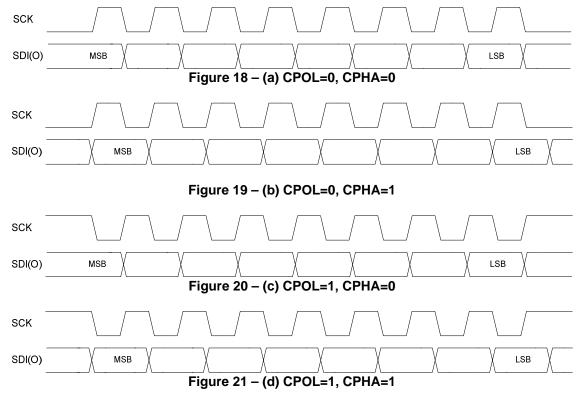

If CPOL value is '0', SCK pin retains '0' during no data transmission. If CPOL value is '1', SCK pin retains '1' during no data transmission. CPHA field determines the format of data to be transmitted.

Table 24 describes the clock polarity and the data transition timing.

CPOL	CPHA	SCK when idle	Data Transition Timing
0	0	Low	Falling Edge of SCK
0	1	Low	Rising Edge of SCK
1	0	High	Rising Edge of SCK
1	1	High	Falling Edge of SCK

Table 24 – Clock Polari	ty and Data	Transition	Timing
-------------------------	-------------	------------	--------

Figure 18, Figure 19, Figure 20, and Figure 21 describe this block when slave mode is selected. When the values of CPOL and CPHA are the same, (a) and (d) below, output data is changed at the falling edge of SCK. Input data is captured at the rising edge of SCK. When the CPOL and CPHA values are different, (b) and (c) below, output data is changed at the rising edge of received SCK. Input data is captured at the falling edge of SCK.

Table 25 – SPI Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
SPS	SPSR (SPI STATUS REGISTER, 0x2541)			
7	SPIF	SPI Interrupt Flag: When SPI interrupt occurs, this field is set to '1'. Set whenever data transmission is finished and it can be cleared by software.	R/W	0

<u>Bit</u>	<u>Name</u>	Descri	ptions	<u>R/W</u>	<u>Reset</u> Value
6	WCOL	Write Collision: Set to '1' when while SPITX FIFO is full. It can be		R/W	0
5:4		Reserved			0
3	WFFUL	Write FIFO Full: Set to '1' when ' read only.		R/O	0
2	WFEMP TY	Write FIFO Empty: Set to '1' whe field is read only.		R/O	1
1	RFFUL	Read FIFO Full: Set to '1' when I read only.		R/O	0
0	RFEMPT Y	Read FIFO Empty: Set to '1' whe field is read only.	en Read FIFO is cleared. This	R/O	1
		A REGISTER, 0x2542)			
7:0	SPDR	This register is read/write buffer.		R/W	-
SPE	R (SPI E RE	GISTER, 0x2541)			
7:6	ICNT	Interrupt Count. Indicates the number of byte to transmit. SPIF bit is set to '1' whenever each byte is transmitted.			0
5:2		Reserved			0
		Extended SPI Clock Rate Select Register (0x2540), this field select device is configured as a Master. {ESPR, SPR}		-	
		0000	Reserved	_	
		0001	Reserved		
		0010	8		
		0011	32		
1:0	ESPR	0100	64	R/W	2
		0101	16		_
		0110	128		
		0111	256		
		1000	512]	
		1001	1024		
		1010	2048		
		1011	4096]	
		* ESPR field : high bit SPR field:	low bit		

The value of ESPR and SPR is used to divide system clock to generate SPI clock (SCK).

For example, if the value of ESPR and SPR is '0010' and system clock is 8MHz, SPI clock (SCK) is 1MHz.

1.7.8 VOICE

A voice function includes the following:

I2S Interface	1.7.8.1
 Voice CODEC (u-law / a-law / ADPCM) 	1.7.8.2
■ Voice FIFO	1.7.8.3
■ DMA	1.7.8.3

The data generated through an external ADC is input to the voice block in the ZIC2410 via an I2S interface. Data received via I2S is compressed at the voice codec, and stored in the Voice TXFIFO. The data is then transferred to the MAC TX FIFO through DMA operation and finally transmitted through the PHY layer.

By contrast, received data in the MAC RX FIFO is transferred to the Voice RXFIFO and decompressed in the voice codec. It is finally transferred to an external DAC via I2S interface.

I2S is commonly used for transferring/receiving voice data. Voice data can be transferred or received via SPI or UART interface as well.

Voice codec supports u-law, a-law and ADPCM methods.

If the voice codec function is not needed, it can be bypassed.

1.7.8.1 I2S

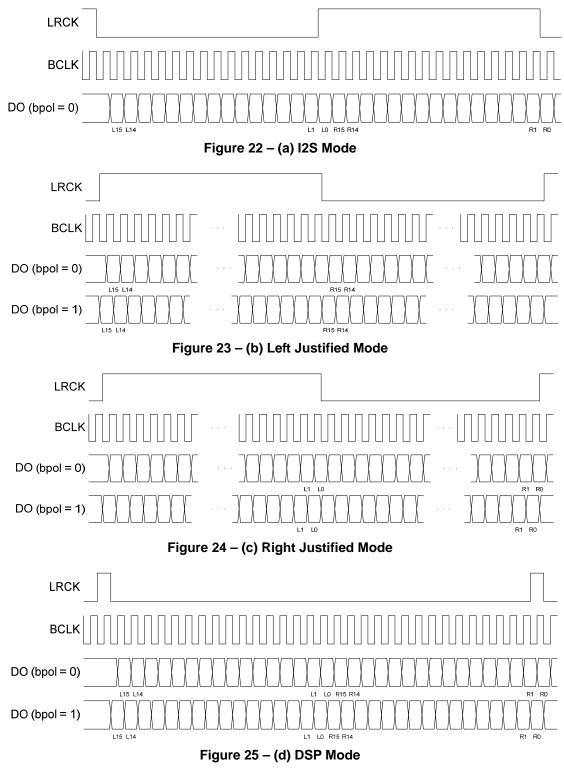
In I2S interface, data is transferred MSB first from the left channel, and then from the right channel. There are two ways to send data via I2S TX: writing data to the register either by software, or by hardware. This is enabled by using the POP field in STXMODE (0x252d). Similarly, there are two ways to receive data via I2S RX: the first is reading the register by software, and the other is by the PUSH field in SRXMODE (0x253d)

There are four modes in I2S interface as follows.

- I2S mode
- Left Justified mode
- Right Justified mode
- DSP mode

In I2S mode, left channel data is transferred in order. When left channel data is transferred, LRCK value is '0' and when right channel data is transferred, LRCK value is 0. Transferred data and LECK is changed at the falling edge. Refer to Figure 22 (a) below.

In Left Justified mode, left channel data is transferred whenever LRCK=1 and right channel data is transferred, whenever LRCK =0. LRCK is changed at the falling edge of BLCK and Transferred data is changed at the rising edge of BCLK. Refer to Figure 23 (b) below.


In Right Justified mode, left channel data allows last LSB to be output before LRCK value goes to '0' and right channel data allows last LSB to be output before LRCK value goes to '1'.

LRCK value is changed at the falling edge of BCLK. Output data is changed at the rising edge of BCLK. Refer to Figure 24 (c) below.

In DSP mode, after LRCK outputs to '1' for one period of BCLK, it goes to '0'. After that, left channel data is outputted and then right channel data is outputted. LRCK value is changed at the falling edge of BCLK. Output data is changed at the rising edge of BCLK. Refer to Figure 25 (d) below.

Figure 22, Figure 23, Figure 24, and Figure 25 show the interface method for each mode and I2S TX block is selected as Master. The setting of register is as follows. MS field in STXAIC

(0x2528) register is set to '1'. WL field is set to '0' (The data of left and right channel represents 16-bit). Other fields are set to '0'. In ISP mode, BPOL field in STXMODE (0x252D) register is set to '0'. In other modes, BPOL field in STXMODE (0x252D) register is set to '0' or '1' respectively.

Bit	Name	Table 26 – I2S Registers Descriptions	R/W	<u>Reset</u>
			<u>I\/ VV</u>	<u>Value</u>
STX	AIC (I2S TX	INTERFACE CONTROL REGISTER, 0x2528)		
7	MS	When this field is set to '1', Master mode is configured. When this field is set to '0', Slave mode is configured. Any device can act as the system master by providing the necessary clock signals. A slave will usually derive its internal clock signal from an external clock input.	R/W	1
6:5	FMT	Four modes of operation determined by the value of this field. 0: I2S mode 1: Left Justified mode 2: Right Justified mode 3: DSP mode	R/W	2
4:3	WL	Word Length. Indicates the number of bits per channel. 0: 16 bit 1: 20 bit 2: 24 bit 3: 32 bit	R/W	0
2	LRSWAP	Left/Right Swap . When this field is set to '1', the order of the channel for transmitting data is changed. In other words, the data in a right channel is transmitted first.	R/W	0
1	FRAMEP	When this field is set to '1', the polarity of LRCK is changed. For example, in Left Justified mode, the left channel data is outputted when LRCK=1 and the right channel data is outputted when LRCK=0. However, when this field is set to '1', the right channel data is outputted when LRCK=1 and the left channel data is outputted when LRCK=0.	R/W	0
0	BCP	When this field is set to '1', the polarity of BCLK (Bit Clock) is changed. Clock edge, which allows the data change, is changed.	R/W	0
STXS	SDIV (12S T)	X SYSTEM CLOCK DIVISOR REGISTER, 0x252A)		
7:0	STXSDIV	Sets the value for dividing a system clock to generate MCLK. The equation is as follows: MCLK = System Clock/(2×STXSDIV) When this field is '0', MCLK is not generated.	R/O	0x00
STX	MDIV (I2S T	X MCLK DIVISOR REGISTER, 0x252B)	1	
7:0	STXMDIV	Sets the value for dividing MCLK to generate BCLK. When STXSDIV register value is '1', BCLK = MCLK/STXMDIV. When STXSDIV register value is greater than 2, BCLK = MCLK/ (2×STXMDIV). When this register is '0', BCLK is not generated.	R/O	0x00
SIX	נועצ (125 T)	X BCLK DIVISOR REGISTER, 0x252C)		
7:0	STXBDIV	Sets the value for dividing BCLK to generate LRCK. When FMT field in STXAIC(0x2528) register is '0','1','2', LRCK = BCLK/(2×STXBDIV). When FMT field in STXAIC (0x2528) register is '3', LRCK = BCLK/STXBDIV. When this register value is '0', LRCK is not generated.	R/W	0x00
STX	MODE (I2S	TX MODE REGISTER, 0x252D)		
7	CSHR	This field is meaningful when I2STX block acts in a Slave mode. When this field is set to '1', the I2S TX block shares the clock of the I2S RX block. In other words, the MCLK of the I2S RX block is input to the MCLK of the I2S TX block, the BCLK of the I2S RX block is input to the BCLK of the I2S TX block, and the LRCK of the I2S RX block is input to the LRCK of the I2S TX block.	R/W	1
6	MPOL	Ddetermines the polarity of MCLK. When this field is '0', MCLK signal retains '1'. When this field is '1', MCLK signal retains '0'.	R/W	1

Table 26 – I2S Registers

Bit	Name	Descriptions	<u>R/W</u>	<u>Reset</u> Value		
5	BPOL	Indicates the relationship between BCLK and LRCK. When this field is set to '0', LRCK value is changed at the falling edge of BCLK. When this field is set to '1', LRCK value is changed at the rising edge of BCLK.	R/W	1		
4	B16	Determines bit width to transfer data in voice block to I2S block. When this field is set to '1', data is transferred by 16-bit data format to I2S block. When this field is set to '0', data is transferred by 8-bit data format to I2S block.	R/W	1		
3	POP	When this field is set to '1', data is transferred to I2S block. When this field is set to '0', data is not transferred to I2S block.	R/W	1		
2:1	MODE	 Sets the mode of transferred data. 0: BLK Mode. Transfer a '0'. 1: MRT Mode. Only the data in Right channel is transferred. ('0' is transferred in Left channel) 2: MLT Mode. Only the data in Left channel is transferred. ('0' is transferred in Right channel) 3: STR Mode. All data in Left or Right channel are transferred. 	R/W	3		
0	CLKENA	Clock Enable . When this field is set to '1', I2S TX is enabled.	R/W	0		
SRX	AIC (I2S RX	INTERFACE CONTROL REGISTER, 0x2538)				
7	MS	When this field is set to '1', Master mode is configured. When this field is set to '0', Slave mode is configured. Any device can act as the system master by providing the necessary clock signals. A slave will usually derive its internal clock signal from an external clock input.	R/W	1		
6:5	FMT	Four modes determined by the value of this field. 0: I2S mode 1: Left Justified mode 2: Right Justified mode 3: DSP mode	R/W	2		
4:3	WL	Word Length. Indicates the number of bit per each channel. 0: 16 bit 1: 20 bit 2: 24 bit 3: 32 bit	R/W	0		
2	LRSWAP	Left/Right Swap . When this field is set to '1', the order of the channel for transmitting data is changed. In other words, the data in a right channel is transmitted first.	R/W	0		
1	FRAMEP	When this field is set to '1', the polarity of LRCK is changed. For example, in Left Justified mode (FMT=1), data is stored in the left channel when LRCK=1 and data is stored in the right channel when LRCK=0. However, when this field is set to '1', data is stored in the right channel when LRCK=1 and the data is stored in the left channel when LRCK=0.	R/W	0		
0	BCP	When this field is set to '1', the polarity of BCLK (Bit Clock) is changed. Clock edge, which allows the data change, is changed.	R/W	0		
SRX	SDIV (I2S R	X SYSTEM CLOCK DIVISOR REGISTER, 0x253A)	·			
7:0	SRXSDIV	Sets the value for dividing a system clock to generate MCLK. The equation is as follows: <i>MCLK</i> = System Clock/(2× SRXSDIV) When this field is '0', MCLK is not generated.	R/W	0x00		
SRX	SRXMDIV (I2S RX MCLK DIVISOR REGISTER, 0x253B)					

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
7:0	SRXMDIV	Sets the value for dividing MCLK to generate BCLK. When SRXSDIV register value is '1', BCLK = MCLK/SRXMDIV. When SRXSDIV register value is greater than 2, BCLK = MCLK/ (2×SRXMDIV). When this register value is '0', BCLK is not generated.	R/W	0x00
SRX	_			
7:0	SRXBDIV	Sets the value for dividing BCLK to generate LRCK. When FMT field in SRXAIC(0x2528) register is '0','1','2', LRCK = BCLK/(2(SRXBDIV). When FMT field in SRXAIC (0x2528) register is '3', LRCK = BCLK/SRXBDIV. When this register value is '0', LRCK is not generated.	R/W	0x00
SRX	MODE (I2S	RX MODE REGISTER, 0x253D)		
7	CSHR	This field is meaningful when I2SRX block acts in a Slave mode. When this field is set to '1', the I2S RX block shares the clock of the I2S TX block. In other words, the MCLK of the I2S TX block is input to the MCLK of the I2S RX block, the BCLK of the I2S TX block is input to the BCLK of the I2S RX block, and the LRCK of the I2S TX block is input to the LRCK of the I2S RX block.	R/W	0
6	MPOL	Determines the polarity of MCLK. When this field is '0', MCLK signal retains '1'. When this field is '1', MCLK signal retains '0'.	R/W	1
5	BPOL	Indicates the relationship between BCLK and LRCK. When this field is set to '0', LRCK value is changed at the falling edge of BCLK. When this field is set to '1', LRCK value is changed at the rising edge of BCLK.	R/W	1
4	B16	Determines bit width to transfer data received from external ADC via I2S interface to voice block. When this field is set to '1', data is transferred by 16-bit data format to voice block. When this field is set to '0', data is transferred by 8-bit data format to voice block.	R/W	1
3	PUSH	When this field is set to '1', data received from external ADC via I2S interface is transferred to voice block. When this field is set to '0', data received from external ADC via I2S interface is not transferred to voice block.	R/W	1
2:1	MODE	 Sets the mode of transferred data. 0: BLK Mode. Transfer a '0'. 1: MRT Mode. Only the data in Right channel is transferred.('0' is transferred in Left channel) 2: MLT Mode. Only the data in Left channel is transferred.('0' is transferred in Right channel) 3: STR Mode. All data in Left or Right channel are transferred. 	R/W	3
0	CLKENA	Clock Enable. When this field is set to '1', I2S RX is enabled.	R/W	0

1.7.8.2 VOICE CODEC

ZIC2410 includes three voice codec algorithms.

- µ-law
- a-law
- ADPCM

The μ -law algorithm is a companding algorithm primarily used in the digital telecommunication systems of North America and Japan. As with other companding algorithms, its purpose is to reduce the dynamic range of an audio signal. In the analog domain this can increase the signal-to-noise ratio (SNR) achieved during transmission and in the digital domain, it can reduce the

quantization error (hence increasing signal to quantization noise ratio). These SNR improvements can be traded for reduced bandwidth and equivalent SNR instead.

The a-law algorithm is a standard companding algorithm used in European digital communications systems to optimize/modify the dynamic range of an analog signal for digitizing.

The a-law algorithm provides a slightly larger dynamic range than the μ -law at the cost of worse proportional distortion for small signals.

Adaptive DPCM (ADPCM) is a variant of DPCM (Differential (or Delta) pulse-code modulation) that varies the size of the quantization step, to allow further reduction of the required bandwidth for a given signal-to-noise ratio. DPCM encodes the PCM values as differences between the current and the previous value. For audio this type of encoding reduces the number of bits required per sample by about 25% compared to PCM.

In order to control voice codec, there are several registers. This section describes the major commonly used registers. For more detailed information, please contact CEL.

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
ENC	CTL (VOICE	E ENCODER CONTROL REGISTER, 0x2745)		
7:6		Reserved	R/W	0
5	B16	When the bit width of data received to voice encoder is 16-bit, set this field to '1'. When it is 8-bit, set this field to '0'.	R/W	0
4	MUT	Mute Enable . When this field is set to '1', the Mute function is enabled. ENCMUT1 and ENCMUT0 values are input to the voice encoder block.	R/W	0
3:2	SEL	Encoder Select. Selects voice encoder algorithm. 0: No Encoding 1: μ-law 2: a-law 3: ADPCM 	R/W	0
1	INI	Encoder Initialize. When this field is set to '1', the pointer in voice encoder is initialized. This field cannot be read.	W	0
0	ENA	Encoder Enable. When this field is set to '1', voice encoder acts.	R/W	0
DEC	CTL (VOICE	DECODER CONTROL REGISTER, 0x274D)		
7	LPB	Loopback Test . When this field is set to '1', Loopback test mode is selected. In this case, the output of voice encoder is connected to the input of voice decoder.	R/W	0
6		Reserved	R/W	0
5	B16	The bit width of data which is output from voice decoder is 16-bit, set this field to '1'. When this field is set to '0', the bit width of data which is output from voice decoder is 8-bit.	R/W	0
4	MUT	Mute Enable . When this field is set to '1', Mute function is enabled. DECMUT1 and DECMUT0 values are transferred from voice decoder.	R/W	0
3:2	SEL	Decoder Select. Select voice decoder. 0: No Decoding 1: μ-law 2: a-law 3: ADPCM	R/W	0
1	INI	When this field is set to '1', the pointer in voice decoder is initialized. This field cannot be read.	W	0
0	ENA	Decoder Enable.	R/W	0

Table 27 – VODEC Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
		When this field is set to '1', voice decoder is enabled.		

1.7.8.3 VOICE FIFO / DMA

Data received via I2S interface is compressed by the voice codec; compressed data is stored in Voice TXFIFO (0x2600~0x267F). The size of Voice TXFIFO is 128 byte.

Data in the MAC RXFIFO is processed by DMA operation, and stored in Voice RX FIFO (0x2680~0x26FF). Data in Voice RXFIFO is decompressed by the voice codec and transmitted to an external component via I2S. The size of Voice RXFIFO is 128 byte.

1.7.8.4 VOICE TX FIFO / DMA CONTROL Table 28 – Voice TX Registers

_				Reset
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	Value
VTFD	DAT (VOICE	TX FIFO DATA REGISTER, 0x2750)		
7:0	VTFDAT	When writing data to this register, data is stored in Voice TX FIFO in order. When reading this register, data stored in Voice TX FIFO can be read.	R/W	0x00
VTFN	NUT (VOICE	TX FIFO MUTE DATA REGISTER, 0x2751)		
7:0	VTFMUT	When MUT field in VTFCTL register is set to '1', data in this register is transferred instead of data in Voice TX FIFO. When INI field in VTFCTL register is set to '1', data in Voice TX FIFO is initialized by data in VTFMUT.	R/W	0x00
VTFC	CTL (VOICE	TX FIFO CONTROL REGISTER, 0x2752)		
7:4		Reserved		0
3	VTDENA	Voice TX DMA Enable . When this field is set to '1', Voice TX DMA is enabled. This field value is cleared automatically.		0
2	MUT	When this field is set to '1', data in VTFMUT register is transferred instead of data in Voice TX FIFO. This field can be read.	R/W	0
1	CLR	When this field is set to '1', Write pointer and Read pointer of Voice TX FIFO are initialized. The status value of underflow and overflow is initialized.	W/O	0
0	INI	When this field is set to '1', all data in Voice TXFIFO is replaced by the value in VTFMUT register.	W/O	0
VTFF	RP (VOICE]	TX FIFO READ POINTER REGISTER, 0x2753)		
7:0	VTFRP	Indicates the address of Voice TXFIFO to be read next. Since the size of FIFO is 128 byte, LSB is used to test wrap-around.	R/W	0x00
VTFV	NP (VOICE	TX FIFO WRITE POINTER REGISTER, 0x2754)		
7:0	VTFWP	Indicates the address of Voice TXFIFO to be written next. Since the size of FIFO is 128 byte, LSB is used to test wrap-around.	R/W	0x00
	STS (VOICE	TX FIFO STATUS REGISTER, 0x275A)		
7:5		Reserved		0
4	ZERO	When INI field in VTFCTL register is set to '1', data in Voice TX FIFO is initialized by data in VTFMUT register. During this initialization is processed, this field is set to '1'. After initialization is finished, this field is set to '0'.	R/O	0
3	PSH	Set to '1' while pushing data into Voice TX FIFO.	R/O	0
2	POP	Set to '1' while popping data on Voice TX FIFO.	R/O	0
1:0		Reserved		0
		E TX DMA SIZE REGISTER (VOICE TX FIFO->MAC TX FIFO), 0x275		
7:0	VTDSIZE	Set the data size for DMA operation.	R/W	0x00

Bit	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
VRF	DAT (VOICE	RX FIFO DATA REGISTER, 0x2760)		10100
7:0	VRFDAT	When writing data to this register, data is stored in Voice RX FIFO in order. When reading this register, data stored in Voice RX FIFO can be read.	R/W	0x00
VRF	MUT (VOICE	RX FIFO MUTE DATA REGISTER, 0x2761)		
7:0	VRFMUT	When MUT field in VRFCTL register is set to '1', data in this register is transferred instead of data in Voice RX FIFO. When INI field in VRFCTL register is set to '1', data in Voice RX FIFO is initialized by data in VTFMUT.	R/W	0x00
VRF	CTL (VOICE	RX FIFO CONTROL REGISTER, 0x2762)		
7:4		Reserved		0
3	VRDENA	Voice RX DMA Enable: When this field is set to '1', the Voice RX DMA is enabled. This field value is cleared automatically.	W/O	0
2	мит	When this field is set to '1', data in the VRFMUT register is transferred instead of data in the Voice RX FIFO.	R/W	0
1	CLR	When this field is set to '1', the Write pointer and Read pointer of the Voice RX FIFO are initialized. The status value of the underflow and overflow are initialized.	W/O	0
0	INI	When this field is set to '1', all data in the Voice RXFIFO is replaced by the values in the VRFMUT register.	W/O	0
VRF	RP (VOICE	RX FIFO READ POINTER REGISTER, 0x2763)		
7:0	VRFRP	This register indicates the address of the Voice RXFIFO to be read next. Since the size of the FIFO is 128 byte, the LSB is used to test wrap-around.	R/W	0x00
VRF	WP (VOICE	RX FIFO WRITE POINTER REGISTER, 0x2764)		
7:0	VRFWP	This register indicates the address of the Voice RXFIFO to be written next. Since the size of the FIFO is 128 byte, the LSB is used to test wrap-around	R/W	0x00
	STS (VOICE	RX FIFO STATUS REGISTER, 0x276A)		
7:5		Reserved		0
4	ZERO	When INI field in the VRFCTL register is set to '1', data in the Voice TX FIFO is initialized by the data in the VRFMUT register. During the processiong of this initialization, this field is set to '1', and set to '0' when initialization is finished.	R/O	0
3	PSH	Set to '1' while pushing data into the Voice RX FIFO.	R/O	0
2	POP	Set to '1' while popping data on the Voice RX FIFO.	R/O	0
1:0		Reserved		0
		E RX DMA SIZE REGISTER (MAC RX FIFO->VOICE RX FIFO), 0x27		
7:0	VRDSIZE	Sets the data size for DMA.	R/W	0x00

