

ZL60007 1310nm, 1550nm 622Mbps PIN with Preamplifier Data Sheet

May 2003

Ordering Information

ZL60007/TBD TO-46 with lens

-40°C to +85°C

Features

- Data rate up to 622Mbps
- 1310, 1550 nm PIN
- TIA with AGC
- TO-46 Assembly
- 3.3V power supply

Applications

- Sonet OC-12
- SDH STM-4
- ATM 622Mbps

This optical receiver is a 3.3V device which contains an InGaAs PIN photodiode and a transimpedance amplifier with Automatic Gain Control and DC restore circuit assembled in a TO-46 package. It is designed for ATM and SDH/Sonet 622Mbps. Its double-lens optical system is designed for single mode fiber as well as for multimode fiber with a core diameter up to 62.5μ m. Reliability Assurance based on Telcordia GR-468-CORE.

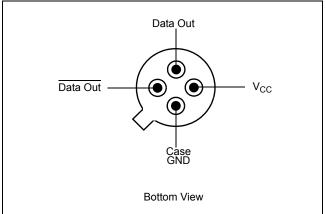
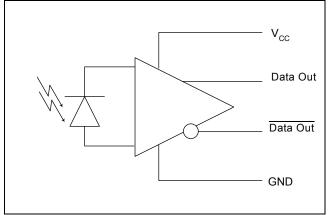




Figure 1 - Pin Diagram

Optical and Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test condition
Responsivity, differential	R	14	22	33	kV/W	λ=1310nm,
						$R_{L=}100\Omega$, Note 1
Output Voltage amplitude, differential	ΔVο		1.4		V	R _{L=} 100Ω, ER = ∞ Note 2
Bandwidth (3dB _{el})	f _c		450		MHz	P _f = 10μW, R _L = 100Ω
Optical Saturation Level (average)	P _{sat}	0	3		dBm	λ =1310nm ER = ∞ Note 3
Noise-Equivalent Power	NEP		-40		dBm	λ=1310nm Note 4
Sensitivity (BER 10 ⁻⁹)	S		-32	-30	dBm	λ =1310nm ER = ∞ Note 3, 5
Dynamic Range			35		dB	
Output Resistance (single)	R _O		50		Ω	
Power Dissipation	PD		90	165	mW	
Power Supply Current	I _{DD}		30	45	mA	

Operating conditions: 25°C Case Temperature/3.3 V Supply Voltage/Fiber: Singlemode to multimode 62.5/125µm

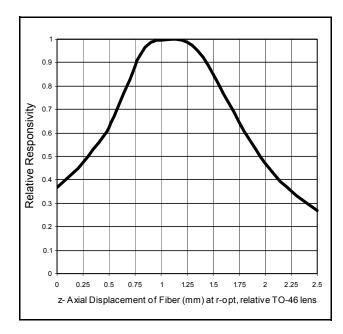
Note 1: P_f=5µW Peak-Peak power at 10MHz/50% duty cycle

Note 2: Pf = 1mW average power Note 3: BER 10^{-9} with a 2^{23} -1 PRBS at 622Mbps

Note 4: Measured with STM-4 filter on electrical output. i.e. 467 MHz Note 5: Penalty at 10⁻¹⁰ BER equals 0.26 dB

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	0	4.5	V
Storage Temperature	T _{stg}	-55	125	°C


Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{CC}	3.0	3.3	3.6	V
Output Differential Load, Note 6	R _L	100	1000		Ω
Operating Temperature	T _{OP}	-40		85	°C

Note 6: The typical value corresponds to the load presented by a following limiting amplifier

Typical Responsivity

		Fiber Core/cladding Diameter Numerical Aperture				
	Wavelength	10/125µm, NA=0.11	50/125µm, NA=0.20	62.5/125µm, NA=0.275		
Differential responsivity	1310nm	22kV/W	22kV/W	22kV/W		
Differential responsivity	1550nm	27kV/W	27kV/W	27kV/W		

Figure 3 - Typical Responsivity vs Axial Displacement for a Multimode Fiber

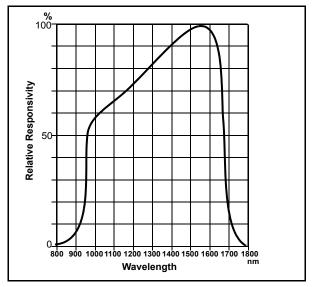


Figure 4 - Responsivity vs. Wavelength of Coupled Input Power

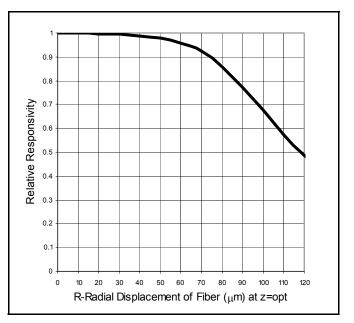


Figure 5 - Typical Responsivity vs Radial Displacement for a Multimode Fiber

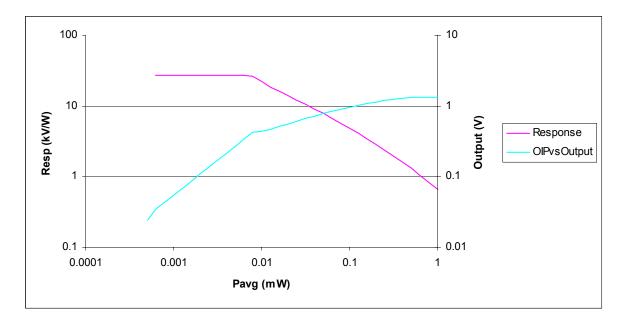
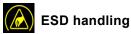