1.7.8.5 VOICE RX FIFO / DMA CONTROL Table 29– Voice RX Registers

Table 30– Voice Interrupt Registers					
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value	
VTFI	NTENA (VO	ICE TX FIFO INTERRUPT ENABLE REGISTER, 0x2770)			
7	EMPTY	Voice TX FIFO Empty Interrupt Enable	R/W	0	
6	FULL	Voice TX FIFO Full Interrupt Enable	R/W	0	
5:0		Should be set as '0'.		0	
VRF	INTENA (VO	ICE RX FIFO INTERRUPT ENABLE REGISTER, 0x2771)			
7	EMPTY	Voice RX FIFO Empty Interrupt Enable	R/W	0	
6	FULL	Voice RX FIFO Full Interrupt Enable	R/W	0	
5:0		Should be set as '0'.		0	
VDM	INTENA (VC	DICE DMA CONTROLLER INTERRUPT ENABLE REGISTER, 0x277	2)		
7:5		Should be set as '0'.		0	
4	VTDDONE	Voice TX DMA Done Interrupt Enable	R/W	0	
3:1		Should be set as '0'.		0	
0	VRDDONE	Voice RX DMA Done Interrupt Enable	R/W	0	
VTFI	NTSRC (VO	ICE TX FIFO INTERRUPT SOURCE REGISTER, 0x2773)			
		Voice TX FIFO Empty Interrupt Source. When EMPTY field in			
7	EMPTY	VTFINTENA register is set to '1' and EMPTY field in VTFINTVAL	R/W	0	
		register is set to '1', this field is set to '1'. Cleared by software.			
6	FULL	Voice TX FIFO Full Interrupt Source	R/W	0	
5:0		Reserved		0	
VRF	INTSRC (VO	ICE RX FIFO INTERRUPT SOURCE REGISTER, 0x2774)			
7	EMPTY	Voice RX FIFO Empty Interrupt Source	R/W	0	
6	FULL	Voice RX FIFO Full Interrupt Source	R/W	0	
5:0		Reserved		0	
VDM	INTSRC (VC	DICE DMA CONTROLLER INTERRUPT SOURCE REGISTER, 0x277	'5)		
7:5		Should be set as '0'.		0	
4	VTDDONE	Voice TX DMA Done Interrupt Source	R/W	0	
3:1		Should be set as '0'.		0	
0	VRDDONE	Voice RX DMA Done Interrupt Source	R/W	0	
SRC	CTL (VOICE	SOURCE CONTROL REGISTER, 0x277A)			
7		Should be set as '0'.		0	
		Selects the specific interface to communicate between voice codec			
		and external data.			
6:5	мих	0: I2S	R/W	0	
0.5	WOX	1: SPI	17/00	0	
		2: UARTO			
		3: UART1			
4:0		Should be set as '0'.		0	
	CTL (VOICE	SOURCE PATH CONTROL REGISTER, 0x277E)			
7		Reserved		0	
		This register is used to send mute data from voice decoder to the			
6	DECMUT	external interface. When this field is set to '1', VSPMUT1 and	R/W	0	
		VSPMUT0 value are transferred to the external interface.			
_		When using 8-bit external interface, 16-bit data transferred from		_	
5	DECINI	voice decoder needs to be changed to 8-bit. When this field is set	R/W	0	
		to '1', corresponding control circuit is initialized.			
		When using 8-bit external interface such as UART and so on, 16-bit			
4	DECB16	data transferred from voice decoder needs to be changed to 8-bit.	R/W	0	
		When this field is set to '1', high 8-bit data of 16-bit data is		-	
		transferred first and then low 8-bit data is transferred.			
3		Reserved		0	

1.7.8.6 VOICE INTERFACE CONTROL Table 30– Voice Interrupt Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
2	ENCMUT	This register is used to send mute data from external interface to voice encoder. When this field is set to '1', VSPMUT1and VSPMUT0 values are transferred to voice encoder.	R/W	0
1	ENCINI	When using 8-bit external interface, 16-bit data transferred to voice encoder needs to be changed to 16-bit. When this field is set to '1', corresponding control circuit is initialized.	R/W	0
0	ENCB16	When using 8-bit external interface, 8-bit input data needs to be changed to 16-bit, which is compatible with the voice encoder. When this field is set to '1', it is changed to 16-bit.(8-bit received first: high bit; 8-bit received later: low bit)	R/W	0

1.7.9 RANDOM NUMBER GENERATOR (RNG) Random Number Generator generates 32-bit random number with seed. Whenever ENA bit in RNGC register is set to '1', generated number is stored in RNGD3 ~ RNGD0 register.

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
RNG	D3 (RNG D	ATA3 REGISTER, 0x2550)		
7:0	RNGD3	This register stores MSB (RNG [31:24]) of 32-bit random number.	R/O	0xB7
RNG	D2 (RNG D	ATA2 REGISTER, 0x2551)		
7:0	RNGD2	This register stores 2 nd MSB (RNG [23:16]) of 32-bit random number.	R/O	0x91
RNG	D1 (RNG D	ATA1 REGISTER, 0x2552)		
7:0	RNGD1	This register stores 3 rd MSB (RNG [15:8]) of 32-bit random number.	R/O	0x91
RNG	D0 (RNG D	ATA0 REGISTER, 0x2553)		
7:0	RNGD0	This register stores LSB (RNG [7:0]) of 32-bit random number.	R/O	0xC9
SEE	D3 (RNG SE	ED3 REGISTER, 0x2554)		
7:0	SEED3	This register stores MSB (SEED [31:24]) of required seed to generate random number.	W/O	-
SEE	D2 (RNG SE	ED2 REGISTER, 0x2555)		
7:0	SEED2	This register stores 2th MSB (SEED [23:16]) of required seed to generate random number.	W/O	0x00
SEE	D1 (RNG SE	ED1 REGISTER, 0x2556)		
7:0	SEED1	This register stores 3 rd MSB (SEED [15:8]) of required seed to generate random number.	W/O	0x00
SEE	D0 (RNG SE	ED0 REGISTER, 0x2557)		
7:0	SEED0	This register stores LSB (SEED [7:0]) of required seed to generate random number.	W/O	0x00
RNG	C (RNG DA	TA3 REGISTER, 0x2558)		
7:1	•	Reserved		0
0	ENA	RNG Enable. When this field is set to '1', RNG acts. This field value is changed to '0' automatically.	R/W	0

Table 31– Random Number Generator Registers

1.7.10 QUAD DECODER

The Quad Decoder block notifies the MCU of the counter value based on the direction and movement of a pointing device, such as a mouse, after receiving a Quadrature signal from the pointing device.

Quadrature signal is changed with 90° phase difference (1/4 period) between two signals as shown in Figure 26 In addition, counter value means 1/4 of one period. Since this block can receive three Quadrature signals, it can support not only the two-dimensional movement such as mouse but also the pointing device which is in three dimensions.

Figure 26, (a) shows that the XA signal is changing before the XB signal. In this case, the pointing device is moving in the down direction. Drawing (b) shows that the XB signal is changing before the XA signal. In this case, the pointing device is moving in the up direction. The rules for YA, YB, ZA and ZB are the same as described above for XA and XB.

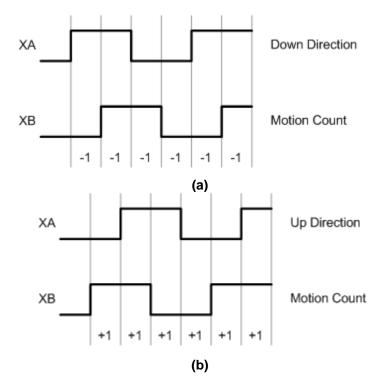


Figure 26 – Quadrature Signal Timing between XA and XB.

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value			
UDX	(UpDown X	Register, 0x2560)					
7:1		Reserved		0			
		Notifies the MCU of movement in the X-axis.					
0	UPDN_X	1: Up	R/O	0			
		0: Down					
	CNTX (Count X Register, 0x2561)						
7:0	CNTX	Notifies the MCU of the count value for movement in the X-axis.	R/O	0x00			
	(UpDown Y	Register, 0x2562)					
7:1		Reserved					
		Notifies the MCU of movement in the Y-axis.					
0	UPDN_Y	1: Up	R/O	0			
		0: Down					
		Register, 0x2563)					
7:0	CNTY	Notifies the MCU of the count value for movement in the Y-axis.	R/O	0x00			
	(UpDown Z	Register, 0x2564)					
7:1		Reserved		0x00			
		Notifies the MCU of movement in the Z-axis .					
0	UPDN_Z	1: Up	R/O	0			
		0: Down					
		Register, 0x2565)					
7:0	CNTZ	Notifies the MCU of the count value for movement in the Z-axis.	R/O	0x00			
	L (Quad Co	ntrol Register, 0x2566)					
7:3		Reserved		Х			
2	ENA	Quad Enable. When this field is set to '1', the Quad Decoder is	R/W				
2		enabled.	1.7.00				
1	INI	Quad Initialize. When this field is set to '1', the internal register	R/W				
1	1111	values of the Quad Decoder are initialized.					
		Mode Select . When this field is set to '1', counter value is					
0	MODE	increased to the point of changing movement direction. When this	R/W	0			
Ŭ	MODE	field is set to '0', current counter value is decreased to the point of		Ū			
		changing movement direction.					

1.7.11 INTERNAL VOLTAGE REGULATOR

There are separate Analog and Digital regulators in the ZIC2410. The Analog regulator supplies power to the RF and analog blocks, while the Digital regulator supplies power to all the digital blocks. MSV, an external pin, sets the output voltage: when MSV is set to '0', 1.5V is generated and when MSV is set to '1', 1.8V is generated. AVREG3V and DVREG3V, external pins, should be connected to the 3V supply in order to operate the internal regulators.

1.7.12 4-CHANNEL 8-BIT SENSOR ADC

This block monitors external sensor output and converts the external analog signal into the corresponding digital value. The output of the sensor ADC is 8-bit wide and sampling frequency is fixed to 8KHz. For the Sensor ADC control register, refer to the SADCCON (0x22AB), SADCVALH (0x22AC), SADCVALL (0x22AD), SADCBIASH (0x22AE), and SADCBIASL (0x22AF).

<u>Bit</u>	<u>Name</u>			ensor ADC Registers escriptions	<u>R/W</u>	Reset Value
		OR ADC CON		ER, 0x22AB)		
This 7	SADCEN	ols sensor ADC Sensor ADC E			RW	0
	1			OCVALH and SADCVALL register are		
6	SADCDONE	updated, SA	DCDONE is se	t to '1'.	RO	0
				e voltage for the sensor ADC.	_	
	-	SADCREF	Reference	Description TOP = 1.2V		
		00	Internal	BOT = 0.3V		
		00	internal	VMID = 0.75V		
E · 1	SADOREE	01		Reserved		0
5:4	SADCREF			TOP = ACH2(0V~1.5V)	RW	0
		10	External	BOT = ACH3(ACH3 < ACH2) VMID = (ACH2+ACH3)/2		
				TOP = VDD(1.5V)		
		11	Internal	BOT = GND		
				VMID = (VDD+GND)/2		
			Select the inpu	it channel of sensor ADC		
		<u>SSADCCH</u>	Input	Description		
		0000	ACH0	Single input		
		0001	ACH1	Single input		
		0010	ACH2	Single input		
		0011	ACH3	Single input		
3:0	SADCCH	0100	ACH0, ACH ²	1 Differential input	RW	0
		0101	ACH2, ACH3	3 Differential input		
		0110	Temperature Sensor	e Embedded temperature sensor		
	-	0444	Battery	Embedded battery		
		0111	Monitor	monitor		
		1000	GND	Just for calibration		
		1001	VDD	Just for calibration		
		others		Reserved		
This integ	register stores	s the output val ored in the SAI	ue of sensor A	HIGH DATA REGISTER, 0x22AC) DC (SADCVAL). SADCVAL, which is a ADCVALL register. SADCVALH stores		

Document No. 0005-05-07-00-000

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value		
7:0	SADCVALH	SADCVAL [14:7]	RO	0x00		
	SADCVALL (SENSOR ADC OUTPUT VALUE LOW DATA REGISTER, 0x22AD)					
		s the output value of sensor ADC. SADCVAL, which is a 15bit unsigne				
		by SADCVALH and SADCVALL register. Only high 8-bit is valid. This	register			
repre	sents low 7-b	it data (SADCVAL[6:0]) of 15-bit data.	-			
7:1	SADCVALL	SADCVAL[6:0]	RO	0x00		
0		Reserved		0		
SAD	CBIASH (SEM	NSOR ADC DC BIAS HIGH DATA REGISTER, 0x22AE)				
This	register is use	d to compensate the DC bias of the sensor ADC output. SADCBIAS,	which is	a 15-bit		
unsig	ned integer v	alue, is stored in the SADCBIASH and SADCBIASL registers. SADCE	BIASH re	egister		
store	s the most sig	nificant 8bit of SADCBIAS (SADCBIAS [14:7]).				
7:0	SADCBIASH	SADCBIAS [14:7]	RW	0x00		
SAD	CBIASL (SEN	ISOR ADC DC BIAS LOW DATA REGISTER, 0x22AF)				
This	register is use	d to compensate the DC bias of the sensor ADC output. SADCBIASL	register	stores		
the le	the least significant 7bit of SADCBIAS (SADCBIAS[6:0]).					
7:1	SADCBIASL	SADCBIAS[6:0]	RW	0x00		
0		Reserved		0		

1.7.13 ON-CHIP POWER-ON RESET

This block generates the reset signal to initialize the digital block during power-up. When Onchip regulator output or external battery is used as the power of digital core block and power is provided, it outputs the internal reset signal.

1.7.14 TEMPERATURE SENSOR

The on-chip temperature sensor can be used to detect changes in the ambient temperature.

To control the functionality of this block, refer to the section 1.7.12. Whenever temperature is increased by 1°C, the output of this block is decreased by -16.5mV/°C. Figure 27 below graphs the typical output value vs. the temperature sensed. Improved accuracy can be achieved through calibration.

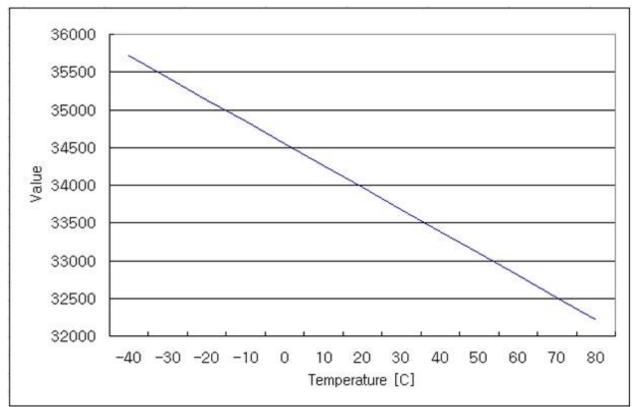


Figure 27 – Typical Temperature Sensor Characteristics

1.7.15 BATTERY MONITORING

This block can be used to monitor the voltage level of the 3V supply. To control the functionality of this block, refer to the section 1.7.12. Figure 28 below graphs the output value of the monitor vs. the input voltage.

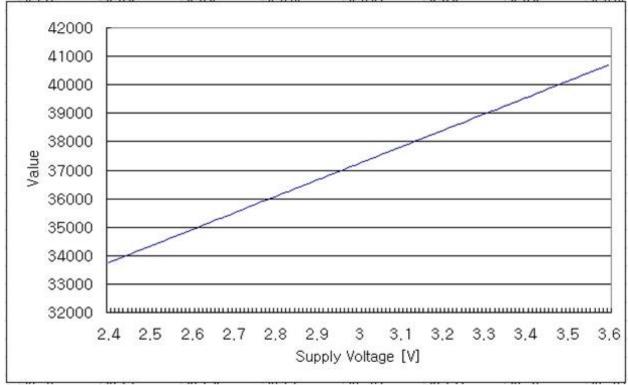


Figure 28 – Battery Monitor Characteristics

1.8 MEDIUM ACCESS CONTROL LAYER (MAC)

The Medium Access Control (MAC) block processes a command received from the high layer (MCU), transmits the data received from high layer to baseband modem, or encrypts it and then transmits to baseband modem. In addition, it indicates the status of PHY and transmits the data received from baseband modem to high layer, or transmits the decrypted data to high layer.

The function of the MAC block is to transfer the data from the higher layer to the PHY block, to send the received data from the PHY to the higher layer with or without encryption or decryption. Figure 29 shows the MAC block diagram.

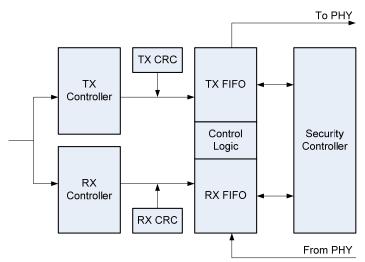


Figure 29 – MAC block diagram

IEEE802.15.4 Frame Format

IEEE802.15.4 transmits the data in packets with each packet having a specified frame format. Figure 30 shows a schematic view of the IEEE 802.15.4 frame format.

The PHY frame to be transmitted consists of preamble, start of frame delimiter (SOF), frame length and PHY Service Data Unit (PSDU) fields. The Preamble is used to adjust the gain of receiving signal and obtain synchronization at the received stage. The SOF is used to indicate the starting position of the frame and obtain exact frame timing synchronization. Frame length is 1 byte and is used to indicate the PSDU length which can vary up to a maximum of 127 bytes.

The PSDU contains the MPDU (MAC protocol data unit) as a payload.

The MPDU means the frame format generated in the MAC layer and it is consisted of frame control field, data sequence number, address information, frame payload and Frame Check Sequence (FCS) field.

The area, including a frame control field, a data sequence number field, and an address information field, is defined as the MAC header. The FCS field is defined as the MAC footer. The data which is transmitted from the higher layer is located in the MAC payload. For detailed information on frame format, refer to the IEEE802.15.4 standard.

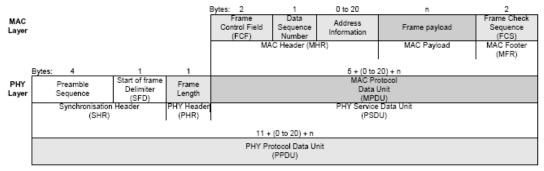


Figure 30 – IEEE 802.15.4 Frame Format

Synchronization Header (SHR)

In IEEE802.15.4 standard, a frame format includes the synchronization header (SHR) for the purpose of adjusting the gain of the receiving signal, detecting packet and obtaining synchronization.

SHR is consisted of a preamble and Start of Frame Delimiter (SFD). The Preamble is formatted by repeating the same 8 symbols ('0') in 4 bytes. 1 byte SFD is used to detect the frame start and obtain timing synchronization and it is defined as 0XA7 in IEEE802.15.4 standard.

PHY Header (PHR)

The Length field is used to define the size of the MPDU or the PSDU.

The value clarified in length field doesn't include the length field itself. However, the length of Frame Check Sequence (FCS) is included. The PHY block takes data up to the size defined by the length field in TX FIFO, and transmits that data.

MAC Header (MHR)

This field is consisted of frame control field (FCF), data sequence number (DSN) and address information. FCF includes the frame information such as frame type or addressing mode and so on. DSN means the sequence of packet. In other words, DSN is incremented after transmitting. Therefore, next packet has a different DSN. For detailed information, refer to the IEEE802.15.4 standard.

MAC Footer (MFR)

This field is called as frame check sequence (FCS) and it follows the last data of MAC payload byte. FCS polynomial is as follows.

x16 + x12 + x5 + 1

1.8.1 RECEIVED MODE

When receiving the data from the PHY block, the MAC block stores the data in the RX FIFO.

The data in the RX FIFO can be decrypted by the PCMD1 (0X2201) register or it can be read by the MRFCPOP (0x2080) register. Data decryption is implemented by the AES-128 algorithm, which supports CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4. The RX Controller controls the process described above. When decrypting the data, the received frame data length is modified and the modified value is stored in the LSB of each frame by the hardware again.

The size of the RX FIFO is 256 bytes and it is implemented by a Circular FIFO with a Write Pointer and a Read Pointer. The RX FIFO can store several frame data received from the PHY block. Since the LSB of each frame data represents the frame data length, it can be accessed by the Write pointer and the Read Pointer.

When the data is received from the PHY block, the CRC information is checked to verify data integrity.

When the AUTO_CRC control bit of the MACCTRL (0x2191) register is set to '1', CRC information is verified by the RX CRC block automatically. To check the result, refer to the CRC_OK field of the MACSTS (0x2180) register. When the value of the CRC_OK field is set to '1', there is no problem with CRC Information. When the AUTO_CRC control bit of the MACCTRL (0x2191) register is not set to '1', the CRC information should be verified by the software.

When a packet reception is completed in the PHY block, a PHY interrupt is sent to the MCU.

In addition, when decryption operation is completed, an AES interrupt is sent to the MCU.

1.8.2 TRANSMIT MODE

To transmit the data from a higher layer (MCU) to the PHY block, the device stores the data in the TX FIFO of the MAC block. When the MCU writes data in the MTFCPUSH (0x2000) register, data is stored in TX FIFO of MAC. The size of the TX FIFO is 256 byte and it is implemented by a Circular FIFO with a Write Pointer and a Read Pointer. Since each data in the TX FIFO is mapped to the memory area in the MCU, it can be written or read directly by the MCU.

The data stored in the TX FIFO can be encrypted by the PCMD1 (0x2201) register or is transmitted to the PHY block by the PCMD0 (0x2200) register. The TX Controller controls the process described above. Data encryption is implemented by the AES-128 algorithm, which supports CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4. The data length which is to be transmitted is stored in the LSB of each frame by the software when the frame data is stored in the TX FIFO by the MCU. When the data in the TX FIFO is encrypted, the data length is modified and then stored by the hardware again.

When transmitting the data in the TX FIFO, the CRC operation is processed to verify data integrity. When the AUTO_CRC control bit of the MACCTRL (0x2191) register is set to '1', CRC information is generated by TX CRC block automatically. Otherwise, the CRC operation should be operated by software.

When data encryption is completed, an AES interrupt is sent to the MCU. When the data transmission to the PHY block is completed, a PHY interrupt is sent to the MCU.

1.8.3 DATA ENCRYPTION AND DECRYPTION

Data encryption or decryption is done by the security controller block. Security Controller consists of the block for processing encryption /decryption operation and the block for controlling it.

In order to implement CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4, a 128-bit key value and a nonce are needed. ZIC2410 can have two 128-bit key values, KEY0 and KEY1. For encryption, the desired nonce value should be stored in the TX Nonce and KEY0 or KEY1 should be selected for use. For decryption, the desired nonce value should be stored in the RX Nonce and KEY0 or KEY1 should be selected for use. For more detailed information, refer to the IEEE802.15.4 standard document.

The SAES (0x218E) register is used only for AES operation. In this case, the required data for this operation should be stored in the SABUF register and KEY0 or KEY1 should be selected for use.

Table 34 describes the registers for controlling the MAC TX FIFO.

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value
MTF	CPUSH (TX F	FIFO PUSH DATA REGISTER, 0x2000)		<u>ruiuc</u>
7:0	MTFCPU SH	When data is written to this register, it is stored in TX FIFO. The size of TX FIFO is 256 byte and it can be accessed by MCU or VTXDMA.	W/O	0x00
MTF	CWP (TX FIF	O WRITE POINTER REGISTER, 0x2001)		
7:0	MTFCWP	TX FIFO Write Pointer: Total is 9-bit with MTFCWP8 in MTFCSTS register. It is increased by '1' whenever writing data to TX FIFO.	R/W	0x00
MTF	CRP (TX FIF	O READ POINTER REGISTER, 0x2002)		
7:0	MTFCRP	TX FIFO Read Pointer : Total is 9-bit with MTFCRP8 in MTFCSTS register. It is increased by '1' whenever reading data from TX FIFO.	R/W	0x00
	CCTL (TX FII	FO CONTROL REGISTER, 0x2003)		
7:3		Reserved		0x00
2	ASA	engine to the information of the packet which is to be transmitted.		1
1	ENA	When this field is set to '1', MTXFIFO is enabled.	RW	1
0	CLR	When this field is set to '1', MTFCWP, MTFCRP, MTFCSTS, MTFCSIZE, MTFCRM registers are initialized.	RW	0
MTF	CSTS (TX FII	FO STATUS REGISTER, 0x2004)		
7	MTFCWP 8	Total is 9-bit address with MTFCWP register. This field is the MSB and is used to detect wrap around of a circular FIFO.	R/W	0
6	MTFCRP8	Total is 9-bit address with MTFCRP register. This field is the MSB and is used to detect wrap around of a circular FIFO.	R/W	0
5:2		Reserved		0
1	FULL	Set to '1' when data size in the TX FIFO is 256 byte.	R/O	0
0	EMPTY	Set to '1' when data size in the TX FIFO is '0'.	R/O	0
MTF	CSIZE (TX FI	FO Data Size Register, 0x2005)		
7:0	MTFCSIZE	Represents the number of valid data bytes in theTX FIFO. This field value is valid when FIFO status is normal and is calculated by the difference between MTFCWP (0x2001) and MTFCRP (0x2002).	R/O	0x00
MTF	CSBASE (TX	FIFO AES ENCRYPTION DATA START POINTER REGISTER, 0x20	007)	
7:0	MTFCSBA SE	Represents the starting address of data to be encrypted by the AES engine in the TX FIFO. This field is set by the MCU or is set automatically to the starting address of a packet to be transmitted when the ASA field in the MTFCCTL register is set to '1'.	R/W	0x00
MTF	CSLEN (TX F	IFO AES ENCRYPTION DATA LENGTH REGISTER, 0x2008)		
7:0	MTFCSLE N	Represents the length of the data to be encrypted by the AES engine in the TX FIFO. This field is set by the MCU or is set automatically to the length of a packet to be transmitted when the ASA field in the MTFCCTL register is set to '1'.	R/W	0x00

Table 34 – MAC TX FIFO Registers

Table 35 describes	the reaisters	for controlling	MAC RX FIFO.
		· · · · J	

<u>Bit</u>	Name	Descriptions	<u>R/W</u>	<u>Reset</u> Value
MRF	CPOP (RX F	IFO POP Data Register, 0x2080)		<u>Vuluo</u>
7:0	MRFCPOP	This register can read data in RX FIFO. The size of RX FIFO is 256 byte and it can be accessed by the MCU or by VRXDMA.	W/O	0x00
MRF	CWP (RX FIF	FO WRITER POINTER REGISTER, 0x2081)		
	(RX FIFO Write Pointer: Total is 9-bit with MRFCWP8 in the		
7:0	MRFCWP	R/W	0x00	
MRF	CRP (RX FIF	to the RX FIFO. TO READ POINTER REGISTER, 0x2082)		
	(RX FIFO Read Pointer: Total is 9-bit with MRFCRP8 in the		
7:0	MRFCRP	MRFCSTS register. It is increased by '1' whenever data is read from the RX FIFO.	R/W	0x00
MRF	CCTL (RX FI	FO CONTROL REGISTER, 0x2083)		
7:3		Reserved		0x00
2	ASA	When this field is set to '1', it automatically sets the starting address of a packet and the length of a packet decrypted by the AES engine to the information of the received packet.	RW	1
1	ENA	When this field is set to '1', MRXFIFO is enabled.	RW	1
0	CLR	When this field is set to '1', MRFCWP, MRFCRP, MRFCSTS, MRFCSIZE, MRFCRM registers are initialized.	RW	0
MRF	CSTS (RX FI	FO STATUS REGISTER, 0x2084)		
7	MRFCWP8	Total is 9-bit address with MRFCWP register. This field is the MSB, and is used to detect wrap around of a circular FIFO.	R/W	0
6	MRFCRP8	Total is 9-bit address with MRFCRP register. This field is the MSB, and is used to detect wrap around of a circular FIFO.	R/W	0
5:2		Reserved		0
1	FULL	Set to '1' when data size in the RX FIFO is 256 byte.	R/O	0
0	EMPTY	Set to '1' when data size in the RX FIFO is '0'.	R/O	0
MRF	CSIZE (RX F	IFO Data Size Register, 0x2085)		
7:0	MRFCSIZE	Represents the number of valid data bytes in the RX FIFO. This field value is valid when the FIFO status is normal and is calculated by the difference between MRFCWP and MRFCRP.	R/O	0x00
MRF	CSBASE (R)	(FIFO AES DECRYPTION DATA START POINTER REGISTER, 0x2	087)	
7:0	MRFCSBA SE	Represents the starting address of the data to be decrypted by the AES engine in the RX FIFO. This field is set by the MCU or is set automatically to the starting address of the received packet when the ASA field in the MRFCCTL register is set to '1'.	R/W	0x00
MRF	CSLEN (RX	FIFO AES DECRYPTION DATA LENGTH REGISTER, 0x2088)		
7:0	MRFCSLE	Represents the length of the data to be decrypted by the AES engine in the RX FIFO. This field is set by the MCU or is set automatically to the length of the received packet when the ASA field in the MRFCCTL register is set to '1'.	R/W	0x00

Table 36 describes the registers for data transmission /reception and security.

Table 36 – Data Transmission/Reception and Security Registers									
<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value					
KEY	0 (ENCRYP	TION KEY0 REGISTERS, 0x2100~0x210F)							
		This register is the 16-byte key used in the AES operation.							
7:0	KEY0	0x210F: the MSB of the KEY value	R/W	0x00					
		0x2100: the LSB of the KEY value							
RXN	ONCE (RX N	ONCE REGISTERS, 0x2110~0x211C)							
		Used for decryption operation when receiving a packet. It consists							
		of 13-bytes: the Source Address (8-byte), the Frame Counter (4-							
		byte) and the Key Sequence Counter (1-byte).							
7:0	RXNONCE	0x211C: the MSB of theSource Address	R/W	0x00					
1.0	RANGINGE	0x2115: theLSB of the Source Address	1.7.4.4	0,00					
		0x2114: the MSB of the Frame Counter							
		0x2111: the LSB of the Frame Counter							
		0x2110: the Key Sequence Counter							
SAE	SBUF (STAN	DALONE AES OPERATION BUFFER REGISTERS, 0x2120~0x212F)						
		Used for storing data only when processing an AES-128 operation							
		by the AES engine. After the AES-128 operation, the result is							
7:0	SAESBUF			0x00					
		0x2120: LSB of Plaintext and Ciphertext							
KEY	1 (ENCRYPT	ION KEY1 REGISTERS, 0x2130~0x213F)							
		This register is a 16-byte KEY for the AES operation.							
7:0	KEY1	0x213F: the MSB of the KEY value	R/W	0x00					
		0x2130: the LSB of the KEY value							
TXN	ONCE (TX NO	DNCE REGISTERS, 0x2140~0x214C)							
		Used for the encryption operation when transmitting a packet. It							
		consists of 13-bytes: the Source Address (8-byte), the Frame							
	TXNONCE	Counter (4-byte) and the Key Sequence Counter (1-byte).							
7:0		0x214C: the MSB of the Source Address	R/W	0x00					
7.0		0x2145: the LSB of the Source Address	1.7.4.4	0000					
		0x2144: the MSB of theFrame Counter							
		0x2141: the LSB of the Frame Counter							
		0x2140: the Key Sequence Counter							
		e addresses are used for network compatible with IEEE802.15.4. EXT							
		r the chip or module allocated by IEEE 802.15.4. PANID is the networ							
		rk to be identified when a network is configured. SHORTADDR is the		dress of					
		02.15.4 network. It allows each device to be identified in the same net	work.						
		be changed whenever connecting to the network.							
EXT	ADDR (EXTE	NDED ADDRESS REGISTERS, 0x2150~0x2157)							
		Stores the 64-bit IEEE address.							
7:0	EXTADDR	0x2157: the MSB of the IEEE address	R/W	0x00					
		0x2150: the LSB of the IEEE address							
PAN	ID (PANID R	EGISTERS, 0x2158~0x2159)	1						
		Stores the 16-bit PAN ID.							
7:0	PANID	0x2159 : the PAN ID [15:8]	R/W	0x00					
		0x2158 : the PAN ID [7:0]							
SHO	RTADDR (SH	IORTADDRESS REGISTERS, 0x215A~0x215B)							
	SHORTAD	Stores the Short address (Network address).							
7:0	DR	0x215B : Short address [15:8]	R/W	0x00					
		0x215A : Short address [7:0]							

MAC	STS (MAC S	TATUS REGISTER, 0x2180)		
		When this field is set to '1', there is data in the AES encryption or		
7	ENC/DEC	decryption operation. Can only be read.	R/0	0
6	TX_BUSY	When this field is set to '1', data in the MAC FIFO is transmitted to a modem. Can only be read.	R/O	0
5	RX_BUSY	When this field is set to '1', data is transmitted from a modem to the MAC FIFO. Can only be read.	R/O	0
	SAES_DO	When Standalone AES operation is finished, this field is set to '1'.		
4	NE	It is cleared by the MCU.	R/W	0
3	DECODE_ OK	Checks the validity of data according to the type of data received or the address mode. If there is no problem, this field is set to '1'. Can only be read.	R/O	0
2	ENC_DON E	When the AES Encryption operation is finished, this field is set to '1'. It is cleared by the MCU.	R/W	0
1	DEC_DON E	When the AES Decryption operation is finished, this field is set to '1'. It is cleared by the MCU.	R/W	0
0	CRC_OK	If there is no problem in checking the CRC of a received packet, this field is set to '1'.	R/W	0
MAC	SAES (SAES	S RUN REGISTER, 0x218E)		
7:1	•	Reserved	W/O	0
0	SAES	When this field is set to '1', the AES operation is done by data in SAESBUF and KEY selected by the SA_KEYSEL field in the SEC register. This field is cleared automatically.	W/O	0
MAC	RST (MAC R	RESET CONTROL REGISTER, 0x2190)		
7	RST_FIFO	When this field is set to '1', the MAC FIFO is initialized.	R/W	0
6	RST_TSM	When this field is set to '1', the MAC Transmitter State Machine is initialized.	R/W	0
5	RST_RSM	When this field is set to '1', the MAC Receiver State Machine is initialized.	R/W	0
4	RST_AES	When this field is set to '1', the AES Engine is initialized.	R/W	0
3:0		Reserved		0
	CRTL (MAC	CONTROL REGISTER, 0x2191)		
7:5		Reserved		0
4	PREVENT_ ACK	When this field is set to '1', the RX interrupt doesn't occur when the DSN field of received ACK packet is different from the value in	R/W	0
3	PAN_COO RDINATOR	MACDSN register during packet reception. When this field is set to '1', function for PAN Coordinator is enabled.	R/W	0
2	ADR_DEC ODE	When this field is set to '1', an RX interrupt doesn't occur when the address information of the received packet is not matched with address of the device itself.	R/W	1
1	AUTO_CR C	When this field is set to '1', an RX interrupt doesn't occur when the CRC of the received packet is not valid.	R/W	1
0		Should be set to '0'.		0
MAC	DSN (MAC D	OSN REGISTER, 0x2192)		
7:0	MACDSN	Valid if only PREVENT_ACK in MACCTRL is set to '1'. Sets the DSN field value of the received ACK packet, which can cause a PHY (RX) interrupt. In other words, if the DSN field of the received ACK packet is not equal to MACDSN, the PHY (RX) interrupt does not occur.	R/W	0x00

MAC	SEC (MAC S	ECURITY REGISTER, 0x2	193)		
7	SA_KEYSE		Standalone SAES operation. When this	R/W	0
'	L		ed and when '0', KEY0 is selected.	1011	Ū
_	TX_KEYSE		AES operation during packet field is '1', KEY1 is selected and when		0
6	L	'0', KEY0 is selected.	R/W	0	
			AES operation during packet reception.		
5	RX_KEYSE		'1 is selected and when '0', KEY0 is	R/W	0
	L	selected.			·
		In CBC-MAC operation, it	represents the data length used in the		
		authentication field as byt	e unit.		
		SEC_M	Authentication Field Length		
		0	Reserved		
		1	4		
4:2	SEC_M	2	6	R/W	0
	_	3	8		
		4	10		
		5	12		
		6	14		
		7	16		
		Security Mode:			
		0: No Security			
1:0	SEC_MODE	1: CBC-MAC mode		R/W	0
		2: CTR mode			
		3: CCM mode			
	L (TX AUXILI	ARY LENGTH REGISTER,	0x2194)		0
7		Reserved	d in the AEC exerction for the necket to	R/W	0
			d in the AES operation for the packet to ferent meaning for each security mode		
		as follows.	referrent meaning for each security mode		
			enresents the number of bytes between		
6:0	TXAL	Security mode: CTR – It represents the number of bytes between length byte and the data to be encoded or decoded in FIFO.			0x00
0.0			C – It represents the number of bytes	R/W 0x00	000
			ne data to be authenticated.		
		Security mode: CCM – It represents the length of the data which is			
		used not in encoding or de			
RXA	L (RX AUXILI	ARY LENGTH REGISTER,	, 0x2195)		
7		Reserved		R/W	0
			d in the AES operation for the received		
		•	neaning for each security mode as		
		follows. Security mode: CTR – It represents the number of bytes between			
0.0	DVAL				000
6:0	RXAL		be encoded or decoded of data in FIFO.	R/W	0x00
			C – It represents the number of bytes		
			ne data to be authenticated.		
			represents the length of the data which is coding but in authentication.		
		used not in encounty of de		l	

1.9 PHYSICAL LAYER (PHY)

The Physical Layer (PHY), also called the modem block, is used as follows:

- With the MAC block, the data to be transmitted is digitally modulated and then sent to the RF block for transmission.
- With the MAC block, the RF signal received via the RF block is digitally demodulated and sent to the MAC block.

The modulation starts by fetching the data in the TX FIFO. After appending the preamble, SFD and length field to the data, a frame, which is compatible to IEEE802.15.4 standard, is generated. This frame is mapped to symbols via Bit-to-Symbol conversion as shown in Figure 31 below. Bit-to-Symbol conversion maps 4 bit to 1 symbol. Each symbol is spread by Symbol-to-Chip mapping. The Spread symbol is then modulated to a quadrature signal of constant envelope via the Offset Quadrature Phase Shift Keying (O-QPSK) modulation and the Half Sine Wave Filtering.

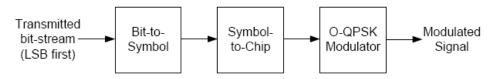


Figure 31 – IEEE 802.15.4 Modulation

Symbol-to-Chip mapping is used for spreading the symbol bandwidth to improve the reception performance. Table 37 shows the mapping rule of chip sequences corresponding to each symbol.

<u>Symbol</u>	Chip Sequence (C ₀ , C ₁ , C ₂ ,, C ₃₁)
0	11011001110000110101001000101110
1	11101101100111000011010100010
2	00101110110110011100001101010010
3	00100010111011011001110000110101
4	01010010001011101101100111000011
5	00110101001000101110110110011100
6	11000011010100100010111011011001
7	10011100001101010010001011101101
8	10001100100101100000011101111011
9	10111000110010010110000001110111
10	01111011100011001001011000000111
11	01110111101110001100100101100000
12	00000111011110111000110010010110
13	01100000011101111011100011001001
14	10010110000001110111101110001100
15	11001001011000000111011110111000

	Table 37 – S	preading	sequence	of 32-chip
--	--------------	----------	----------	------------

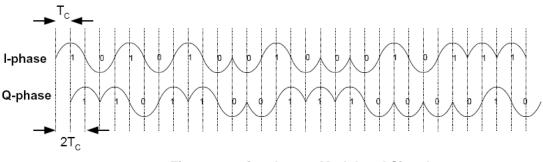


Figure 32 shows the quadrature signal modulated.

Figure 32 – Quadrature Modulated Signal

The modulated signal is converted to analog by the DAC and then passed to RF block.

The output signal of the DAC is fed to the Quadrature (I/Q) Up-conversion Mixer through the Low Pass Filter (LPF) and then amplified by the Power Amplifier (PA) and transmitted to the antenna.

When an RF signal is received by the antenna, it is amplified by the Low Noise Amplifier (LNA) in the RF block. It is then down-converted to a base-band signal by the Quadrature Down-conversion Mixer. After low pass filtering, the analog signal is amplified through the Variable Gain Amplifier (VGA), and converted to a digital signal by the ADC.

The output signal of the ADC is digitally demodulated by the modem block. Digital demodulation process includes for example, Automatic Gain Control (AGC), De-spreading, Symbol Detection, and Timing Synchronization. When a frame delimiter is detected on the demodulated signal, a modem block generates the interrupt which indicates the start of a packet.

The length and the frame body followed by frame delimiter are stored in RX FIFO of MAC. When the last data is stored, an interrupt is generated to indicate the end of packet reception. After a packet reception interrupt occurs, a user can read the data in TX FIFO by software.

When a packet is received, a modem block provides Received Signal Strength Indication (RSSI) automatically. RSSI is measured by averaging the power level of received signal for a defined period of time.

It can be used as a Link Quality Indicator (LQI) to decide the quality of the communication channel.

RSSI is stored in a special register and the stored RSSI value is kept until a new packet is received. After a packet reception interrupt occurs, a user can read the value stored in RSSI register by software. While a packet is not being received, the modem block continuously provides the RSSI of the RF signal at antenna. Measured RSSI is used to decide the communication channel state. Clear Channel Assessment (CCA) operation is based on this information. The CCA operation is used to prevent a collision when multiple-users try to use a channel simultaneously. When a channel is determined to be busy, packet transmission is deferred until the channel state changes to idle.

1.9.1 INTERRUPT

The modem block provides four interrupts to notify the MCU of specific events:

• RX End Interrupt (RXEND_INT)

This interrupt notifies the MCU of the completion of a packet reception. When this interrupt has been generated, the user can check the received data in the RX FIFO.

Also, the quality of the transmission channel is checked by reading this register, which stores the RSSI information of the received packet.

• RX Start Interrupt (RXSTART_INT)

This interrupt notifies the MCU of the start of a packet reception. When the packet reception has been started, all the reception is processed by the hardware.

Note: It is recommended that the RX Start Interrupt is not used.

• TX End Interrupt (TXEND_INT)

This interrupt notifies the MCU of the completion of a packet transmission. A new packet cannot be transmitted until a packet transmission is completed. When a communication channel is busy, a TX End Interrupt can be delayed until a communication channel goes to the idle state and the transmission is completed successfully

• Modem Ready Interrupt (MDREADY_INT)

This interrupt notifies the MCU that the modem block has changed from the idle state to the ready state due to the modem-on request. The modem block is in the idle state when the supply power is turned on but needs to be changed to the ready state in order to transmit or receive the packet. This interrupt occurs when the RF block has stabilized following the modem-on request.

The user can check whether each interrupt described above occurs through the INTSTS register. The INTCON register can be set to disable any of the interrupts desired.

The modem block provides the INTIDX register with information from the INTSTS register to check whether an interrupt has occurred. When multiple interrupts occur simultaneously, INTSTS register will show all the interrupts that have occurred. The INTIDX register notifies whether an interrupt is enabled in the order based on the priority of the interrupt. When a user reads the INTSTS or INTIDX register, all interrupts are initialized.

1.9.2 REGISTERS

The registers of the modem block either control or report the state of the modem. The registers, which influence transmission performance of the modem block, should be set with the values provided by CEL, and should not be modified by a user's application program.

Table 38 lists the registers in the PHY Layer of the ZIC2410. The address of each register is assigned to a data memory area in the microcontroller, so a user application program can read and write the register as a general memory.

Address (Hex)	Name	Description	Initial Value
2200	PCMD0	PHY Command0	11111100
2201	PCMD1	PHY Command1	11000111
2202	PLLPD	PLL Power-Down	11100000
2203	PLLPU	PLL Power-Up	11111111
2204	RXRFPD	RF RX Path Power-Down	0000000
2205	RXRFPU	RF RX Path Power-Up	11111111

Table 38 – PHY Register Address Map

Address (Hex)	Name	Description	Initial Value
2206	TXRFPD	RF TX Path Power-Down	11010000
2207	TXRFPU	RF TX Path Power-Up	11111111
220D	TRSWBC	TRSWB Control	00000000
2211	RXFRM1	RX Frame Format1	00000010
2212	SYNCWD	SYNC Word Register	10100111
2213	TDCNF0	Operation Delay Control 0	01001111
2217	TDCNF1	Operation Delay Control 1	01100011
2215	TXFRM1	TX Frame Format1	11110010
2223	AGCCNF3	AGC Configuration3	01111111
2248	CCA0	CCA Control0	11000000
2249	CCA1	CCA Control1	10110010
224A	CCA2	CCA Control2	0000001
224B	CCA3	CCA Control3	11110100
2260	TST	Test Register	1000000
2261	TST1	Test Configuration1	01101100
2262	TST2	Test Configuration2	11111111
2263	TST3	Test Configuration3	00001111
226D	TST13	Test Configuration13	0000000
226E	TST14	Test Configuration14	0100000
2270	PHYSTS0	PHY Status0	1000000
2271	PHYSTS1	PHY Status1	11110000
2272	AGCSTS0	AGC Status0	11111111
2273	AGCSTS1	AGC Status1	11011111
2274	AGCSTS2	AGC Status2	0000000
2275	AGCSTS3	AGC Status3	0000000
2277	INTCON	PHY Interrupt Control	11110000
2278	INTIDX	PHY Interrupt Status and Index	11111100
227E	INTSTS	PHY Interrupt Status	11111111
220D	TRSWC0	TRSW Control 0	0000000
2279	TRSWC1	TRSW Control 1	10010000
2286	PLL0	PLL Frequency Control 0	00111000
2287	PLL1	PLL Frequency Control 1	0100000
2288	PLL2	PLL Frequency Control 2	0000000
228B	PLL3	PLL Frequency Control 3	00110010
2289	PLL4	PLL Frequency Control 4	00101111
228A	PLL5	PLL Frequency Control 5	00010100
22A0	TXPA0	TX PA Control 0	00011000
22A1	TXPA1	TX PA Control 1	11111000
22A2	TXPA2	TX PA Control 2	10010110

Table 39 describes each of the PHY registers.

Table 39 – PHY Registers

D .4			-	Reset					
<u>Bit</u>	<u>Name</u>			Descriptions	<u>R/W</u>	Value			
				ER, 0x2200)					
This	register is			eration of a modem block.		r			
7	MDOFF	status is ch down state ZIC2410 ca reception o state. Whe	. When this field is set to '0', the modem block OFF. In the OFF state, the RF block is in a power- nodem block is in the reset state. In this state, the ive or transmit packets. For transmission or , the modem block needs to be changed to the ON lem block goes to the OFF state, this field is set to ne hardware.	R/W	1				
6	MDON	status is ch in the TX o power-dow active user this field is	Modem-on Request . When this field is set to '0', the modem block status is changed to ON. In the ON state, the RF and modem blocks are in the TX or RX ready state. In this state, the modem block controls power-down or power-up for the transmitter or the receiver without an active user application. When the modem block goes to the ON status, this field is set to '1' automatically by the hardware.						
5:4		Reserved				11			
3	TXSTP	a packet is	Packet Transmission Stop Request . When this field is set to'0' while a packet is being transmitted, the packet transmisson stops. The modem block changes to the RX ready state after a defined delay .						
2	TXREQ	Packet Tra block trans modem blo when a cor packet be t the transmi field is set When the p interrupt is not sent an	R/W	1					
1	TXON	TX Path O When the T block is alw modulation TXOFF fiel block autor transmissic It is recomm TXON 1 1 0 0	R/W	0					
0	RXON	RX Path O When RXC is always e demodulati fields. Whe automatica and disable RXON	R/W	0					

<u>Bit</u>	<u>Name</u>				Descriptions	<u>R/W</u>	<u>Reset</u> Value	
		1	1		s enabled			
		1	0		s enabled			
		0	1		s disabled			
		0	0	mode	ed or disabled depending on the control of a m block			
		COMMAND1 used to cont			2 201) of the modem block.			
7:6		Reserved		•			11	
5	 Decryption Start. When DECS field is set to '1', the decryption is processed by the MAC block. When the encrypted packet is received, the data stored in the RX FIFO should be decrypted. The decrypted data is stored in the RX FIFO again. When the decryption is completed, an interrupt is sent to the MAC block. The setting of the DECS field is not cleared automatically after completing decryption and therefore, should be cleared by the software. 						0	
4	ENCS	Encryption Start When ENCS field is set to '1', the encryption is processed by the MAC block. When the transmission of secured packet is required, the data stored in the TX FIFO should be encrypted.						
3:2		Reserved		101010, 0			01	
1	TXOFF	TX Path C field. Whe	TX Path Off . It is used to disable the modulation circuit with the TXON field. When the TXON field is set to'0' and the TXOFF field is set to'1', the modulation circuit of the modem block is always disabled.					
0	RX Path Off . It is used to disable the modulation circuit with the RXON					R/W	1	
		OWER-DOW						
	register is		trol the p	ower-do	vn of the circuits related to the Phase-locked I	Loop (P		
7:5		Reserved					111	
4	PLLRS TS	the PLLRS circuit held	TS field i in reset. he values	is set to ' The foll	field is used to reset the PLL circuit. When 0'and the PLLRSTC field is set to '1', PLL owing table shows PLL circuit reset state PLLRSTC and PLLRSTS fields. PLL reset state Controlled by the modem block Always in non-reset Always in reset	R/W	0	
		0		0	Always in non-reset	1		
3	VCOBP D	and VCOB Controlled Buffer circu is set to '1' in the powe circuit state	PDU field Oscillato uit is disa and the er-down s based o	ds contro r (VCO) bled and VCOBPE state. Th on the va COBPU	tor Buffer Power-down. The VCOBPD I the power-down state of the Voltage Buffer circuit. In power-down state, the VCO draws no current. When the VCOBPU field D field is set to '0', the VCO Buffer circuit is e following table shows the VCO buffer lues of the VCOBPD and VCOBPU fields. <u>VCO Buffer reset state</u>	R/W	0	
		1 1 0 0		1 0 1 0	Controlled by the modem block Always in power-up state Always in power-down state Always in power-up state	-		

<u>Bit</u>	Name	Descriptions			<u>R/W</u>	<u>Reset</u> Value	
2	VCOPD	Voltage Controlled Oscillator Power-down . With the VCOPU field, controls the power-down state of the Voltage Controlled Oscillator (VCO) circuit. In power-down state, VCO circuit is disabled and draws no current. When the VCOPU field is set to '1' and the VCOPD field is set to'0', the VCO circuit is in the power-down state. The following table shows the VCO circuit state based on the values of the VCOPD and VCOPU fields.			R/W	0	
		VCOPD	<u>VCOPU</u>	VCO state	-		
		1	1	Controlled by the modem block			
		1	0	Always power-up state.			
		0	1	Always power-down state			
		0 Divider Dev	0 	Always power-up state /ith the DIVPU field, controls the power-down			
0	DIVPD	state of the I disabled and the DIVPD fi The following	Divider circuit I draws no cu eld is set to'0	. In power-down state, the Divider circuit is irrent. When the DIVPU field is set to '1' and ', the Divider circuit is in the power-down state. Is the Divider circuit state based on the values of	state, the Divider circuit is DIVPU field is set to '1' and uit is in the power-down state.		
		DIVPD	DIVPU	Divider state		0	
		1	1	Controlled by the modem block			
		1	0	Always power-up state.			
		0	1	Always power-down state			
		0	0	Always power-up state			
		Charge Pump Power-down . With the CPPU field, controls the power- down state of the Charge Pump (CP) circuit. In the power-down state, the CP circuit is disabled and draws no current. When the CPPU field is set to '1' and the CPPD field is set to'0', the CP circuit is in power-down state. The following table shows the CP circuit state based on the values of the CPPD and CPPU fields.				0	
		CPPD	CPPU	<u>CP state</u>	-		
		1	1	Controlled by the modem block			
		1	0	Always power-up state.			
		0	1	Always power-down state			
יוום	0 0 Always power-up state. LPU (PLL POWER-UP REGISTER, 0x2203)						
This register is used to control the power-up of circuits related to Phase-locked Loop (PLL)							
7:5		Reserved				111	
4	PLLRS TC	PLL Reset Clear. PLLRSTC field is used to release the reset PLL circuit. When PLLRSTC field is set to '0', the reset of PLL circuit is released.				1	
3	VCOBP U	Voltage Controlled Oscillator Buffer Power-up . Controls the power- up state of the VCO Buffer circuit. In the power-up state, the VCO Buffer circuit is enabled. When the VCOBPU field is set to '0', the VCO Buffer circuit is in power-up state. See VCOBPD above for truth table.				1	
2	VCOPU	Voltage Controlled Oscillator Power-up . Controls the power-up state of the VCO circuit. In the power-up state, the VCO circuit is enabled. When the VCOPU field is set to '0', the VCO circuit is in a power-up state. See VCOPD above for truth table.				1	
1	DIVPU	Divider Power-up . Controls the power-up state of the Divider circuit. In the power-up state, the Divider circuit is enabled. When the DIVPU field is set to '0', the Divider circuit is in the power-up state. See DIVPD above for the truth table.				1	

<u>Bit</u>	<u>Name</u>			Desc	riptions	<u>R/W</u>	<u>Reset</u> Value		
0	CPPU	In the power-up set to '0', the C table.	p state, the P circuit is	CP circui in a powe	the power-up state of the CP circu t is enabled. When the CPPU field r-up state. See CPPD above for tru	is DW	1		
	XRFPD (RF RX PATH POWER-DOWN REGISTER, 0x2204)								
Ihis	register is				to reception in RF block.	•			
7	LNAPD	power-down st circuit is disabl '1' and the LNA state. The follo values of the L	ate of the L ed and drav APD field is wing table s NAPD and	NA circuit vs no cur set to'0', shows the		0	0		
				O sustant l	LNA state				
		1	1		ed by the modem block				
		1	0		power-up state.				
		0	<u>1</u> 0		power-down state				
		-			power-up state. RMIXPU field, controls power-down				
6	RMIXP	state of the RX circuit is disabl to '1' and the R power-down st	Mixer circu ed and drav MIXPD fiel ate. The fo	iit. In the vs no cur d is set to llowing ta	power-down state, the RX Mixer rent. When the RMIXPU field is set '0', the RX Mixer circuit is in the ble shows the RX Mixer circuit state and RMIXPU fields.		0		
•	D	RMIXPD	RMIX		RX Mixer state		·		
		1	1	C	Controlled by the modem block				
		1	0		ways power-up state.				
		0	1		ways power-down state				
		0	0		ways power-up state				
5	BBAMP PD	controls the po (BBAMP) circu and draws no o BBAMPPD fiel	wer-down s it. In the po current. Wh d is set to'0 owing table	tate of th ower-dow ien the Bl , the BBA shows th	er-down. With the BBAMPPU field e Base-band Analog Amplifier n state, the BBAMP circuit is disable BAMPPU field is set to '1' and the MP circuit is in the power-down e BBAMP circuit state based on the IPPU fields.	ed	0		
		BBAMPPD	BBAMP		BBAMP state				
		1	1	С	ontrolled by the modem block				
		1	0		ways power-up state.				
		0	1		ways power-down state				
		0	0		ways power-up state				
4	RMIXB	the power-dow state, the RX M When the RMI to'0', the RX M table shows the	n state of th /lixer Buffer XBUFPU fie ixer Buffer o e RX Mixer	he RX Mix circuit is eld is set f circuit is i Buffer cir	With the RMIXBUFPU field, contro the Buffer circuit. In the power-down disabled and draws no current. to '1' and the RMIXBUFPD field is s in a power-down state. The followin cuit state based on the values of the	n et g	0		
4	UFPD	RMIXBUFPD a				rt/ VV	U		
		<u>RMIXBUFPD</u>	<u>RMI</u>	(BUFPU	RX Mixer Buffer state				
		1		1	Controlled by the modem block				
		1		0	Always power-up state.				
		0		1	Always power-down state				
		0		0	Always power-up state.				
3		Reserved and	R/W	0					

Bit	<u>Name</u>			Descriptions	<u>R/W</u>	<u>Reset</u> Value		
2	RLPFP D	RX Low-pass power-down s down state, the the RLPFPU fi LPF circuit is i RX LPF circuit fields. RLPFPD 1	R/W	0				
		0	0 1 0	Always power-up state. Always power-down state. Always power-up state.				
1	VGAPD	the power-down si power-down si When the VGA VGA circuit is VGA circuit sta <u>VGAPD</u> 1 1 0 0 0	vn state of the tate, the VGA APU field is se in the power-d ate based on th VGAPU 1 0 1 0	Amplifier Power-down. With the VGAPU field, controls state of the Variable Gain Amplifier (VGA) circuit. In the te, the VGA circuit is disabled and draws no current. PU field is set to '1' and the VGAPD field is set to'0', the the power-down state. The following table shows the e based on the values of the VGAPD and VGAPU fields.FVGAPUVGA state1Controlled by the modem block0Always power-up state.1Always power-down state.				
0	ADCPD	controls the po state, the ADC ADCPU field is is in the power	ower-down sta circuit is disa s set to '1' and -down state.	Fr Power-down . With the ADCPUfield, te of the ADC circuit. In the power-down bled and draws no current. When the the ADCPD field is set to'0', the ADC circuit The following table shows the ADC circuit the ADCPD and ADCPU fields. <u>ADC state</u> Controlled by the modem block Always power-up state. Always power-up state.	R/W	0		
RXR	FPU (RF F							
				related to reception in RF block				
7	LNAPU	Low Noise Ar LNA circuit. Ir LNAPU field is LNAPD above	nplifier Powe the power-up set to '0', the for truth table	r-up . Controls the power-up state of the state, the LNA circuit is enabled. When the LNA circuit is in the power-up state. See	R/W	1		
6	RMIXP U	circuit. In the	power-up state is set to '0', the	ols the power-up state of the RX Mixer e, the RX Mixer circuit is enabled. When the e RX Mixer circuit is in the power-up state. n table.	R/W	1		
5	BBAMP PU	Base-band Au of the BBAMP enabled. Whe	nalog Amplifi circuit. In the en the BBAMP	er Power-up . Controls the power-up state power-up state, the BBAMP circuit is PU field is set to '0', the BBAMP circuit is in AMPPD above for truth table.	R/W	1		
4	RMIXB UFPU	RFRX-path M RX Mixer Buffe circuit is enabl	ixer Buffer Po er circuit. In th ed. When the	ower-up . Controls the power-up state of the ne power-up state, the RX Mixer Buffer RXMIXBUFPU field is set to '0', the RX power-up state. See RXMIXBUFPD above	R/W	1		

Bit	<u>Name</u>			Desc	riptions	<u>R/W</u>	<u>Reset</u> Value		
3				ould be fixed to '1'.			1		
2	RLPFP U	LPF circuit. In t	he power-up ld is set to '0'	state, , the R	ontrols the power-up state of the RX the RX LPF circuit is enabled. When X LPF circuit is in the power-up table.	R/W	1		
1	VGAPU	VGA circuit. In the VGAPU field	Variable Gain Amplifier Power-up . Controls the power-up state of the VGA circuit. In the power-up state, the VGA circuit is enabled. When the VGAPU field is set to '0', the VGA circuit is in the power-up state. See VGAPD above for truth table.						
0	ADCPU	the ADC circuit.	In the powe PU field is set	r-up st : to '0',	er-up . Controls the power-up state of ate, the ADC circuit is enabled. the ADC circuit is in the power-up table.	R/W	1		
TXR	FPD (RF T	X PATH POWE							
This	register is	used to power do	own circuits re	elated	to transmission in RF block.				
7:6		Reserved					11		
5	TXUMB UFPD	controls the pow power-down sta no current. Wh TXUMBUFPD f power-down sta circuit state bas fields.	ver-down stat ite, the TX Up en the TXUM ield is set to'0 ite. The follov ed on the val	e of th o-mixer BUFPI o', the T wing ta ues of	With the TXUMBUFPU field, e TX Up-mixer Buffer circuit. In the r Buffer circuit is disabled and draws U field is set to '1' and the TX Up-mixer Buffer circuit is in the able shows the TX Up-mixer Buffer the TXUMBUFPD and TXUMBUFPU	R/W	0		
		<u>TXUMBUFPD</u>	<u>TXUMBU</u>	FPU	TX Up-mixer Buffer state				
		1	1		Controlled by the modem block				
		1	0		Always power-up state.	_			
		0	1		Always power-down state.	-			
4		0 Decentrad	0		Always power-up state.		1		
4		Reserved	or Power-do	wp \//	ith PAPU field, controls the power-		I		
3	PAPD	down state of the PA circuit is distored to '1' and the PA	e Power Amp abled and dra APD field is so wing table sh	olifier (PA) circuit. In power-down state, the aws no current. When the PAPU field is set et to'0', the PA circuit is in the power-down ows the PA circuit state based on the			0		
		PAPD	<u>PAPU</u>		PA state				
		1	1		olled by the modem block	4			
		1	0		vs power-up state.	4			
		0	1		vs power-down state.	4			
		0 TV Un mixer D	0		vs power-up state.				
2:1	TXUMP D	power-down sta the TX Up-mixe TXUMPU field i Up-mixer circuit the TX Up-mixe	te of the TX I r circuit is dis s set to '3' an is in the pow r circuit state	Jp-mix abled a d then er-dow based	he TXUMPU field, controls the ser circuit. In the power-down state, and draws no current. When the TXUMPD field is set to'0', the TX wn state. The following table shows on the values of the TXUMPD and and '2' are not used in these fields.	R/W	00		
		TXUMPD	TXUMPU		TX Up-mixer state	1			
		3	3	Co	ntrolled by the modem block]			
		3	0		ways power-up state.				
		0	3		ways power-down state.				
		0	0	Alv	ways power-up state.				

<u>Bit</u>	<u>Name</u>		<u>R/W</u>	<u>Reset</u> Value		
		others	Other	s Reserved		
0	DACPD	controls the circuit. In th no current. set to'0', the	rter Power-down. With the DACPU field, state of the Digital-to-Analog Converter (DAC) a state, the DAC circuit is disabled and draws CPU field is set to '1' and the DACPD field is a in the power-down state. The following table the based on the values of the DACPD and	R/W	0	
		DACPD	DACPU	DAC state		
		1	1	Controlled by the modem block		
		1	0	Always power-up state.		
		0	1	Always power-down state.		
		0	0	Always power-up state.		
TXR	FPU (RF 1	X PATH PO	WER-UP REG	ISTER, 0x2207)		
				ts related to transmission in RF block.		
7:6		Reserved				11
5	TXUMB UFPU	Up-mixer Bu circuit is ena	uffer circuit. In abled. When the	er-up. Controls the power-up state of the TX the power-up state, the TX Up-mixer Buffer he TXUMBUFPU field is set to '0', the TX Up-e power-up state. See TXUMBUFPD above for	R/W	1
4		Reserved				1
3	PAPU	circuit. In th	e power-up stand s set to '0', the	 up. Controls the power-up state of the PA ate, the PA circuit is enabled. When the PA circuit is in a power-up state. See PAPD 	R/W	1
2:1	TXUMP U	TX Up-mixe mixer circuit When the T	er Power-up. In the power XUMPU field is	Controls the power-up state of the TX Up- -up state, the TX Up-mixer circuit is enabled. s set to '0', the TX Up-mixer circuit is in the MPD above for truth table.	R/W	1
0	DACPU	Digital-to-A the Digital-to DAC circuit circuit is in t	nalog Convert p-Analog Conv is enabled. W he power-up s	rter Power-up. Controls the power-up state of verter (DAC) circuit. In the power-up state, the verter the DACPU field is set to '0', the DAC state. See DACPD above for truth table.	R/W	1
			MAT1 REGIST			
This	register is			at of RX Packet. ate. Sets the receptable RX data rate.	r	
7:6	RXRAT E	Receptable ZIC2410 su 500kbps or 0: Suppor 1: Suppor 2 or 3: Sup	R/W	00		
5:4	TXRAT E	250kbps con extended da 0: Suppor 1: Suppor	mpatible with I ata rate provide ts 250kbps da ts 250kbps an	s the transmisson data rate. ZIC2410 supports EEE802.15.4 standard and 500kbps or 1Mbps ed by CEL Inc. ta rate (compatible with IEEE802.15.4 std) d 500kbps data rates s and 1Mbps data rates	R/W	00

<u>Bit</u>	Name	Descri	ptions	<u>R/W</u>	<u>Reset</u> Value		
3:0	RXPRM LNG	RX Preamble Length . Sets the pre- The ZIC2410 supports a preamble o IEEE 802.15.4 std. At the same time configurable preamble length. Wher field, the length of the preamble is se preamble can be varied from 6 to 21 <i>Note: The value of this field shoul</i> <i>TXPRMLNG field. It is recommend</i>	R/W	0010			
		NCWORD REGISTER, 0x2212)					
		of data to be used as the Start-of-Fra			uses 2		
symt	pols as an	SFD. The 2 symbols are '0xA7'. The	'7' is the first of the 2 symbols transm	litted.			
TDO							
		RATION DELAY CONTROL 0 REGIS ets the delay to power down RF after T					
11113		Sets the delay to power down of alter a					
7:4	TXPDT	power-down. The delay time is set in		R/W	0100		
	М	and maximum values are 0µs and 24			0100		
3:0		Reserved		R/W	1111		
TDC	NF1 (OPE	RATION DELAY CONTROL 1 REGIS	STER, 0x2217)				
This	register se	ets the delay for switching between TX					
	TXRXT	Sets the delay time of the transition f					
7:4	M	is set in16µs increments. The minim	R/W	0110			
		and 240µs respectively.					
~ ~	RXTXT	Sets the delay time of the transition f		R/W	0011		
3:0	3:0 M I is set in 16µs increments. The minimum and maximum values are 0µs						
TVE		and 240µs respectively.	15)				
	•	RAME FORMAT1 REGISTER, 0x22 used to set the frame format of the T	•				
7:4		Reserved			1111		
1.4		TX Packet Preamble Length. Sets	the preamble length of the				
3:0	TXPRM LNG	transmission packet. The ZIC2410 s length defined in the IEEE 802.15.4 provides a configurable preamble len TXPRMLNG field, the length of the p length of preamble can be varied fro <i>Note: The value of this field shoul</i> <i>RXPRMLNG field. It is recommen</i>	supports a preamble of 8 symbol std. At the same time, the ZIC2410 ngth. When 'n' value is set in breamble is set to (n+6)symbol. The m 6 to 21 symbols. d be set the same as the ded to use a default value of '2'.	R/W	0010		
		C CONFIGURATION3 REGISTER, 0	x2223)				
	register se	ts AGC operation environment		-			
7:5		Reserved			111		
		RX Energy Accumulator Windows the received signal energy for a define RXEAWS field is used to set the defined					
4:3	RXEAW	RXEAWS	Average Calculation Duration	R/W			
ч. J	S	0	16µs	1			
1 32µs							
		2	64µs				
		3	128µs				
2:0		Reserved			111		
		ONTROL CONFIGURATION0 REGIS					
_	register is	used to set CCA operation environme			4		
7		Reserved			1		

<u>Bit</u>	<u>Name</u>	<u> </u>	<u>R/W</u>	<u>Reset</u> Value	
		When CCA uses the energy d			
		duration for the received signa	_		
		<u>CCAAWS</u> <u>Average Calculation Duration</u>		_	
6:4	CCAA	0	1µs	R/W	100
_	WS	1	2µs	_	
		2	4µs		
		3	8µs		
		others	16µs		
		•	tes the communication channel state to		
			etermined by the CCA circuit in the		
3	CCAFIX	ZIC2410. When a channel sta	R/W	100 0 1	
		This field allows packet transm			
			e channel is always in idle state.		
2		Reserved		1	
			the method to determine the com channel		
		5	the three methods to detect the channel		
		state.			
			method determines the channel state as		
			received signal is higher than the defined		
		level.			
			method determines the channel state as		
1:0	CCAMD	'busy' when an IEEE802.15.		R/W	00
			method determines the channel state as		
			802.15.4 packet is detected.		
		CCAMD	Method		
		0	ED	4	
		1	CD	_	
		2	FD		
		3	Reserved		1

CCA1 (CCA CONTROL CONFIGURATION1 REGISTER, 0x2249) R/W. CCA Decision Threshold.

This register defines threshold of energy level to determine whether a channel state is busy. This register is used only when CCA methods based on energy detection are used. The CCATHRS threshold is stored as a 2's complement integer in dBm. The default value of CCATHRS register is 0xB2 and corresponds to '-78dBm'.

CCA2 (CCA CONTROL CONFIGURATION2 REGISTER) R/W. Energy Calculation Offset(ENRGOFST)

The ZIC2410 and calculates the energy level of the received signal based on the gain of RF block per the following equation.

Equation 4 – Calculation of RX Signal Energy Level Energy Level (dBm) = CCA2 – RF_GAIN

As Equation 4 above describes, the CCA2 register compensates for an offset of calculated energy level for the received signal. A user can set the difference between the energy level calculated on a developed system and the real energy level of the received signal in the CCA2 register.

CCA3 (CCA CONTROL CONFIGURATION3 REGISTER, 0x224B)

The small change in energy level may cause some uncertainty in determining the channel state when that state is defined using only the threshold of the CCA1 register.

To prevent that uncertainty, the ZIC2410 can define a hysteresis value to define a minimum drop in energy level to initiate a change in the channel state from busy to the idle state. The CCA3 register is used to set that hysteresis.

Bit	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value					
CCA	CCA3 (CCA CONTROL CONFIGURATION3 REGISTER, 0x224B)								
7:4				1111					
3:0	CCAHY ST	CCA Hysteresis Level : Once the channel is determined to be in a busy state, it can be changed to an idle state only when the calculated energy level is decreased by more than the level defined in the CCAHYST field. The CCAHYST field is stored as a 2's complement integer and the unit is dB.	R/W	0100					
	•	ONFIGURATION0 REGISTER, 0x2260) used to control the test of a modem and RF block.							
7	TSTEN	Test Enable : Used to change the ZIC2410 to a test mode. When TSTEN field is set to '0', the modem block controls the RF block according to the test mode which is set by the STAMD and TSTMD fields. The TSTEN field should be set after setting the registers that are required to set up a test mode. In order to set a new test mode, TSTEN field should be set to '1' before setting a new test mode. After that, TESTEN field should be set to '0'.	R/W	1					
6:5	STAMD	 Station Mode. Sets ZIC2410 to a transmitter during a test mode. 1: Set as a transmitter 2: Set as a receiver 3: Set as a transceiver 	R/W	00					
4:0	TSTMD	Test Mode . Sets a test mode. Refer to the Table 41 for the various modes base on the setting of the STAMD and TSTMD fields.	R/W	00000					

Table 40 – CCA3 Regi	sters
----------------------	-------

Mada	<u>STAMD</u>		<u>TSTI</u>	MD		Operation			
Mode	[1.0]	[4]	[3:2]	[1]	[0]	<u>Operation</u>			
	01	0	00	0	0	I=cos, Q=sin single tone generation			
	01	0	01	0	0	I=8h80, Q=sin single tone generation			
	01	0	10	0	0	I=cos, Q=8h80 single tone generation			
Single Tene Constian	01	0	11	0	0	I=8h80, Q=8h80			
Single Tone Generation for RF Test	01	1	00	0	0	I=cos, Q=sin single tone generation			
IOI RE IESI	01	1	01	0	0	I=8h80, Q=sin single tone generation			
	01	1	10	0	0	I=cos, Q=8h80 single tone generation			
	01	1	11	0	0	I=8h80, Q=8h80			
				0	0	No operation			
Modulated Carrier	01	Х	XX	1	0	Continuous 802.15.4 Modulated Signal			
Generation for RF Test	ot	thers		1	0	No operation			

Table 41 – Test Mode Setting

Table 42 – Test Configuration Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value				
	TST1 (TEST CONFIGURATION1 REGISTER, 0x2261)							
	register de ixed symb	efines the fixed symbol to be modulated for generating a test packet. TST1	register	sets				
two i								
7:4	TSTSY ML	Test Symbol, Low Nibble . Sets the symbol to be transmitted first in fixed symbols.	R/W	0110				
		Test Symbols. Test Symbol, High Nibble. Sets the symbol to be transmitted later in						
3:0	MH	fixed symbols.	R/W	1100				
TST2	2 (TEST C	ONFIGURATION2 REGISTER, 0x2262)						
This	register se	ets the inter-packet time interval when the test mode transmits the modulate	d packe	et of a				
rando	om data.	The inter-packet time interval is needed for setting-up EVM measurement.						
7:3	IFS	Inter-frame Space . Sets the number of the symbols corresponding to the inter-packet time interval in the IFS field. The duration of 1 symbol is 16 μ s. Therefore, if IFS is set to 'N', inter-packet time interval is set to (16*N) μ s. <i>Note: The defined value of the IFS field is valid only when the TSTMD field is set to '23'</i> .	R/W	11111				
2:0		Reserved		111				

TST3 (TEST CONFIGURATION3 REGISTER, 0x2263) R/W.

This register is used to support the generation of a random symbol for the modulation in a test mode. The Random Number Generator (RNG) generates the random number by CRC-16. TST3 register stores the seed for RNG circuit. Any number except '0' can be used as the seed for RNG circuit.

TST13 (TEST CONFIGURATION13 REGISTER, 0x226D) R/W.

This register sets the length of transmitting packet in a test mode. The length of packet can be set from 1 byte to 127 byte and the duration of each packet is from 256µs to 4,256µs.

TST14 (TEST CONFIGURATION14 REGISTER, 0x226E) R/W.

This register sets the frequency of a single-tone in a test mode for transmitting single-tone.

TST14 register can set from a 1/4 frequency of DAC operating clock to a 1/256 frequency of DAC operating clock. This single-tone signal can be used to test RF block characteristics. Cosine and sine signal can be selectively assigned to I-phase or Q-phase of RF block.

The frequency of single-tone is defined by Equation 5.

Frequency = $\frac{f_{DAC} \cdot CFRQ}{1024} Hz$

Equation 5 – Definition of Single-Tone Frequency

Table 43 – PHY Status Registers

<u>Bit</u>	<u>Name</u>		Descriptions R/W								
PHY	STS0 (PH	Y STATUSO REG	SISTER, 0x2270)		<u>Value</u>						
Thes	These registers are used to monitor or control the state of the modulation or demodulation blocks in the modem block.										
7	RXSTS F	defined state. V RXSTSF field, c and retained un	x-up : Fixes the state of the demodulation block to a With a desired state in the RXSTS field, setting '0' in the aused the state of the demodulation block to be fixed til RXSTSF is set to '1'.	R/W	1						
6:4	RXSTS	RX Block Statu modem block. If demodulation bl However, the sta state is only rec state, RXSTSF be different from state of demodu The following ta RXSTS='000' RXSTS='000' RXSTS='001' RXSTS='011' RXSTS='011' RXSTS='110' RXSTS='111'	 s: Shows the state of the demodulation block in a RXSTS field can read the current state of the ock. This field stores the state to be changed. ate of the demodulation block is not changed as a new orded to this field. In order to be changed to the recorded field should be set to '0'. The state in RXSTS field can in the recorded state because RXSTS shows the current lation block which is updated from the recorded state. ble shows the state in RXSTS. RX_IDLE: The demodulation block cannot receive a packet. RX_PKTD: The demodulation block is waiting for reception of a packet (RX ready state). RX_WAIT: The demodulation block is waiting for the completion of the timing synchronization following packet detection. RX_CFE1: Coarse carrier frequency offset The demodulation block is in the first stage of coarse carrier frequency offset estimation (CFE) waiting for a receive signal adequate for CFE. RX_CFE2: The demodulation block is in the second stage of CFE estimating the coarse offset of the carrier frequency. RX_SYMD1: The demodulation block is in the first stage of symbol detection (SYMD) waiting for a receive signal adequate for SYMD. RX_SYMD2: The demodulation block is in the second stage of the SYMD detecting the symbol from the received signal. RX_PKTEND: The demodulation block ends a successful packet reception. 	R/W	000						
3:0	TXSTS	the modem bloc modulation bloc the state of the r recorded to this TXSTSF field sh different from th	TX Block Status . This field shows the state of the modulation block in the modem block. TXSTS field can read the current state of the modulation block. This field stores the state to be changed. However, the state of the modulation block is not changed as a new state is only recorded to this field. In order to be changed to the recorded state, TXSTSF field should be set to '0'. The state in TXSTS field can be different from the recorded state because TXSTS shows the current state of modulation block. The following table shows the state in								

<u>Bit</u>	<u>Name</u>		Descriptions	<u>R/W</u>	<u>Reset</u> Value
		TXSTS='0000'	TX_IDLE: The modulation block cannot transmit a packet.		
		TXSTS='0001'	TX_WAIT1: The modulation block is waiting for the TX FIFO to be ready before packet transmission.		
		TXSTS='0010'	TX_WAIT2: The modulation block is waiting for the TX FIFO to be ready before packet transmission.		
		TXSTS='0011'	TX_CHK: In TX_WAIT1 state, the modulation block checks the validity of the transmission packet length.		
		TXSTS='0100'	TX_PRM: In TX_PRM state, the modulation block transmits the SFD.		
		TXSTS='0101'	In TX_SFD state, the modulation block transmits the SFD.		
		TXSTS='0110' TXSTS='0111'	TX_TAIL: In TX_LNG state, the modulation block transmits the length.		
		TXSTS='1000'	TX_BDY: In TX_BDY state, the modulation block transmits the frame body of transmission packet.		
		TXSTS='1001'	TX_TAIL: In TX_TAIL state, the modulation block transmits the tail data of frame body.		
		TXSTS='1010'	TX_CONT: In TX_CONT, the modulation block transmits the modulated signal for a test mode.		
		TXSTS='111'	Reserved		
		Y STATUS1 REGIS used to monitor or	STER, 0x2271) control the state of a modem block.		
7	TXSTS F	state. With a desi	IP . Fixes the state of the modem block to a defined red state in the TXSTS field, setting '0' in the RXSTSF tate of the demodulation block to be fixed and retained et to '1'.	R/W	1
6:5		Reserved		R/W	11
4	MDSTS F	defined state. Wit MDSTSF field, ca	Dck-up . Fixes the state of the modem block to a h a desired state in the MDSTS field, setting '0' in the used the state of the demodulation block to be fixed MDSTSF is set to '1'.	R/W	1
3:0	MDSTS	read the current so recorded in this fire changed when on changed to the rea to '0'. The state in	hows the state of the modem block. MDSTS field can tate of the modem block. When a new state is eld, it is stored. The state of the modem block is not ly recording a state in MDSTS field. In order to be corded state, MDSTSU or MDSTSF field should be set in MDSTS field can be different from the recorded state shows the current state of the modem block. Table 44 MDSTS.	R/W	0000

MDSTS='0000'	MD_IDLE: In MD_IDLE state, the modem block is in idle state. The modem block cannot transmit or receive a packet. The modem block consumes the minimum current. The transmission or reception of a packet is available only when the modem block is in a modem ready state.
MDSTS='0001'	MD_DCCAL: In MD_DCCAL state, it does the calibration of DC cancellation block. After calibration, PLL is powered-up PLL automatically.
MDSTS='0010'	MD_WAITON: In MD_WAITON state, the modem block is in midterm to a modem ready state and waits the stabilization of the supply power to PCC circuit.
MDSTS='0011'	MD_WAITLCK: In MD_WAITLCK state, the PLL is waiting to be locked.
MDSTS='0100'	MD_RDY: In MD_RDY state, the modem block is in already state. The supply power to PLL circuit is stabilized and the PLL is locked.
MDSTS='0101'	MD_TXCAL: In MD_TXCAL state, the modem block is waiting for the transmitter of the RF block to be stabilized before the packet transmission. After the stabilization, the state of the modem block is changed to MD_TXPKT state.
MDSTS='0110'	MD_TXPKT: In MD_TXPKT state, the modem block transmits a packet.
MDSTS='0111'	MD_RXCAL. In MD_RXCAL state, the modem block is waiting for the receiver of the RF block to be stabilized before the packet reception. After the stabilization, the state of the modem block is changed to MD_RXON state.
MDSTS='1000'	MD_RXON: In MD_RXON state, the modem block is waiting for the reception of a packet. During this state, the modem block continuously monitors the reception of a packet.
MDSTS='1001'	MD_RXPKT: In MD_RXPKT state, the modem block performs the demodulation of the received packet. After the completion of the packet reception, the state of the modem block is changed to MD_RXON state.
MDSTS='1010'	Reserved
MDSTS='1011'	MD_RFTST. In MD_RFTST state, the modem block works in a selected test mode.
MDSTS='1100'	MD_IFS. In MD_IFS state, the modem block is ready for transmitting the next packet after the completion of a packet transmission in a test mode.
MDSTS='1101'	MD_CLR. In MD_CLR state, the modem block ends the packet transmission and sets TXREQ field to '1' automatically. The state of the modem block is changed to MD_RXON state when TXREQ field is set to '1'.
MDSTS='1110' MDSTS='1111'	Reserved

Table 44 – MDSTS Field

Table 45 – AGC Status Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value		
	AGCSTS0 (AGC STATUS0 REGISTER, 0x2272)					
This	register is	used to monitor and control the gain of LNA or RX Mixer in RF block.				
7	MGF	Mixer Gain Lock-up . Sets the gain of RX Mixer to a fixed value recorded in the MG field. When the MGF field is set to '0', the RX Mixer gain is set to the value recorded in the MG field. Only when the MGF field is set to '1', can the RX Mixer gain be adjusted by the AGC block.	R/W	1		
6	LGF	LNA Gain Lock-up . Sets the gain of LNA to a fixed value recorded in the LG field. When the LGF field is set to '0', LNA gain is set to the value recorded in the LG field. Only when LGF field is set as '1', can the LNA gain be adjusted by the AGC block.	R/W	1		
5	MG	RX Mixer Gain . Used to monitor the RX Mixer gain set by AGC block. The RX Mixer gain with MG='1' is 25 dB higher than with MG='0'. When the value of the MGF field is '0', the MG field sets the gain of RX Mixer.	R/W	1		

4 LG LNA Gain. Used to monitor the LNA gain set by AGC block. The LNA gain with LG='1' is 25 dB higher than with LG='0'. When the value of the LGF field is '0', the LG field sets the gain of the LNA. 3:0 Reserved AGCSTS1 (AGC STATUS1 REGISTER, 0x2273) This registers is used to monitor and control the gain of the VGA in the RF block. VGA Gain Lock-up. Sets the gain of the VGA as a fixed value recorded					1
7	VGF	the value recorded	nen the VGF field is set to '0', the VGA gain is set to in the VG field. Only when the VGF field is set to '1', be adjusted by the AGC block.	R/W	1
		VGA consists of three stages and the gain of the VG to 63dB in 1 dB steps. When the value of the VGF field sets the gain of the VGA.	of the VGA.		
6:1	VG Stage 1 gain (0 ~ 3dB) '00' : 0dB '10' : 1dB '10' : 2dB '11' : 3dB VG[1:0] '01' : 1dB '10' : 2dB '11' : 3dB VG[3:2] Stage 2 amplifier gain (0 ~ 12dB) '00' : 0dB '10' : 8dB '11' : 12dB VG[5:4] Stage 3 amplifier gain (0 ~ 32dB) '00' : 0dB '10' : 32dB '11' : reserved	VG[1:0]	'00' : 0dB '01' : 1dB '10' : 2dB		101111
6:1		'00' : 0dB '01' : 4dB '10' : 8dB '11' : 12dB	R/W	101111	
		VG[5:4]	'00' : 0dB '01' : 16dB '10' : 32dB		
0		Reserved			1

AGCSTS2 (AGC STATUS2 REGISTER, 0x2274) R/W.

This register stores the average energy level of the received RF signal at antenna. The stored energy level is the average of the received signal energy which is measured for the time interval defined in RXEAWS field. The indicated value at AGCSTS2 register is stored as a 2's complement integer in dBm.

AGCSTS3 (AGC STATUS3 REGISTER, 0x2275) R/W.

This register stores the average energy level of the received packet. AGCSTS2 register indicates the average of received signal's energy level for a defined time interval. AGCSTS3 register shows the energy level of the last received packet. The value in AGCSTS3 register is retained until another packet is received.

Bit	Name		Descriptions	R/W	Reset		
INTO					<u>Value</u>		
	This register is used to mask off the interrupt of a modem block						
7:4	l'oglotol i	Reserved			111		
			ask. This field masks RXEND_INT off. When				
3	RXEND MSK		o '0', RXEND INT interrupt is not generated.	R/W	0		
	WSK		sed to support the successful packet reception.				
		RXSTART_INT Interrupt	Mask. This field masks RXEND_START off.				
	RXSTM		set to '0', RXSTART_INT interrupt is not				
2	SK		T is not a mandatory interrupt. It is	R/W	0		
	••••		f RXSTART_INT interrupt when the rapid				
		packet reception is neede					
			ask. This field masks TXEND_INT off. When				
1	TXEND		'0', TXEND_INT interrupt is not generated.	R/W	0		
	MSK	-	sed to support the successful packet				
		transmission.	t Mask. This field masks MDRDY INT off.				
	MRDYM		set to '0', MDRDY_INT interrupt is not				
0	SK		should be used to check whether a modem	R/W	0		
	UK	block is ready for transmis					
ΙΝΤΙΓ)Х (РНҮ I		INDEX REGISTER, 0x2278)				
			of the interrupt when it occurs				
7:5	- <u>j</u>	Reserved			111		
-		Reception of Extended	Transfer Rate Packet. Indicates the data rate				
	FRMDX		en an RXEND_INT interrupt occurs. When		1		
4		FRMDX field is set to '0' a	and RXRATE field in RXFRM1 register is '1', it	R/W			
			on data rate of 500kbps. When RXRATE field				
			et reception data rate of 1Mbps.				
			bles all interrupts when they occur. This field				
		clears all interrupts occur					
3	ALLINT		occur at the same time, the modem block	R/W	1		
-	CLR		d processes them in order. When INTIDX field				
			rrupts are cleared in order. When ALLINTCLR				
2		Reserved	terrupts in buffer are cleared at the same time.		1		
2			hows the kind of the interrupt when an		1		
			f multiple interrupts occur simultaneously. The				
			TS register should be used for looking through				
			have been triggered. After reading INTIDX				
		field, executed interrupts					
1:0	INTIDX	INTIDX	Interrupt	R/W	00		
		0	MDREADY_INT interrupt				
		1	TXEND_INT interrupt				
		2	RXSTART INT interrupt				
		3	RXEND INT interrupt				
INTS	TS (PHY I	NTERRUPT STATUS REC					
			of the interrupt when the multiple interrupts occur				
7:5		Reserved			111		
4	FRMDX		Transfer Rate Packet. This field is equal to	R/W	1		
4		the FRMDX field in the IN	TIDX register.	17/14	I		

Table 46 – Interrupt Control, Status, and Index Register	S
--	---

<u>Bit</u>	Name	Descriptions	<u>R/W</u>	<u>Reset</u> Value
		Multiple Interrupt Status . Shows the interrupt status when multiple interrupts occur concurrently. Each bit in INTSTS field represents the status of a specific interrupt. A Table of Bit vs. Interrupt is shown below		
3:0	INTSTS	INTSTS[0] : MDREADY_INT interrupt INTSTS[1] : TXEND_INT interrupt INTSTS[2] : RXSTART_INT interrupt INTSTS[3] : RXEND_INT interrupt	R/W	1111
		When an interrupt is triggered, the INTSTS field corresponding to each interrupt is set to '0'. To clear the executed interrupt, the bit for each of the executed interrupts should be reset to '1' by software.		

TRSWC0 (TX/RX SWITCH CONTROL0 REGISTER, 0x220D) R/W.

This register is used to set two GPIO pins (P1.6, P1.7) as TX/RX switching control pins.

P1.6 and P1.7 can be used to control TX/RX switching when the TRSWC0 register is set to '0x50'. When TRSWC0 is set to '0x00', the two pins are used as GPIO pins. TRSWC1 register should be set the same as TRSWC0 to avoid collision.

TRSWC1 (TX/RX SWITCH CONTROL1 REGISTER, 0x2279) R/W.

This register is used to output TRSW and TRSWB signal at P1.6 and P1.7. TRSW signal remains as a logic '1' during packet transmission and as a logic '0' during packet reception. TRSWB, the complementary signal of TRSW, remains as a logic '0' during packet transmission and as a logic '1' during packet reception. TRSWC1 register should be set to '0x00' to output TRSW and TRSWB signal.

PLL0/1/2/3 (PLL CONTROL 0/1/2/3 REGISTER, 0x2286, 0x2287, 0x2288, 0x228B) R/W. To modify the PLL offset frequency, refer to Table 47 below.

As shown in Table 47, the delta K correction factor is determined based on the values in the FRAC_K [19:0] registers as follows.

Register Name	PLL0 Address: 0x2286	PLL1 Address: 0x2287	PLL2 [3:0] Address: 0x2288
Offset Frequency	FRAC_K [19:12]	FRAC_K [11:4]	FRAC_K [3:0]
1MHz	01	40	0
100kHz	00	20	0
10kHz	00	03	3
1kHz	00	00	5
*195.31Hz	00	00	1

Table 47 – FRAC_K[19:0] Registers

*1LSB = 195.31Hz

* The values of PLL0, PLL1, PLL2 [3:0] in Table 47 are HEX.

When using a 16MHz crystal, the values of PLL0, PLL1 and PLL2 need to be adjusted in order to define the adjustment to the channel frequency as shown in Table 47.

New Frequency = Original Frequency + Frequency Offset. Here, delta K, which is the Frequency Offset, can be derived from the following formula.

delta K = Frequency Offset / 195.31Hz

The New Frequency can be obtained by converting the delta K calculated above to Hex format and adding it to the value of the registers for the current frequency.

In order to adjust the frequency of channel 26, set PLL3 (0x228B) to 0x32 and then adjust it.

Table 48 – Phase Lock Loop Control Registers

<u>Bit</u>	<u>Name</u>	Descriptions	<u>R/W</u>	<u>Reset</u> Value		
PLL	PLL4 (PLL CONTROL 4 REGISTER, 0x2289)					
	register is lency of the	used to process an automatic frequency calibration (AFC) when changing e PLL.	the loc	king		
7 AFCST ART AFC. AFC is processed when the AFCSTART is set to '1'. After the AFC process, the AFCSTART field is automatically cleared to '0'.				0		
6	AFCEN Automatic Frequency Calibration Enable. Used to enable the AFC process and should be set to '1' to run AFC.		R/W	0		
5:0		Reserved		111111		
	•	NTROL 5 REGISTER, 0x228A)				
7	register is	used to check whether PLL is locked or not. Reserved	R/W	0		
1			F\/ V V	0		
6	6 PLLOC Shows the locking status of PLL circuit. When this field is set to '1', the PLL circuit is locked. When '0', the PLL circuit is not locked.		R/W	0		
5:0		Reserved		111111		

To change the channel setting, the PLL0, PLL1, PLL2, PLL3, PLL4 registers need to be changed by the following procedure:

1) Change the RF RX-path to the power-down state by setting the RXRFPD register to 00000000.

- Change the RF TX-path to the power-down state by setting the TXRFPD register to 11010000.
- 3) Set the values of the PLL0, PLL1, PLL2, PLL3 registers.
- 4) Start the AFC by setting 11101111 into the PLL4 register.
- 5) Retain Stand-by state until setting PLLLOCK in PLL5 register to '1'.
- 6) Change the RF TX-path from the power-down state to the normal state by setting the TXRFPD register to 11111111 after setting the PLLLOCK to '1'.
- 7) Change the RF RX-path from the power-down state to the normal state by setting the RXRFPD register to 11111111.

TXPA0/1/2 (POWER AMPLIFIER OUTPUT CONTROL REGISTER, 0x22A0/1/2) R/W.

This register determines the power out of the device. For the linear output level, TXPA0, TXPA1 and TXPA2 should be adjusted per the following table.

TX Output Power Level (dBm)	TXPA0(0xA0)	TXPA1(0xA1)	TXPA2(0xA2)
8	10011111	11111111	01101111
7	10011111	11110101	01101111
6	10011101	11110000	01101111
5	10011111	11101101	01101111
4	10010101	11101101	01101111
3	00011111	11110011	01101111
2	00011111	11101100	01101111
1	00011110	11101010	01101111
0	00011100	11101001	01101111
-5	00011110	11100011	01101111
-7	00011000	11100011	01101111
-10	00011000	11100010	01101111
-15	00010011	11100010	01101111
-20	00010010	11100010	01101110

Table 49 – TX Output Power Settings

1.10 IN-SYSTEM PROGRAMMING (ISP)

In-system programming (ISP) function enables a user to download an application program to the internal flash memory. When Power-on, the ZIC2410 checks the value of the MS [2:0] pin. When the value of the MS [2] pin is '1' and the value of the MS [1:0] is '0', ISP mode is selected. The following procedure is to use the ISP function.

- 1. In MS [2:0] pin, MS [2] should be set to'1'. MS [1] and MS [0] should be set to '0'.
- 2. Make RS-232 connection with the PC by using the Serialport1. The configuration is 8-bit, no parity, 1 stop bit and 115200 baud rate.
- 3. Power up the device.
- 4. Execute the ISP program. (It is included in the Development Kit)
- 5. Load an application program in Intel HEX format.
- 6. Download.

When the procedure is finished, an application program is stored in the internal flash memory. To execute the application program, a device should be reset after setting MS [2:0] pin to '0'

After reset, the application program in the internal flash memory is executed by the internal MCU.

1.11 ZIC2410 INSTRUCTION SET SUMMARY

Table 50 – Instruction Set Summary

MNEMONIC	Table 50 – Instruction Set Summary DESCRIPTION	BYTE	CYCLE
	OPERATIONS		· · · · · · · · · · · · · · · · · · ·
ADD A, Rn	Add register to Accumulator	1	1
ADD A, direct	Add direct byte to Accumulator	2	1
ADD Á, @Ri	Add indirect RAM to Accumulator	1	1
ADD A, #data	Add immediate data to Accumulator	2	1
ADDC A,Rn	Add register to Accumulator with Carry	1	1
ADDC A, direct	Add direct byte to Accumulator with Carry	2	1
ADDC A,@Ri	Add indirect RAM to Accumulator with Carry	1	1
ADDC A,#data	Add immediate data to Accumulator with Carry	2	1
SUBB A,Rn	Subtract register to Accumulator with borrow	1	1
SUBB A, direct	Subtract direct byte to Accumulator with borrow	2	1
SUBB A,@Ri	Subtract indirect RAM to Accumulator with borrow	1	1
SUBB A,#data	Subtract immediate data to Accumulator with borrow	2	1
INC A	Increment Accumulator	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment direct RAM	1	1
DEC A	Decrement Accumulator	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement direct RAM	1	1
INC DPTR	Increment Data Pointer	1	3
MUL AB	Multiply A & B	1	3
DIV AB	Divide A by B	1	10
DA A	Decimal Adjust Accumulator	1	1
LOGICAL OPI			
ANL A,Rn	AND register to Accumulator	1	1
ANL A, direct	AND direct byte to Accumulator	2	2
ANL A,@Ri	AND indirect RAM to Accumulator	1	1
ANL A,#data	AND immediate data to Accumulator	2	1
ANL direct,A	AND Accumulator to direct byte	2	2
ANL direct,#data	AND immediate data to direct byte	3	2
ORL A,Rn	OR register to Accumulator	1	1
ORL A, direct	OR direct byte to Accumulator	2	2
ORL A,@Ri	OR indirect RAM to Accumulator	1	1
ORL A,#data	OR immediate data to Accumulator	2	1
ORL direct,A	OR Accumulator to direct byte	2	2
ORL direct,#data	OR immediate data to direct byte	3	2
XRL A,Rn	Exclusive-OR register to Accumulator	1	1
XRL A, direct	Exclusive-OR direct byte to Accumulator	2	2
XRL A,@Ri	Exclusive-OR indirect RAM to Accumulator	1	1
XRL A,#data	Exclusive-OR immediate data to Accumulator	2	1
XRL direct,A	Exclusive-OR Accumulator to direct byte	2	2
XRL direct,#data	Exclusive-OR immediate data to direct byte	3	2
CLR A	Clear Accumulator	1	1
CPL A	Complement Accumulator	1	1
RL A	Rotate Accumulator Left	1	1
	Rotate Accumulator Left through the Carry	1	1
RLC A			
RLC A RR A	Rotate Accumulator Right	1	1

MNEMONIC	DESCRIPTION	BYTE	CYCLE
SWAP A	Swap nibbles within the Accumulator	1	1
DATA TRANS	FER		•
MOV A,Rn	Move register to Accumulator	1	1
MOV A, direct	Move direct byte to Accumulator	2	1
MOV A,@Ri	Move indirect RAM to Accumulator	1	1
MOV A,#data	Move immediate data to Accumulator	2	3
MOV Rn,A	Move Accumulator to register	1	3
MOV Rn,direct	Move direct byte to register	2	2
MOV Rn,#data	Move immediate data to register	2	2
MOV direct,A	Move Accumulator to direct byte	2	2
MOV direct,Rn	Move register to direct byte	2	2
MOV direct, direct	Move direct byte to direct	3	3
MOV direct,@Ri	Move indirect RAM to direct byte	2	2
MOV direct,#data	Move immediate data to direct byte	3	2
MOV @Ri,A	Move Accumulator to indirect RAM	1	2
MOV @RI,direct	Move direct byte to indirect RAM	2	3
MOV @Ri,#data	Move immediate data to indirect RAM	2	2
MOV DPTR,#data16	Load Data Pointer with a 16-bit constant	3	3
MOVC A,@A+DPTR	Move Code byte relative to DPTR to Accumulator	1	2
MOVC A,@A+PC	Move Code byte relative to PC to Accumulator	1	1
MOVX A,@Ri	Move External RAM (8-bit addr) to Accumulator	1	1
MOVX A,@DPTR	Move External RAM (16-bit addr) to Accumulator	1	1
MOVX @Ri,A	Move Accumulator to External RAM (8-bit addr)	1	2
MOVX @DPTR,A	Move Accumulator to External RAM (16-bit addr)	1	1
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A,Rn	Exchange register with Accumulator	1	2
XCH A, direct	Exchange direct byte with Accumulator	2	2
XCH A,@Ri	Exchange indirect RAM with Accumulator	1	2
XCHD A,@Ri	Exchange low-order Digit indirect RAM with Accumulator	1	2
	RIABLE MANUPULATION		1
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	1
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	1
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	1
ANL C,bit	AND direct bit to Carry	2	2
ANL C,/bit	AND complement of direct bit	2	2
ORL C,bit	OR direct bit to Carry	2	1
ORL C,/bit	OR complement of direct bit to Carry	2	1
MOV C,bit	Move direct bit to Carry	2	1
MOV bit,C	Move Carry to direct bit	2	1
JC rel	Jump if Carry is set	2	2
JNC rel	Jump if Carry is not set	2	2
JB bit.rel	Jump if direct Bit is set	3	2
JNB bit,rel	Jump if direct Bit is Not set	3	3
JBC bit,rel	Jump if direct Bit is set & clear bit	3	3
PROGRAM BE			
ACALL addr11	Absolute Subroutine Call	2	3
LCALL addr16	Long Subroutine Call	3	3
RET	Return from Subroutine	1	3
	-	I	

MNEMONIC	DESCRIPTION	BYTE	CYCLE
RETI	Return from interrupt	1	3
AJMP addr11	Absolute Jump	2	3
LJMP addr16	Long Jump	3	3
SJMP rel	Short Jump (reletive addr)	2	2
JMP @A+DPTR	Jump indirect relative to the DPTR	1	2
JZ rel	Jump if Accumulator is Zero	2	2
JNZ rel	Jump if Accumulator is Not Zero	2	2
CJNE A, direct, rel	Compare direct byte to Accumulator and Jump if Not Equal	3	3
CJNE A,#data,rel	Compare immediate to Accumulator and Jump if Not Equal	3	3
CJNE Rn,#data,rel	Compare immediate to register and Jump if Not Equal	3	3
CJNE @Ri,#data,rel	Compare immediate to indirect and Jump if Not Equal	3	3
DJNZ Rn,rel	Decrement register and Jump if Not Zero	2	2
DJNZ direct, rel	Decrement direct byte and Jump if Not Zero	3	2
NOP	No Operation	1	1

1.12 DIGITAL I/O

EQUIVALENT SCHEMATIC	POWER (uW/MHz)	MAX DRIVE (mA)
RESET#		
PAD PAD	4.67	N.A
XOSCI/XOSCO, RTCI/RTCO		
	53.86	N.A
GPIO (P0, P1, P3)		
	82.08	4
MS2,MS1, MS0,MSV		
	3.53	N.A.
TSRW, CSROM#	I	
PAD	55.67	4

2 AC & DC CHARACTERISTICS

2.1 ABSOLUTE MAXIMUM RATINGS

Table 51 – Absolute Maximum Ratings: ZIC2410 (all packages)

Symbol	Parameter	Rating	<u>Unit</u>
VDD	Chip Core Supply Voltage	-0.3 to 2.0	V
VDDIO	I/O Supply Voltage	-0.3 to 3.6	V
RFIN	Input RF Level	10	dBm
TSTG	Storage Temperature	-40 to 85	O°

Exceeding one or more of these ratings may cause permanent damage to the device.

NOTE: All voltage values are based on V_{SS} and V_{SSIO}.

CAUTION: ESD sensitive device. Precaution should be used when handling the device to prevent permanent damage.

2.2 DC CHARACTERISTICS

Table 52 – DC Characteristics: ZIC2410 (all packages)

VDD = 1.5	VDD = 1.5 V, VDDIO = 3.0 V, TA (ambient temperature) = 25°C unless otherwise stated.									
<u>Symbol</u>	Parameter	<u>min</u>	<u>typ</u>	<u>max</u>	<u>Unit</u>					
V _{dd}	Core Supply voltage NOTE 1 (DVDD, AVDD_VCO, AVDD_RF1, AVDD_DAC, DVDD_XOSC, AVDD, AVDD_CP)	1.35	1.5	2.0	V					
V _{DDIO}	I/O Supply voltage (DVDD3V) NOTE 2	1.35	3.0	3.3	V					
AGND	Chip Ground		0		V					
VIH	High level input voltage NOTE 1	$0.7 \times V_{DD}$		V_{DD}	V					
VIL	Low level input voltage NOTE 1	0		$0.3 \times V_{DD}$	V					
V _{OH}	High level output voltage NOTE 1	2		V_{DD}	V					
V _{OL}	Low level output voltage NOTE 1	0		0.4	V					
TA	Air temperature	-40		85	°C					

NOTE 1: All voltage values are based on AGND. All input and output voltage levels are TTL-compatible.

NOTE 2: For the I/O Supply Voltage (DVDD3), we recommend using a value that is less than twice that of the Core Supply Voltage.

2.3 ELECTRICAL SPECIFICATIONS

2.3.1 ELECTRICAL SPECIFICATIONS with an 8MHz CLOCK

Table 53 – Electrical Specifications: 8MHz Clock

Temp = 25°C, VDD=3.0V, Core Voltage¹=1.5V, MCU Clock=8MHz²

Parameter	ZI	C2410QI	148	Z	IC2410F	G72	Unit
Parameter	min	typ	max	min	typ	max	Unit
Current Consumption							
Active MCU without RX/TX Operation		3.35			3.35		mA
(AES, Peripheral, SADC Disabled)		0.00			0.00		110.1
Active MCU with TX Mode							
(AES, Peripheral, SADC Disabled)		40			40.4		
@+8dBm Output Power @+7dBm Output Power		43 41.4			42.1 40.2		
@+6dBm Output Power		39.8			40.2 38.5		
@+5dBm Output Power		37.9			38.4		mA
@+4dBm Output Power		35.8			34.8		
@+3dBm Output Power		34.2			33.2		
@+2dBm Output Power		32.9			31.8		
@+1dBm Output Power		31.9			30.9		
@+0dBm Output Power		30.6			29.7		
Active MCU with RX Mode		33.2			33.2		mA
(AES, Peripheral, SADC Disabled)							
PM1		25			25		μA
PM2		1.7			1.7		μA
PM3		0.3 ³			0.3 ³		μA
AES		2.1			2.1		mA
Peripheral		2.2			2.2		mA
Sensor ADC		1			1		mA
RF Characteristics		•					
RF Frequency Range	2.400		2.4835	2.400		2.4835	GHz
Transmit Data Rate (Normal Mode ⁴ – 250kbps)		250			250		kbps
Transmit Data Rate (Turbo Mode – 500kbps)		500			500		kbps
Transmit Data Rate (Premium Mode – 1Mbps)		1000			1000		kbps
Transmit Chip Rate		2000			2000		<chips s<="" td=""></chips>
Output Power		8			8		dBm
Programmable Output Power Range		30			30		dB
Receiver Sensitivity							-
Normal Mode (250kbps)		-98			-98		dDrea
Turbo Mode (500kbps)		-95			-95		dBm
Premium Mode (1Mbps)		-91			-91	ļ	

¹ AVDD_VCO, AVDD_RF1, AVDD_CP, AVDD_DAC, AVDD, DVDD_XOSC, DVDD ² Refer to **Section 1.4** in this document for register setting of MCU clock.

⁴ ZigBee Standard

³ Based on the Teradyne J750 MP(Mass Production) test equipment

Temp = 25°C, VDD=3.0V, Core Voltage	¹ =1.5V, MCU Clock=8MHz ²
-------------------------------------	---

Parameter	Z	IC2410QN	N48	Z	(IC2410F	G72	Unit
Parameter	min	typ	max	min	typ	max	
Adjacent Channel Rejection							
+5MHz		47			49		dB
–5MHz		47			48.8		
Alternate Channel Rejection +10MHz		53			56.1		dB
–10MHz		53			56.8		uВ
Others Channel Rejection					00.0		
, ≥+15MHz		43			52.7		dB
≥–15MHz		42			58.3		
Co-channel Rejection		-9.6			-10.7		dB
Blocking/Desensitization							
± 5 MHz		-42			-45		
± 10 MHz		-36			-42		
± 15 MHz		-46			-48		dBm
± 20 MHz		-35 -42			-40		
± 30 MHz ± 50 MHz		-42 -45			-43 -46		
Spurious Emission (30Hz~1GHz)		-50			-50		dBm
Spurious Emission (1GHz~2.5GHz)		-40			-40		dBm
Spurious Emission (2.5~12.7GHz)		-50			-50		dBm
2 nd Harmonics		-50			-50		dBm
3 rd Harmonics		-70			-70		dBm
Frequency Error Tolerance		10	±200		10	±200	kHz
Error Vector Magnitude (EVM)		10			9.8		%
Saturation(Maximum Input Level)		5			5		dBm
RSSI Dynamic Range		90			90		dB
RSSI Accuracy		±1.2	+6/_3		±1.2	+6/_3	dB
RSSI Linearity		±0.2	±6		±0.2	±6	dB
RSSI Average Time		128			128		μsec
Frequency Synthesizer	I	1	ļ	1	1 .==		
Phase Noise							
@ \pm 100KHz offset		-81.9			-80.3		
@ ±1MHz offset		-108.6			-108.8		dBc
@ ±2MHz offset		-113.3			-113.3		Hz
@ ±3MHz offset		-120.3			-120.4		
@ ±5MHz offset		-124.3			-124.2		
PLL Lock Time		110			110		μseo
PLL Jitter		16			16		psec
Crystal Oscillator Frequency		16			16		MHz
Crystal Frequency Accuracy Requirement	-10		+10	-10		+10	ppm
On-chip RC Oscillator						l	-
Frequency		32.78			32.78		KHz
Sensor ADC							
Number of Bits		8			8		bits

Parameter		ZIC2410QN48			ZIC2410FG72		
Falameter	min	typ	max	min	typ	max	Unit
Conversion Time		256			256		μsec
Differential Nonlinearity (DNL)		±1.7			±1.7		LSB
Integral Nonlinearity (INL)		±2.4			±2.4		LSB
Signal to Noise and Distortion Ratio (SINAD)(Sine Input)		51.0			51.0		dB
On-chip Voltage Regulator			-				
Supply range for Regulator	1.9	3.0	3.6	1.9	3.0	3.6	V
Regulated Output		1.5			1.5		V
Maximum Current			140 ⁵			140 ⁶	mA
No Load Current		15			15		μA
Start-up Time		260 ⁷			260 ⁸		μsec

Temp = 25° C. VDD=3.0V. Core Voltage¹=1.5V. MCU Clock=8MHz²

 $^{^5}$ Voltage Regulator Input Voltage=3V, 80mV voltage drop 6 Voltage Regulator Input Voltage=3V, 80mV voltage drop 7 10 μF and 100pF load capacitor 8 10 μF and 100pF load capacitor

2.3.2 ELECTRICAL SPECIFICATIONS with a 16MHz CLOCK

Parameter	ZI	C2410QI	N48	Z	IC2410F	G72	Unit
Parameter	min	typ	max	min	typ	max	Unit
Current Consumption							
Active MCU without RX/TX Operation		4.6			4.6		mA
(AES, Peripheral, SADC Disabled)		4.0			4.0		
Active MCU with TX Mode							
(AES, Peripheral, SADC Disabled) @+8dBm Output Power		46.3			45.1		
@+7dBm Output Power		40.3			45.1 43.2		
@+6dBm Output Power		44.0			43.2 41.5		
@+5dBm Output Power		43.1			41.4		mA
@+4dBm Output Power		38.9			37.8		
@+3dBm Output Power		37.3			36.2		
@+2dBm Output Power		36.0			34.8		
@+1dBm Output Power		35.1			33.9		
@+0dBm Output Power		33.8			32.7		
Active MCU with RX Mode		36.4			35.2		mA
(AES, Peripheral, SADC Disabled)							ША
PM1		25			25		μA
PM2		1.7			1.7		μA
PM3		0.3 ¹¹			0.3 ¹²		μA
AES		3.1			3.1		mA
Peripheral		2.6			2.6		mA
Sensor ADC		1			1		mA
RF Characteristics		•					
RF Frequency Range	2.400		2.4835	2.400		2.4835	GHz
Transmit Data Rate (Normal Mode ¹³ – 250kbps)		250			250		kbps
Transmit Data Rate (Turbo Mode – 500kbps)		500			500		kbps
Transmit Data Rate (Premium Mode – 1Mbps)		1000			1000		kbps
Transmit Chip Rate		2000			2000		kChip s/s
Output Power		8			8		dBm
Programmable Output Power Range		30			30		dB
Receiver Sensitivity							
Normal Mode (250kbps)		-98			-98		dBm
Turbo Mode (500kbps)		-95			-95		
Premium Mode (1Mbps)		-91			-91		

Table 54 – Electrical Specifications: 16MHz Clock 25°C, VDD=3.0V, Core Voltage⁹=1.5V, MCU Clock=16MHz¹⁰

⁹ AVDD_VCO, AVDD_RF1, AVDD_CP, AVDD_DAC, AVDD, DVDD_XOSC, DVDD

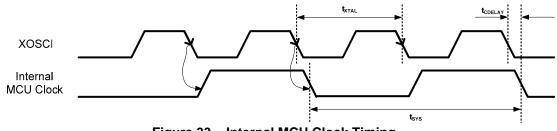
¹⁰ Refer to **Section 1.4** in this document for register setting of MCU clock.

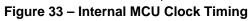
¹³ ZigBee Standard

¹¹ Based on the Teradyne J750 MP(Mass Production) test equipment

¹² Based on the Teradyne J750 MP(Mass Production) test equipment

Temp = 25°C, VDD=3.0V, Core Voltage ⁹ =1.5V, MCU Clock=16MHz ¹⁰	Temp = 25° C. VD	D=3.0V. Core Voltac	ae ⁹ =1.5V. MCU C	clock=16MHz ¹⁰
---	---------------------------	---------------------	------------------------------	---------------------------


Deremator	ZIC2410QN48 ZIC2410FG72				G72	Unit	
Parameter	min	typ	max	min	typ	max	Unit
Adjacent Channel Rejection							
+5MHz		47			49		dB
–5MHz		47			48.8		
Alternate Channel Rejection		50			EG 1		ЧD
+10MHz –10MHz		53 51			56.1 56.8		dB
Others Channel Rejection		51			50.0		
≥+15MHz		43			52.7		dB
≥–15MHz		42			58.3		
Co-channel Rejection		-9.6			-10.7		dB
Blocking/Desensitization							
± 5 MHz		-42			-45		
± 10 MHz		-36			-42 -48		dDm
± 15 MHz ± 20 MHz		-46 -35			-48 -40		dBm
± 20 MHz					-40 -43		
± 50 MHz		-45			-46		
Spurious Emission (30Hz~1GHz)		-50			-50		dBm
Spurious Emission (1GHz~2.5GHz)	_	-40			-40		dBm
Spurious Emission (2.5~12.7GHz)	-	-50			-50		dBm
2 nd Harmonics	-	-50			-50		dBm
3 rd Harmonics		-70			-70		dBm
Frequency Error Tolerance			±200			±200	kHz
Error Vector Magnitude (EVM)		10			9.8		%
Saturation(Maximum Input Level)		5			5		dBm
RSSI Dynamic Range		90			90		dB
RSSI Accuracy		±1.2	+6/_3		±1.2	+6/-3	dB
RSSI Linearity		±0.2	±6		±0.2	±6	dB
RSSI Average Time		128			128		μsec
Frequency Synthesizer							• •
Phase Noise							
@ \pm 100KHz offset		-81.9			-80.3		
@ ±1MHz offset		-108.6			-108.8		dBc/
@ \pm 2MHz offset		-113.3			-113.3		Hz
@ \pm 3MHz offset		-120.3			-120.4		
@ ±5MHz offset		-124.3			-124.2		
PLL Lock Time		110			110		μsec
PLL Jitter		16			16		psec
Crystal Oscillator Frequency		16			16		MHz
Crystal Frequency Accuracy Requirement	-10		+10	-10		+10	ppm
On-chip RC Oscillator							1.0.7
Frequency		32.78			32.78		KHz
Sensor ADC		-					
Number of Bits		8			8		bits
Conversion Time		256			256		μsec


Parameter		ZIC2410QN48			ZIC2410FG72		
Falanielei	min	typ	max	min	typ	max	Unit
Differential Nonlinearity(DNL)		±1.7			±1.7		LSB
Integral Nonlinearity(INL)		±2.4			±2.4		LSB
Signal to Noise and Distortion Ratio (SINAD) (Sine Input)		51.0			51.0		dB
On-chip Voltage Regulator							
Supply range for Regulator	1.9	3.0	3.6	1.9	3.0	3.6	V
Regulated Output		1.5			1.5		V
Maximum Current			140 ¹⁴			140 ¹⁵	mA
No Load Current		15			15		μA
Start-up Time		260 ¹⁶			260 ¹⁷		μsec

Temp = 25°C, VDD=3.0V, Core Voltage⁹=1.5V, MCU Clock=16MHz¹⁰

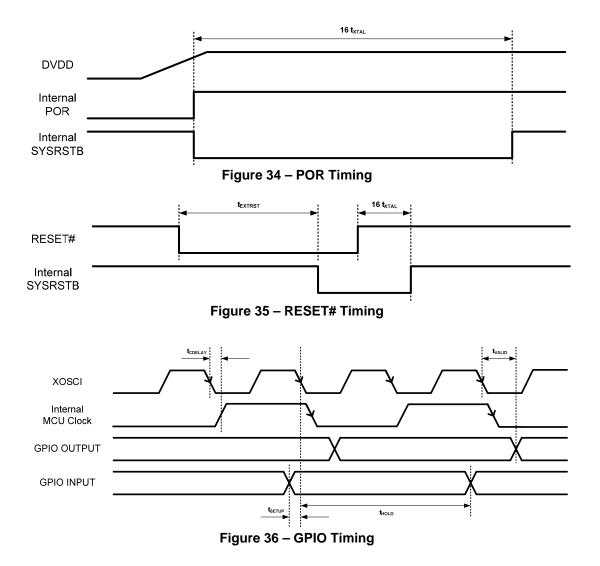
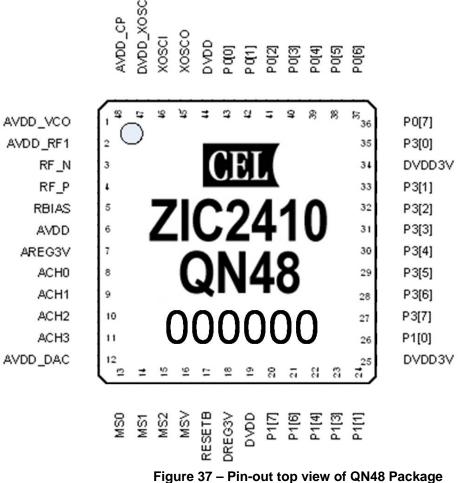

2.3.3 AC CHARACTERISTICS

Table 55 – Timing Specifications										
Parameter	MIN	TYP	MAX	UNIT						
Internal MCU Clock Timing (See Error! Reference source not found.)										
t _{XTAL} (Crystal Oscillator Duration)		62.5		ns						
t _{SYS} (Internal MCU Clock Duration)		125		ns						
t _{CDELAY} (Internal MCU Clock Delay)			0.5	ns						
POR Timing (See Figure 34 below.)										
16 t _{XTAL}		16 x 62.5		ns						
RESET# Timing (See Figure 35 below	r.)									
t _{EXTRST} (RESET# Interval)	1			ms						
16 t _{xtal}		16 x 62.5		ns						
GPIO Timing (See Figure 36 below.)										
t _{SETUP}	1			ns						
t _{HOLD}	1			ns						
t _{VALID}			10	ns						


 $^{^{14}}$ Voltage Regulator Input Voltage=3V, 80mV voltage drop 15 Voltage Regulator Input Voltage=3V, 80mV voltage drop 16 10µF and 100pF load capacitor 17 10µF and 100pF load capacitor

3 PACKAGE & PIN DESCRIPTIONS

3.1 PIN ASSIGNMENTS

3.1.1 QN48 Package

* Chip Ground (GND) is located in the center on the bottom of a chip.

Pin No.Pin NamePin TypePin DescriptionExposed bottomGNDGroundGround for RF, Analog, digital core, and IO1AVDD, VCOPower1.5V Power supply for VCO and Divider2AVDD, RF1Power1.5V Power supply for LNA and PA3RF_NRFNegative RF input/output signal to LNA / from PA in receive / transmit mode4RF_PRFPositive RF input/output signal to LNA / from PA in receive / transmit mode5RBIASAnalogExternal bias resistor6AVDDPower (In/Out)Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG)7AVREG3VPower (In/Out)3.0V Power supply for Analog Internal Voltage Regulator8ACH0Analog Sensor ADC input10ACH2Analog (Idigital)11ACH3Analog MS[20] (Mode Select)12AVDD_PACPower13MS[0]I (digital) (Idigital)14MS[1]I (digital)15MS[2]I (digital)16MSVI (digital)17RESETBI (digital)18DVREG3VPower19DVDDPower10ACH2Analog20P1[7]O (digital)19DVDDPower10ACH2Analog11ACH312AVDD_RV13MS[0]14MS[1]15 <t< th=""><th colspan="5">Table 56 – Pin-out overview; QN48 package</th></t<>	Table 56 – Pin-out overview; QN48 package				
bottom Ground Ground Ground for RF, Arlang, digital cole, and D 1 AVDD_RF1 Power 1.5V Power supply for VCO and Divider 2 AVDD_RF1 Power 1.5V Power supply for LNA and PA 3 RF_N RF Negative RF input/output signal to LNA / from PA in receive / transmit mode 4 RF_P RF Positive RF input/output signal to LNA / from PA in receive / transmit mode 5 RBIAS Analog External bias resistor 6 AVDD Power 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power 3.0V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 8 ACH0 Analog Sensor ADC input 10 ACH1 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) Nortal mode 14 MS[1] I (digital) Node Select) Nohode Select) 15 MS[<u>Pin Name</u>	Pin Type	Pin Description	
2 AVDD_RF1 Power 1.5V Power supply for LNA and PA 3 RF_N RF Negative RF input/output signal to LNA / from PA in receive / transmit mode 4 RF_P RF Positive RF input/output signal to LNA / from PA in receive / transmit mode 5 RBIAS Analog External bias resistor 6 AVDD Power Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power 3.0V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 8 ACH0 Analog Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) MS[2] I (digital) 14 MS[1] I (digital) 01: ISP mode 001: ISP mode 15 MS[2] I (digital) Reset (Active Low) 01: ISV Power s		GND	Ground	Ground for RF, Analog, digital core, and IO	
3 RF_N RF Negative RF input/output signal to LNA / from PA in receive / transmit mode 4 RF_P RF Positive RF input/output signal to LNA / from PA in receive / transmit mode 5 RBIAS Analog External bias resistor 6 AVDD Power (In/Out) Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power (In/Out) Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) •When NOT using Internal Regulator of ZIC2410 14 MS[1] I (digital) •When NOT using Internal Regulator of ZIC2410 15 MS[2] I (digital) Mode Select of Voltage 16 MSV I (digital) Reset (Active Low) 18 DVREG3V Power 3.0V Power supply for Internal Voltage Regulator <	-				
3 RF_IR RF receive / transmit mode 4 RF_P RF Positive RF input/output signal to LNA / from PA in receive / transmit mode 5 RBIAS Analog External bias resistor 6 AVDD Power (In/Out) Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power (In/Out) Sensor ADC input 8 ACH0 Analog Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) 001: ISP mode 14 MS[1] I (digital) 01: ISP mode 15 MS[2] I (digital) Reset (Active Low) 18 DVREG3V Power 3.0V Power supply for Digital Core(input mode @ No REG) 20 P1[7] O (digital) Port P1.7 GPO / POAND / TRSW	2	AVDD_RF1	Power		
4 RP_P RP receive / transmit mode 5 RBIAS Analog External bias resistor 6 AVDD Power Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power 3.0V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 8 ACH0 Analog Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) •When vsing Internal Regulator of ZIC2410 000: Normal mode 14 MS[1] I (digital) •When NOT using Internal Regulator of ZIC2410 01: Normal mode 15 MS[2] I (digital) Power 3.0V Power supply for Internal Voltage Regulator 16 MSV I (digital) Reset (Active Low) 0 18 DVREG3V Power 3.0V Power supply for Internal Voltage Regulator <td>3</td> <td>RF_N</td> <td>RF</td> <td></td>	3	RF_N	RF		
6 AVDD Power (In/Out) Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power 3.0V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 9 ACH0 Analog Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) NS[2:0] (Mode Select) 14 MS[1] I (digital) Normal mode 15 MS[2] I (digital) Normal mode 16 MSV I (digital) Node Select of Voltage 0 - 1.5V 17 RESETB I (digital) Reset (Active Low) 18 DVREG3V Power 3.0V Power supply for Internal Voltage Regulator 19 DVDD Power (In/Out) Reset (Active Low) 20 P1[7] O (digital) Port P1.4 / QUADZ8 / Sleep	4	RF_P	RF		
6 AVDD Power (In/Out) 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG) 7 AVREG3V Power 3.0V Power supply for Analog Internal Voltage Regulator 8 ACH0 Analog Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) When using Internal Regulator of ZIC2410 000: Normal mode 14 MS[1] I (digital) When NGT using Internal Regulator of ZIC2410 001: ISP mode 15 MS[2] I (digital) Reset (Active Low) 16 MSV I (digital) Reset (Active Low) 18 DVREG3V Power 3.0V Power supply for Internal Voltage Regulator 19 DVDD Power (In/Out) Port P1.7 GPO / POAND / TRSW 21 P1[6] I/O (digital) Port P1.6 / TRSWB 22 P1[4] I/O (digital) <td< td=""><td>5</td><td>RBIAS</td><td>Analog</td><td>External bias resistor</td></td<>	5	RBIAS	Analog	External bias resistor	
7 AVREG3V Powel Regulator 8 ACH0 Analog Sensor ADC input 9 ACH1 Analog Sensor ADC input 10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) When using Internal Regulator of ZIC2410 14 MS[1] I (digital) When NOT using Internal Regulator of ZIC2410 15 MS[2] I (digital) When NOT using Internal Regulator of ZIC2410 16 MSV I (digital) Oto: Normal mode 17 RESETB I (digital) Reset (Active Low) 18 DVREG3V Power 3.0V Power supply for Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG) 20 P1[7] O (digital) Port P1.7 GPO / POAND / TRSW 21 P1[6] I/O (digital) Port P1.4 / QUADZA / Sleep Timer OSC Buffer Input / RTCLKOUT 23 P1[3] I/O (digital) Port P1.4 / QUADZA / Sleep Timer OSC Buffer Input / RTCLKOUT 24 <td>6</td> <td>AVDD</td> <td></td> <td>1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG)</td>	6	AVDD		1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG)	
9ACH1AnalogSensor ADC input10ACH2AnalogSensor ADC input11ACH3AnalogSensor ADC input12AVDD_DACPower1.5V Power supply for ADC and DAC13MS[0]I (digital)MS[2:0] (Mode Select) • When using Internal Regulator of ZIC2410 000: Normal mode 001: ISP mode14MS[1]I (digital)• When using Internal Regulator of ZIC2410 001: ISP mode15MS[2]I (digital)• When NOT using Internal Regulator of ZIC2410 010: Normal mode 010: Normal mode 0-1.5V16MSVI (digital)Mode Select of Voltage 0-1.5V17RESETBI (digital)Reset (Active Low)18DVREG3VPower3.0V Power supply for Internal Voltage Regulator (I.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / POAND / TRSW21P1[6]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.1 / TXD124P1[1]I/O (digital)Port P1.1 / TXD125DVD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P1.1 / TXD128P3[6]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICLK29P3[5]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYA / SPIDI30P3[4]I/O (digital)Port P3.5 / T1	7	AVREG3V	Power	Regulator	
10 ACH2 Analog Sensor ADC input 11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) MS[2:0] (Mode Select) 14 MS[1] I (digital) When using Internal Regulator of ZIC2410 15 MS[2] I (digital) Normal mode 16 MSV I (digital) Normal mode 16 MSV I (digital) Mode Select of Voltage 0 010: Normal mode 010: Normal mode 17 RESETB I (digital) Reset (Active Low) 18 DVREG3V Power 3.0V Power supply for Internal Voltage Regulator 19 DVDD Power (In/Out) Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG) 22 P1[7] O (digital) Port P1.7 GPO / POAND / TRSW 23 P1[3] I/O (digital) Port P1.4 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT 24 P1[1] I/O (digital) Port P1.1 / TXD1 25 DVDD3V Power 3.0V P		ACH0	Analog	Sensor ADC input	
11 ACH3 Analog Sensor ADC input 12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) MS[2:0] (Mode Select) 14 MS[1] I (digital) •When using Internal Regulator of ZIC2410 000: Normal mode 15 MS[2] I (digital) •When NOT using Internal Regulator of ZIC2410 010: Normal mode 16 MSV I (digital) Mode Select of Voltage 0 – 1.5V 17 RESETB I (digital) Reset (Active Low) 18 DVREG3V Power (In/Out) Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG) 20 P1[7] O (digital) Port P1.6 / TRSWB 22 P1[4] I/O (digital) Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input / RTCLKOUT 23 P1[3] I/O (digital) Port P1.1 / TXD1 24 P1[1] I/O (digital) Port P1.0 / RXD1 25 DVDD3V Power 3.0V Power supply for Digital IO 26 P1[0] I/O (digital) Port P1.3 / 12mA Drive capability / PWM3 / CTS1 / SPICSN 28 P3[6] I/O (digital)	9	ACH1	Analog	Sensor ADC input	
12 AVDD_DAC Power 1.5V Power supply for ADC and DAC 13 MS[0] I (digital) MS[2:0] (Mode Select) 14 MS[1] I (digital) •When using Internal Regulator of ZIC2410 000: Normal mode 15 MS[2] I (digital) •When NOT using Internal Regulator of ZIC2410 01: ISP mode 16 MSV I (digital) Mode Select of Voltage 0 – 1.5V 17 RESETB I (digital) Reset (Active Low) 18 DVREG3V Power (In/Out) Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG) 20 P1[7] O (digital) Port P1.7 GPO / POAND / TRSW 21 P1[6] I/O (digital) Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input / RTCLKOUT 23 P1[3] I/O (digital) Port P1.1 / TXD1 25 DVDD3V Power 3.0V Power supply for Digital IO 26 P1[0] I/O (digital) Port P1.1 / TXD1 25 DVDD3V Power 3.0V Power supply for Digital IO Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICLK 28 P3[6] I/O (digital)<	10	ACH2	Analog	Sensor ADC input	
13 MS[0] I (digital) 14 MS[1] I (digital) 14 MS[1] I (digital) 15 MS[2] I (digital) 15 MS[2] I (digital) 16 MSV I (digital) 17 RESETB I (digital) 18 DVREG3V Power 19 DVDD Power (In/Out) Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG) 20 P1[7] O (digital) Port P1.7 GPO / P0AND / TRSW 21 P1[6] I/O (digital) Port P1.4 / QUADZA / Sleep Timer OSC Buffer Input / RTCLKOUT 23 P1[3] I/O (digital) Port P1.1 / TXD1 24 P1[1] I/O (digital) Port P1.1 / TXD1 25 DVDD3V Power 3.0V Power supply for Digital IO 26 P1[0] I/O (digital) Port P1.0 / RXD1 27 P3[7] I/O (digital) Port P3.6 / 12mA Drive capability / PWM3 / CTS1 / SPICLK 28 P3[6] I/O (digital) Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK	11	ACH3	Analog	Sensor ADC input	
13MS[0]I (digital)• When using Internal Regulator of ZIC2410 000: Normal mode 001: ISP mode14MS[1]I (digital)• When using Internal Regulator of ZIC2410 001: ISP mode15MS[2]I (digital)• When NOT using Internal Regulator of ZIC2410 010: Normal mode 110: ISP mode16MSVI (digital)Mode Select of Voltage 0 – 1.5V17RESETBI (digital)Reset (Active Low)18DVREG3VPower (In/Out)3.0V Power supply for Internal Voltage Regulator 0utput of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.6 / TRSWB21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.4 / QUADZA / Sleep Timer OSC Buffer Input / RTCLKOUT23P1[3]I/O (digital)Port P1.1 / TXD124P1[1]I/O (digital)Port P1.0 / RXD125DVDD3VPower 3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.6 / 12mA Drive capability / PWM3 / CTS1 / SPICLK28P3[6]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYA / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	12	AVDD_DAC	Power	1.5V Power supply for ADC and DAC	
14MS[1]I (digital)001: ISP mode • When NOT using Internal Regulator of ZIC2410 010: Normal mode 110: ISP mode15MS[2]I (digital)• When NOT using Internal Regulator of ZIC2410 010: Normal mode 110: ISP mode16MSVI (digital)Mode Select of Voltage 0 - 1.5V17RESETBI (digital)Reset (Active Low)18DVREG3VPower (In/Out)3.0V Power supply for Internal Voltage Regulator19DVDDPower (In/Out)Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / POAND / TRSW21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.1 / TXD124P1[1]I/O (digital)Port P1.0 / RXD125DVDD3VPower 3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P3.7 / 12m Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.6 / 12mA Drive capability / PWM2 / RTS1 / SPICLK29P3[5]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYA / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	13	MS[0]	I (digital)	 When using Internal Regulator of ZIC2410 	
15MS[2]I (digital)010: Normal mode 110: ISP mode16MSVI (digital)Mode Select of Voltage 0 – 1.5V17RESETBI (digital)Reset (Active Low)18DVREG3VPower3.0V Power supply for Internal Voltage Regulator19DVDDPower (In/Out)Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / P0AND / TRSW21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Input / RTCLKOUT23P1[3]I/O (digital)Port P1.1 / TXD124P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower 3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	14	MS[1]	I (digital)	001: ISP mode	
16MSVI (digital)0 – 1.5V17RESETBI (digital)Reset (Active Low)18DVREG3VPower3.0V Power supply for Internal Voltage Regulator19DVDDPower (In/Out)Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / POAND / TRSW21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.1 / TXD124P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	15	MS[2]	I (digital)	010: Normal mode	
18DVREG3VPower3.0V Power supply for Internal Voltage Regulator19DVDDPower (In/Out)Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / P0AND / TRSW21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.1 / TXD124P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	16	MSV	l (digital)		
19DVDDPower (In/Out)Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / POAND / TRSW21P1[6]I/O (digital)Port P1.7 GPO / POAND / TRSW22P1[4]I/O (digital)Port P1.6 / TRSWB23P1[3]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT24P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	17	RESETB	I (digital)	Reset (Active Low)	
19DVDDPower (In/Out)1.5V Power supply for Digital Core(input mode @ No REG)20P1[7]O (digital)Port P1.7 GPO / POAND / TRSW21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT24P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	18	DVREG3V	Power	3.0V Power supply for Internal Voltage Regulator	
21P1[6]I/O (digital)Port P1.6 / TRSWB22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT24P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.5 / 11 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	19	DVDD		1.5V Power supply for Digital Core(input mode @ No	
22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT24P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK29P3[5]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	20	P1[7]	O (digital)	Port P1.7 GPO / P0AND / TRSW	
22P1[4]I/O (digital)Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input23P1[3]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT24P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK29P3[5]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	21	P1[6]	I/O (digital)	Port P1.6 / TRSWB	
23P1[3]I/O (digital)Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT24P1[1]I/O (digital)Port P1.1 / TXD125DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK29P3[5]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	22	P1[4]	I/O (digital)	Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input	
24 P1[1] I/O (digital) Port P1.1 / TXD1 25 DVDD3V Power 3.0V Power supply for Digital IO 26 P1[0] I/O (digital) Port P1.0 / RXD1 27 P3[7] I/O (digital) Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN 28 P3[6] I/O (digital) Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK 29 P3[5] I/O (digital) Port P3.5 / T1 / CTS0 / QUADYB / SPIDO 30 P3[4] I/O (digital) Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	23	P1[3]			
25DVDD3VPower3.0V Power supply for Digital IO26P1[0]I/O (digital)Port P1.0 / RXD127P3[7]I/O (digital)Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN28P3[6]I/O (digital)Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK29P3[5]I/O (digital)Port P3.5 / T1 / CTS0 / QUADYB / SPIDO30P3[4]I/O (digital)Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	24	P1[1]	I/O (digital)		
26 P1[0] I/O (digital) Port P1.0 / RXD1 27 P3[7] I/O (digital) Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN 28 P3[6] I/O (digital) Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK 29 P3[5] I/O (digital) Port P3.5 / T1 / CTS0 / QUADYB / SPIDO 30 P3[4] I/O (digital) Port P3.4 / T0 / RTS0 / QUADYA / SPIDI			, , ,	3.0V Power supply for Digital IO	
27 P3[7] I/O (digital) Port P3.7 / 12mA Drive capability / PWM3 / CTS1 / SPICSN 28 P3[6] I/O (digital) Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK 29 P3[5] I/O (digital) Port P3.5 / T1 / CTS0 / QUADYB / SPIDO 30 P3[4] I/O (digital) Port P3.4 / T0 / RTS0 / QUADYA / SPIDI					
28 P3[6] I/O (digital) Port P3.6 / 12mA Drive capability /PWM2 / RTS1 / SPICLK 29 P3[5] I/O (digital) Port P3.5 / T1 / CTS0 / QUADYB / SPIDO 30 P3[4] I/O (digital) Port P3.4 / T0 / RTS0 / QUADYA / SPIDI				Port P3.7 / 12mA Drive capability / PWM3 / CTS1 /	
29 P3[5] I/O (digital) Port P3.5 / T1 / CTS0 / QUADYB / SPIDO 30 P3[4] I/O (digital) Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	28	P3[6]	I/O (digital)	Port P3.6 / 12mA Drive capability /PWM2 / RTS1 /	
30 P3[4] I/O (digital) Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	29	P3[5]	I/O (digital)		
	30	P3[4]		Port P3.4 / T0 / RTS0 / QUADYA / SPIDI	
	31	P3[3]	I/O (digital)		

The ZIC2410QN48 Pin-out overview is shown in Table 56. Table 56 – Pin-out overview; QN48 package

Pin NO.	Pin Name	Pin Type	Pin Description
32	P3[2]	I/O (digital)	Port P3.2 / INT0 (active low)
33	P3[1]	I/O (digital)	Port P3.1 / TXD0 / QUADXB
34	DVDD3V	Power	3.0V Power supply for Digital IO
35	P3[0]	I/O (digital)	Port P3.0 / RXD0 / QUADXA
36	P0[7]	I/O (digital)	Port P0.7 / I2STX_MCLK
37	P0[6]	I/O (digital)	Port P0.6 / I2STX_BCLK
38	P0[5]	I/O (digital)	Port P0.5 / I2STX_LRCLK
39	P0[4]	I/O (digital)	Port P0.4 / I2STX_DO
40	P0[3]	I/O (digital)	Port P0.3 / I2SRX_MCLK
41	P0[2]	I/O (digital)	Port P0.2 / I2SRX_BCLK
42	P0[1]	I/O (digital)	Port P0.1 / I2SRX_LRCK
43	P0[0]	I/O (digital)	Port P0.0 / I2SRX_DI
44	DVDD	Power (In/Out)	Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core (input mode @ No REG)
45	XOSCO	Analog	Crystal Oscillator Output
46	XOSCI	Analog	Crystal Oscillator Input
47	DVDD_XOSC	Power	1.5V Power supply for Crystal oscillator.
48	AVDD_CP	Power	1.5V Power supply for Charge Pump and PFD

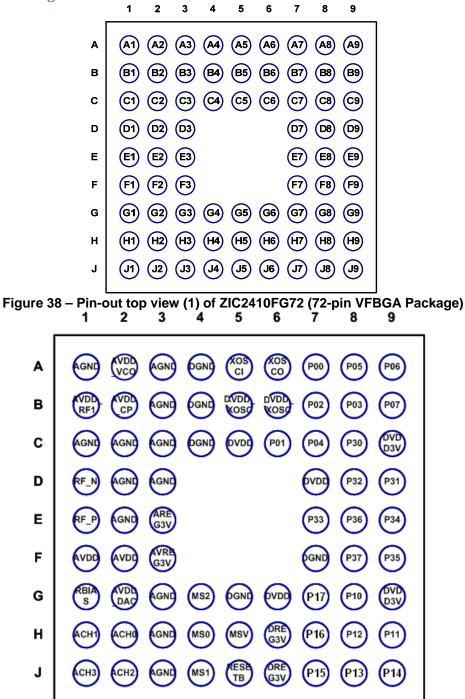
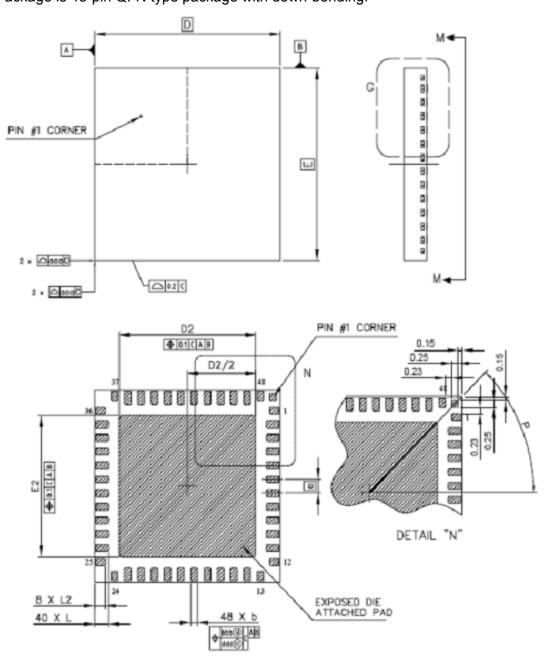
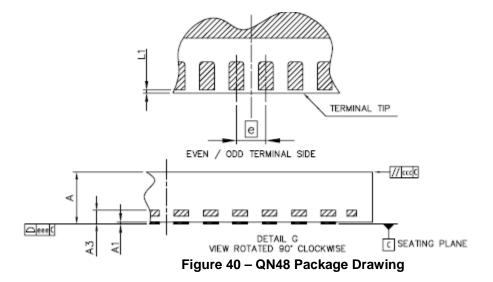
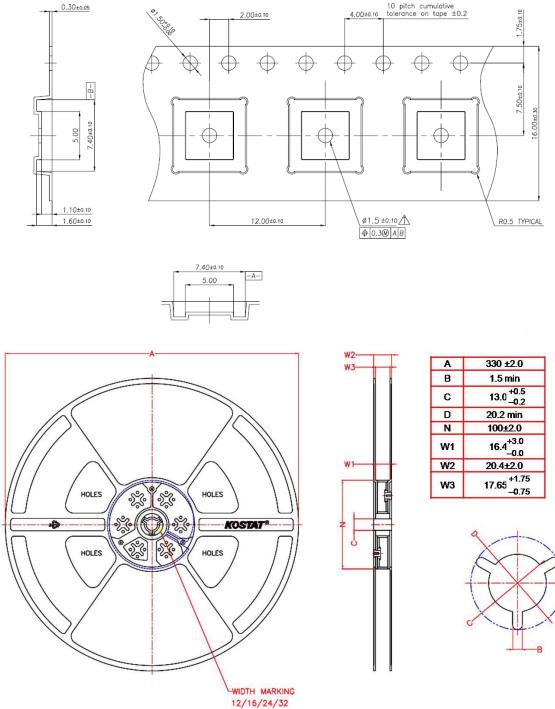


Figure 39 – Pin-out top view (2) of ZIC2410FG72 (72-pin VFBGA Package)


	Table 57 – Pin-out overview; FG72 package				
Ball	Ball Name	Ball Type	Ball Description		
A1	AGND	Ground	Ground for RF and Analog blocks.		
A2	AVDD_VCO	Power	1.5V Power supply for VCO and Divider		
A3	AGND	Ground	Ground for RF and Analog blocks.		
A4	DGND	Ground	Ground for digital core and IO.		
A5	XOSCI	Analog	Crystal Oscillator Input.		
A6	XOSCO	Analog	Crystal Oscillator Output.		
A7	P0[0]	I/O(digital)	Port P0.0 / I2SRX_DI.		
A8	P0[5]	I/O(digital)	Port P0.5 / I2STX_LRCLK.		
A9	P0[6]	I/O(digital)	Port P0.6 / I2STX BCLK.		
B1	AVDD RF1	Power	1.5V Power supply for LNA and PA.		
B2	AVDD CP	Power	1.5V Power supply for Charge Pump and PFD.		
B3	AGND	Ground	Ground for RF and Analog blocks.		
B4	DGND	Ground	Ground for digital core and IO.		
B5	DVDD XOSC	Power	1.5V Power supply for Crystal oscillator.		
B6					
B7	P0[2]	I/O(digital)	Port P0.2 / I2SRX BCLK.		
B8	P0[3]	I/O(digital)	Port P0.3 / I2SRX MCLK.		
B9	P0[7]	I/O(digital)	Port P0.7 / I2STX MCLK.		
C1	AGND	Ground	Ground for RF and Analog blocks.		
C2	AGND	Ground	Ground for RF and Analog blocks.		
C3	AGND	Ground	Ground for RF and Analog blocks.		
C4	DGND	Ground	Ground for digital core and IO.		
		Power	Output of Digital Internal Voltage Regulator (1.5V) / 1.5V		
C5	DVDD	(In/Out)	Power supply for Digital Core (input mode @ No REG).		
C6	P0[1]	I/O(digital)	Port P0.1 / I2SRX_LRCK.		
C7	P0[4]	I/O(digital)	Port P0.4 / I2STX DO.		
C8	P3[0]	I/O(digital)	Port P3.0 / RXD0 / QUADXA.		
C9	DVDD3V	Power	3.0V Power supply for Digital IO.		
			Negative RF input/output signal to LNA / from PA in receive /		
D1	RF_N	RF	transmit mode.		
D2	AGND	Ground	Ground for RF and Analog blocks.		
D3	AGND	Ground	Ground for RF and Analog blocks.		
		Power	Output of Digital Internal Voltage Regulator (1.5V) / 1.5V		
D7	DVDD	(In/Out)	Power supply for Digital Core (input mode @ No REG).		
D8	P3[2]	I/O(digital)	Port P3.2 / INT0 (active low).		
D9	P3[1]	I/O(digital)	Port P3.1 / TXD0 / QUADXB.		
			Positive RF input/output signal to LNA / from PA in receive /		
E1	RF_P	RF	transmit mode.		
E2	AGND	Ground	Ground for RF and Analog blocks.		
E3	AVREG3V	Power	3.0V Power supply for Analog Internal Voltage Regulator.		
E7	P3[3]	I/O(digital)	Port P3.3 / INT1 (active low).		
E8	P3[6]	I/O(digital)	Port P3.6 / 12mA Drive capability /PWM2/RTS1/SPICLK.		
E9	P3[4]	I/O(digital)	Port P3.4 /T0/RTS0/QUADYA/SPIDI.		
			Output of Analog Internal Voltage Regulator (1.5V) / 1.5V		
F1	AVDD	Power	Power supply for Mixer, VGA and LPF (input mode @ No		
		(In/Out)	REG).		
		Power	Output of Analog Internal Voltage Regulator (1.5V) / 1.5V		
F2	AVDD	Power	Power supply for Mixer, VGA and LPF (input mode @ No		
		(In/Out)	REG).		
F3	AVREG3V	Power	3.0V Power supply for Analog Internal Voltage Regulator.		
F7	DGND	Ground	Ground for digital core and IO.		

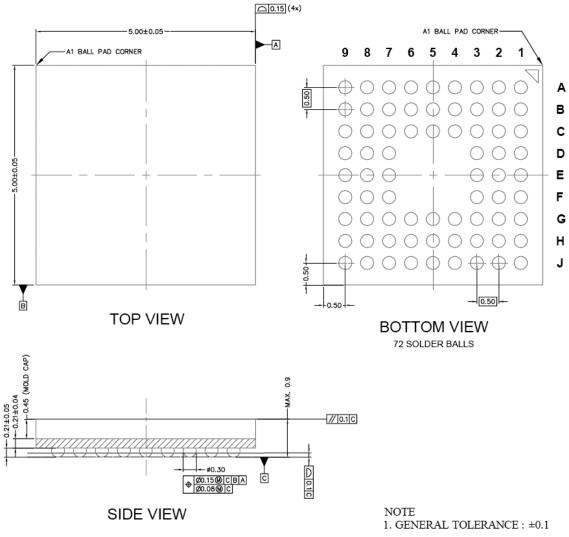

The ZIC2410FG72 Pin-out overview is shown in Table 57.

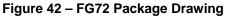
Ball	Ball Name	Ball Type	Ball Description
F8	P3[7]	I/O(digital)	Port P3.7 / 12mA Drive capability /PWM3 /CTS1/SPICSN
_		,	(slave only).
F9	P3[5]	I/O(digital)	Port P3.5 /T1/CTS0/QUADYB/SPIDO.
G1	RBIAS	Analog	External bias resistor.
G2	AVDD_DAC	Power	1.5V Power supply for ADC and DAC.
G3	AGND	Ground	Ground for RF and Analog blocks.
G4	MS[2]	I (digital)	MS[2:0](Mode Select) 000:Normal Mode 001:ISP Mode
G5	DGND	Ground	Ground for digital core and IO.
G6	DVDD	Power (In/Out)	Output of Digital Internal Voltage Regulator (1.5V) / 1.5V Power supply for Digital Core (input mode @ No REG).
G7	P1[7]	O (digital)	Port P1.7 GPO / P0AND/ TRSW / Fold / Clocks / BIST Fail Indicator.
G8	P1[0]	I/O(digital)	Port P1.0 / RXD1.
G9	DVDD3V	Power	3.0V Power supply for Digital IO.
H1	ACH1	Analog	Sensor ADC input / BBA Output.
H2	ACH0	Analog	Sensor ADC input / BBA Output.
H3	AGND	Ground	Ground for RF and Analog blocks.
H4	MS[0]	l (digital)	MS[2:0](Mode Select): • When using Internal Regulator of ZIC2410 000: Normal mode 100: ISP mode • When NOT using Internal Regulator of ZIC2410 010:Normal mode 110: ISP mode
H5	MSV	I (digital)	Mode Select of Voltage. 0:1.5V
H6	DVREG3V	Power	3.0V Power supply for Internal Voltage Regulator.
H7	P1[6]	I/O(digital)	Port P1.6 / TRSWB.
H8	P1[2]	I/O(digital)	Port P1.2.
H9	P1[1]	I/O(digital)	Port P1.1 / TXD1.
J1	ACH3	Analog	Sensor ADC input / BBA Output.
J2	ACH2	Analog	Sensor ADC input / BBA Output.
J3	AGND	Ground	Ground for RF and Analog blocks.
J4	MS[1]	l (digital)	MS[2:0](Mode Select): 000: Normal Mode 001: ISP Mode
J5	RESETB	I (digital)	Reset (Active Low).
J6	DVREG3V	Power	3.0V Power supply for Internal Voltage Regulator.
J7	P1[5]	I/O(digital)	Port P1.5.
J8	P1[3]	I/O(digital)	Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output / RTCLKOUT.
J9	P1[4]	I/O(digital)	Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input.

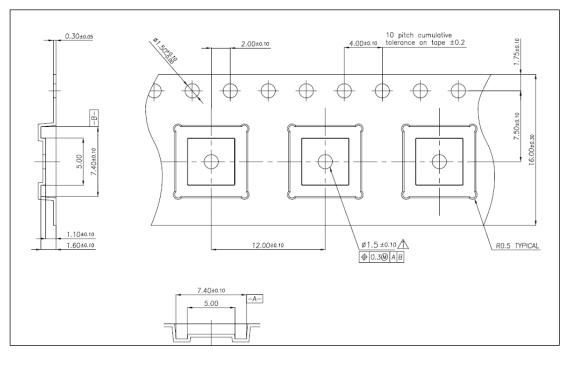

3.2 PACKAGE INFORMATION

3.2.1 PACKAGE INFORMATION: ZIC2410QN48 (QN48pkg) Package is 48-pin QFN type package with down-bonding.

	Table 58 – QN48 Package Dimensions				
DIM	MIN	NOM	MAX	NOTES	
Α	0.80	0.85	0.90	1. Dimensions and Tolerances conform to	
A1	0.00		0.05	ASME Y14.5N-1994	
A3		0.203 REI	=	2. All Dimensions are in millimeters; all angles	
b	0.18	0.25	0.30	are in degrees	
D		7.00 BSC	;	3. Dimension "b" applies to metalized terminals	
E		7.00 BSC	;	and is measured between 0.25 and 0.30mm	
D2	5.04	5.14	5.24	from the terminal tip. Dimension L1	
E2	5.04	5.14	5.24	represents how far back the terminal may be	
е		0.50 BSC	,	from the package edge. Up to 0.1mm is	
L	0.48	0.53	0.58	acceptable	
L1	0.00		0.10	4. Coplanarity applies to the exposed heat slug	
L2	0.35	0.40	0.45	as well as to the terminals	
Р		45° BSC		5. Radius of the terminals is optional	
aaa		0.10			
bbb		0.10			
CCC		0.10			
ddd		0.05			
eee		0.08			




3.2.1.1 CARRIER TAPE AND REEL SPECIFICATION (QN48pkg)



3.2.2 PACKAGE INFORMATION: ZIC2410FG72 (FG72pkg)

Package type is 72-pin VFBGA package with ball-bonding.

3.2.2.1 CARRIER TAPE AND REEL SPECIFICATION (FG72pkg)

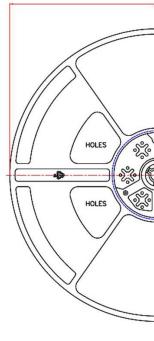


Figure 43 – FG72 Carrier Tape & Reel Specification

3.3 APPLICATION CIRCUITS

3.3.1 APPLICATION CIRCUITS (QN48 package)

The ZIC2410 operates from a single supply voltage. The core must run at 1.5V, so, if 1.5V is available, both the core and the I/O can run from 1.5V. If a higher voltage I/O is required (or higher voltage is available on the board) the ZIC2410 contains an on-chip voltage regulator that can step down a 1.9V~3.3V supply to 1.5V for the core. In this case the I/O can be run from a 1.9V to 3.3V supply.

A typical application circuit for the ZIC2410QN48 using 1.9V~3.3V as the I/O power through the internal regulator is shown in Figure 44.

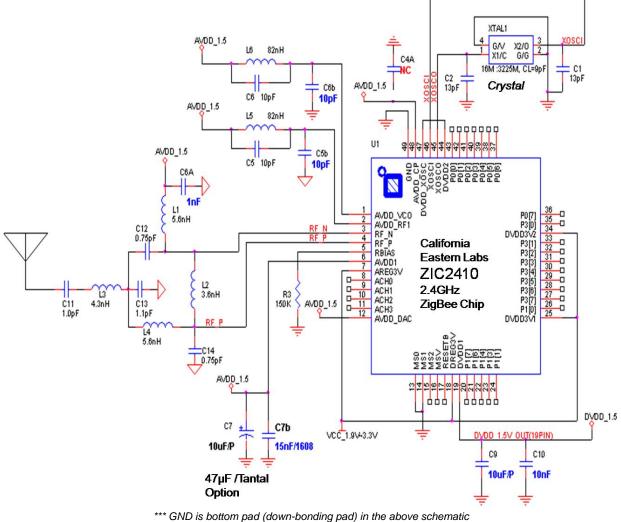
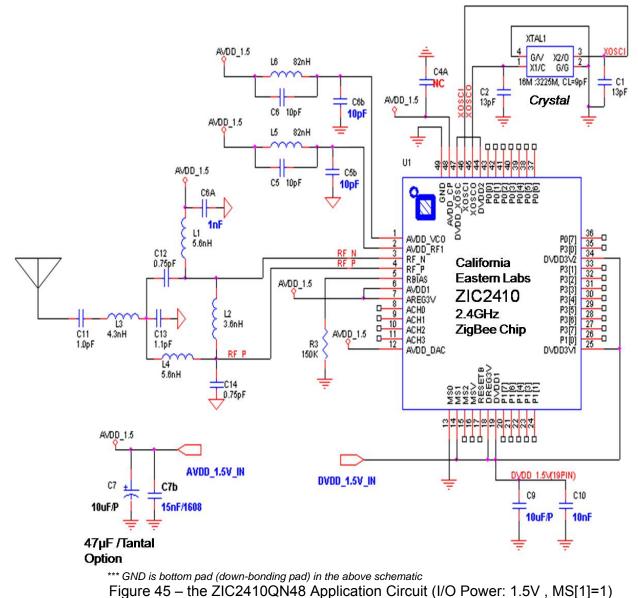



Figure 44 – ZIC2410QN48 Typical Application Circuit (I/O Power: 1.9V~3.3V , MS[1]=0)

Figure 45 shows the application circuit of the ZIC2410QN48 when using 1.5V as the I/O power and not using the internal regulator. In this case, a software setting is needed to turn off the internal regulator of the device.

NOTE: When the ZIC2410 is operated below minimum operating voltage, a reset error will occur because of the unstable voltage. For more detailed information, refer to the Note of **'Section 1.3 RESET'**.

3.3.2 APPLICATION CIRCUITS (FG72 package)

The ZIC2410 operates from a single supply voltage. The core must run at 1.5V, so, if 1.5V is available, both the core and the I/O can run from 1.5V. If a higher voltage I/O is required (or higher voltage is available on the board) the ZIC2410 contains an on-chip voltage regulator that can step down a 1.9V~3.3V supply to 1.5V for the core. In this case the I/O can be run from a 1.9V to 3.3V supply.

A typical application circuit for the ZIC2410FG72 using 1.9V~3.3V as the I/O power through the internal regulator is shown in Figure 46.

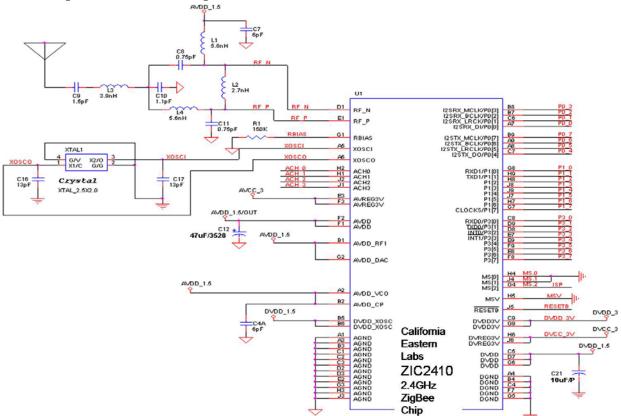


Figure 46 - ZIC2410FG72 Application Circuit (I/O Voltage: 1.9V~3.3V, MS[1]=0)

Figure 47 shows the application circuit of the ZIC2410FG72 when using 1.5V as the I/O power and not using the internal regulator. In this case, a software setting is needed to turn off the internal regulator of the device.

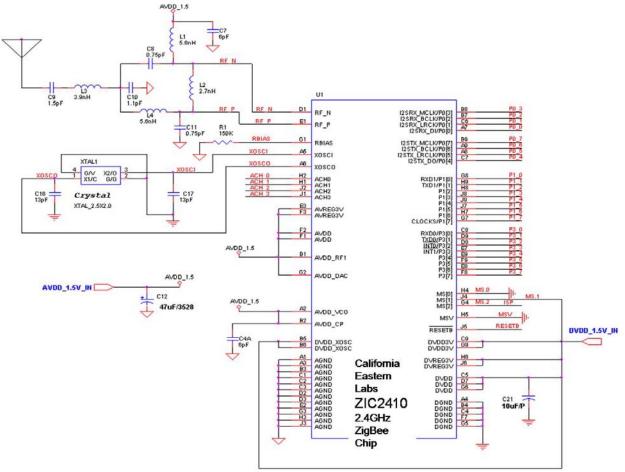


Figure 47 – ZIC2410FG72 Application Circuit (I/O Voltage: 1.5V, MS[1]=1)

NOTE: When the ZIC2410 is operated below minimum operating voltage, a reset error will occur because of the unstable voltage. For more detailed information, refer to the Note of **'Section 1.3 RESET'**.

4 REFERENCES

4.1 TABLE OF TABLES

TABLE 1 – SPECIAL FUNCTION REGISTER (SFR) MAP	10
TABLE 2 – REGISTER BIT CONVENTIONS	11
TABLE 3 – SPECIAL FUNCTION REGISTERS	12
TABLE 4 – POWER-ON-RESET SPECIFICATIONS	17
TABLE 5 – CLOCK REGISTERS	19
TABLE 6 – INTERRUPT DESCRIPTIONS	20
TABLE 7 – INTERRUPT REGISTERS	21
TABLE 8 – POWER DOWN MODES	23
TABLE 9 – STATUS IN POWER-DOWN MODES	24
TABLE 10 – POWER CONTROL REGISTERS	25
TABLE 11 – TIMER AND TIMER MODE REGISTERS	26
TABLE 12 – TIMER 2 AND TIMER 3 REGISTERS	29
TABLE 13 – FREQUENCY AND DUTY RATE IN PWM MODE	30
TABLE 14 – WATCHDOG TIMER REGISTER	31
TABLE 15 – SLEEP TIMER REGISTERS	32
TABLE 16 – SLEEP TIMER DELAY REGISTERS	32
TABLE 17 – UART0 REGISTERS	34
TABLE 18 – UARTO INTERRUPT LISTS	35
TABLE 19 – UART0 CONTROL REGISTERS	35
TABLE 20 – UART1 REGISTERS	36
TABLE 21 – UART1 INTERRUPT LISTS	36
TABLE 22 – UART1 CONTROL REGISTERS	
TABLE 23 – SPI CONTROL REGISTERS	39
TABLE 24 – CLOCK POLARITY AND DATA TRANSITION TIMING	40
TABLE 25 – SPI REGISTERS	40
TABLE 26 – I2S REGISTERS	44
TABLE 27 – VODEC REGISTERS	47
TABLE 28 – VOICE TX REGISTERS	48
TABLE 29– VOICE RX REGISTERS	49
TABLE 30– VOICE INTERRUPT REGISTERS	50
TABLE 31– RANDOM NUMBER GENERATOR REGISTERS	51
TABLE 32– POINTER AND QUAD CONTROL REGISTERS	53
TABLE 33– SENSOR ADC REGISTERS	54

TABLE 34 – MAC TX FIFO REGISTERS	61
TABLE 35 – MAC RX FIFO REGISTERS	62
TABLE 36 – DATA TRANSMISSION/RECEPTION AND SECURITY REGISTERS	63
TABLE 37 – SPREADING SEQUENCE OF 32-CHIP	
TABLE 38 – PHY REGISTER ADDRESS MAP	68
TABLE 39 – PHY REGISTERS	
TABLE 40 – CCA3 REGISTERS	
TABLE 41 – TEST MODE SETTING	
TABLE 42 – TEST CONFIGURATION REGISTERS	
TABLE 43 – PHY STATUS REGISTERS	
TABLE 44 – MDSTS FIELD	
TABLE 45 – AGC STATUS REGISTERS	
TABLE 46 – INTERRUPT CONTROL, STATUS, AND INDEX REGISTERS	
TABLE 47 – FRAC_K[19:0] REGISTERS	
TABLE 48 – PHASE LOCK LOOP CONTROL REGISTERS	
TABLE 49 – TX OUTPUT POWER SETTINGS	
TABLE 50 – INSTRUCTION SET SUMMARY	
TABLE 51 – ABSOLUTE MAXIMUM RATINGS: ZIC2410 (ALL PACKAGES)	
TABLE 52 – DC CHARACTERISTICS: ZIC2410 (ALL PACKAGES)	93
TABLE 53 – ELECTRICAL SPECIFICATIONS: 8MHZ CLOCK	
TABLE 54 – ELECTRICAL SPECIFICATIONS: 16MHZ CLOCK	97
TABLE 55 – TIMING SPECIFICATIONS	
TABLE 56 – PIN-OUT OVERVIEW; QN48 PACKAGE	102
TABLE 57 – PIN-OUT OVERVIEW; FG72 PACKAGE	
TABLE 58 – QN48 PACKAGE DIMENSIONS	

4.2 TABLE OF FIGURES

FIGURE 1 – FUNCTIONAL BLOCK DIAGRAM OF ZIC2410	5
FIGURE 2 – ADDRESS MAP OF PROGRAM MEMORY	7
FIGURE 3 – BANK SELECTION OF PROGRAM MEMORY	8
FIGURE 4 – ADDRESS MAP OF DATA MEMORY	9
FIGURE 5 – GPRS ADDRESS MAP	10
FIGURE 6 – RESET CIRCUIT	17
FIGURE 7 – RESET CIRCUIT USING ELM7527NB	18
FIGURE 8 – RESET TIMING DIAGRAM	18
FIGURE 9 – SLEEP TIMER INTERRUPT: WAKE UP TIMES	23

FIGURE 10 – EXTERNAL TIMER INTERRUPT: WAKE UP TIMES	24
FIGURE 11 – POWER-DOWN MODE SETTING PROCEDURE	25
FIGURE 12 – TIMER0 MODE0	28
FIGURE 13 – TIMER0 MODE1	28
FIGURE 14 – TIMER0 MODE2	
FIGURE 15 – TIMER0MODE3	29
FIGURE 16 – SELECTING THE CLOCK OSCILLATOR	33
FIGURE 17 – SPI DATA TRANSFER	39
FIGURE 18 – (A) CPOL=0, CPHA=0	40
FIGURE 19 – (B) CPOL=0, CPHA=1	40
FIGURE 20 – (C) CPOL=1, CPHA=0	40
FIGURE 21 – (D) CPOL=1, CPHA=1	40
FIGURE 22 – (A) I2S MODE	43
FIGURE 23 – (B) LEFT JUSTIFIED MODE	43
FIGURE 24 – (C) RIGHT JUSTIFIED MODE	
FIGURE 25 – (D) DSP MODE	43
FIGURE 26 – QUADRATURE SIGNAL TIMING BETWEEN XA AND XB	52
FIGURE 27 – TYPICAL TEMPERATURE SENSOR CHARACTERISTICS	56
FIGURE 28 – BATTERY MONITOR CHARACTERISTICS	57
FIGURE 29 – MAC BLOCK DIAGRAM	58
FIGURE 30 – IEEE 802.15.4 FRAME FORMAT	59
FIGURE 31 – IEEE 802.15.4 MODULATION	66
FIGURE 32 – QUADRATURE MODULATED SIGNAL	67
FIGURE 33 – INTERNAL MCU CLOCK TIMING	99
FIGURE 34 – POR TIMING	. 100
FIGURE 35 – RESET# TIMING	. 100
FIGURE 36 – GPIO TIMING	. 100
FIGURE 37 – PIN-OUT TOP VIEW OF QN48 PACKAGE	. 101
FIGURE 38 – PIN-OUT TOP VIEW (1) OF ZIC2410FG72 (72-PIN VFBGA PACKAGE)	. 104
FIGURE 39 – PIN-OUT TOP VIEW (2) OF ZIC2410FG72 (72-PIN VFBGA PACKAGE)	. 104
FIGURE 40 – QN48 PACKAGE DRAWING	. 108
FIGURE 41 – QN48 CARRIER TAPE & REEL SPECIFICATION	. 109
FIGURE 42 – FG72 PACKAGE DRAWING	. 110
FIGURE 43 – FG72 CARRIER TAPE & REEL SPECIFICATION	.111
FIGURE 44 – ZIC2410QN48 TYPICAL APPLICATION CIRCUIT (I/O POWER: 1.9V~3.3V , MS[1]=0)	. 112
FIGURE 45 – THE ZIC2410QN48 APPLICATION CIRCUIT (I/O POWER: 1.5V , MS[1]=1)	. 113
FIGURE 46 – ZIC2410FG72 APPLICATION CIRCUIT (I/O VOLTAGE: 1.9V~3.3V , MS[1]=0)	. 114

FIGURE 47 – ZIC2410FG72 APPLICATION CIRCUIT (I/O VOLTAGE: 1.5V , MS[1]=1)......115

4.3 TABLE OF EQUATIONS

EQUATION 1 - TIME-OUT PERIOD CALCULATION (TIMER2)	29
EQUATION 2 - TIME-OUT PERIOD CALCULATION (TIMER3)	29
EQUATION 3 – WATCHDOG RESET INTERVAL CALCULATION	31
EQUATION 4 – CALCULATION OF RX SIGNAL ENERGY LEVEL	78
EQUATION 5 – DEFINITION OF SINGLE-TONE FREQUENCY	81

5 REVISION HISTORY

Revision	Date	Description
A	20Jun08	Released