Figure 6 - Output Voltage vs Input Power

Application Guidelines

The receiver is sensitive to electrostatic discharges. When handling the device, precautions for ESD sensitive devices should be taken. These precautions include use of ESD protected work area with wrist straps, controlled work benches, floors etc.

Power Supply Filter

Power Supply decoupling capacitors are recommended for optimal performance of the receiver. A filter is recommended to minimize power supply noise. See Figure 7.

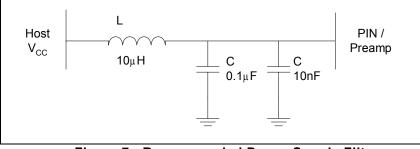


Figure 7 - Recommended Power Supply Filter

Data Outputs

The outputs Data and Data signals, are designed to drive a high load >500' Ω . It is recommended to use Mindspeed MC2044C postamplifier (R_{in} ~4.5' Ω) together with ZL60007.

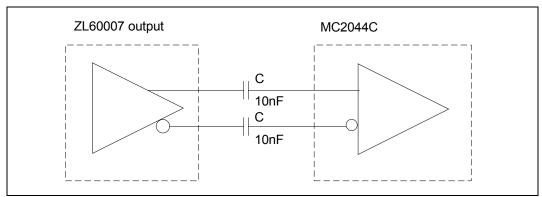
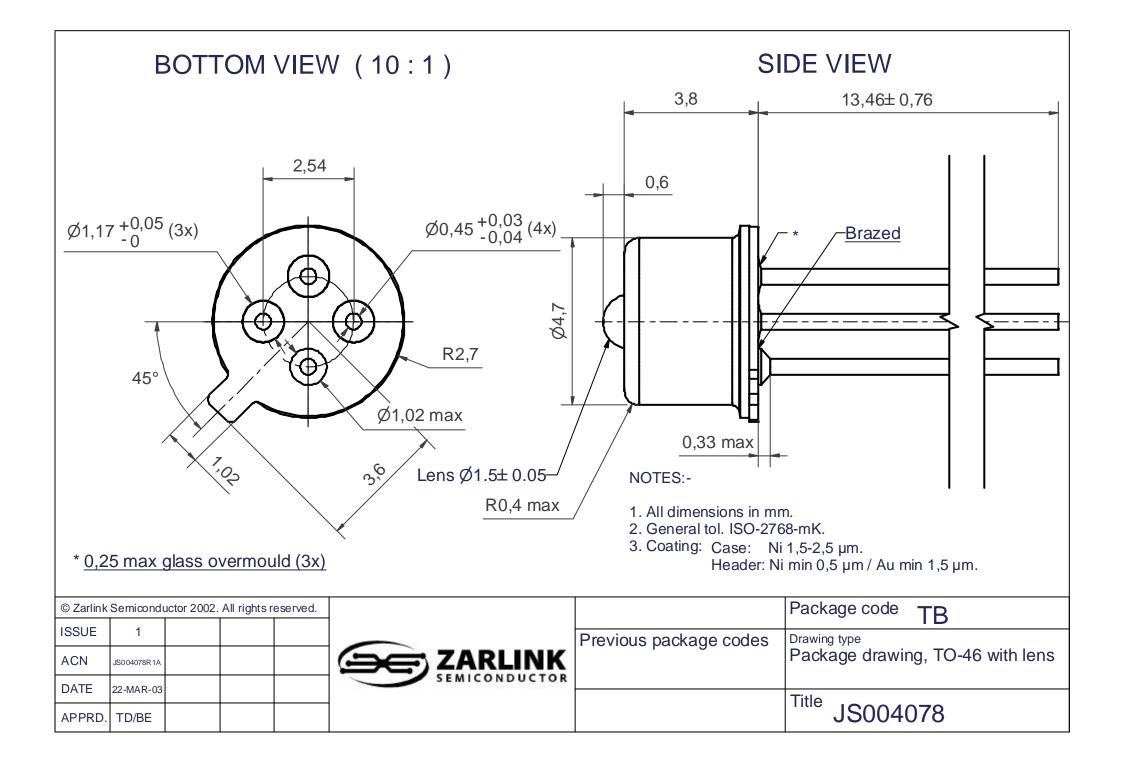



Figure 8 - Recommended Post Amplifier and Coupling Capacitors

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE