Low Power +3V to +5.5V, 1000kbps RS232 Transceivers #### **Features** - Meets EIA/TIA-232F and CCITT V.28/V.24 specifications for V_{CC} at +3.3V ±10% and +5V ±10% - Low Quiescent Current: 0.5mA typ., 1mA max. - Low Shutdown Current (where applicable): 1μA typical, 10μA max. - Guaranteed High Data Rate 1000kbps - Proprietary Switch-Capacitor Regulated Voltage Converters (patent pending) - Proprietary AUTOGREEN Power Saving (patent pending) - · Latch-up Free - ESD Protection for RS-232 I/O's - ±15kV Human Body Model (HBM) - ±15kV EN61000-4-2 Air Gap Discharge - ±8kV EN61000-4-2 Contact Discharge - Drop-in Replacements for MAX3220E, SP3220E, MAX3221E, ICL3221E, MAX3222E, ICL3222E, SP3222EU, MAX3223E, ICL3223E, SP3223EU, MAX3232E, ICL3232E, SP3232EU, LT1385 and SP385E - Standard Data Rate at 250kbps Available on ZT32xxE Series #### **General Description** The ZT32xxF series devices are 3V powered EIA/TIA-232 and V.28/V.24 communication interfaces with low power requirements. They consist of two line drivers, two line receivers and the proprietary switch-capacitor regulated voltage converters. The ZT3220F has a 1Tx and 1Rx configuration. These devices operate from a single 3V to 5.5V power supply at the guaranteed data rate of 1000k bits/sec with enhanced electrostatic discharge (ESD) protection in all RS232 I/O pins exceeding ±15kV EN61000-4-2 Air Gap Discharge and ±8kV EN61000-4-2 Contact Discharge. The ZT3221F and ZT3223F features the AUTOGREEN (patent pending) proprietary function which automatically powers down the on-chip regulated voltage converters and driver circuits when an RS-232 cable is disconnected from the host interface or when a connected peripheral device is turned off. #### **Applications** - Battery-Powered And Hand-Held Applications - Notebooks, Subnotebooks, and Palmtops - Industrial and Embedded PCs - Data Cables for Cell Phones and PDAs - Terminal Adapters and POS terminals - · Peripherals interface - · Routers and HUBs #### **Product Selection Guide** | | | RS232 | RS232 | Data Rate | 15KV ESD | Receiver | SHUTDOWN | AUTOGREEN | Number | | |-------------|--------------|---------|-----------|-----------|-------------|----------|----------|-----------|---------|-----------------------------------| | Part Number | Power Supply | Drivers | Receivers | (kbps) | IEC1000 4-2 | Enable | Enable | Function | of Pins | Package Type | | ZT3220F | +3V to +5.5V | 1 | 1 | 1000 | RS232 I/O | YES | YES | NO | 16 | SSOP, TSSOP, WSOIC | | ZT3221F | +3V to +5.5V | 1 | 1 | 1000 | RS232 I/O | YES | YES | YES | 16 | SSOP, TSSOP | | ZT3222F | +3V to +5.5V | 2 | 2 | 1000 | RS232 I/O | YES | YES | NO | 18, 20 | 18-WSOIC
20-SSOP, 20-TSSOP, | | ZT3232F | +3V to +5.5V | 2 | 2 | 1000 | RS232 I/O | NO | NO | NO | 16 | NSOIC, WSOIC, SSOP,
TSSOP, OFN | | ZT3223F | +3V to +5.5V | 2 | 2 | 1000 | RS232 I/O | YES | YES | YES | 20 | SSOP, TSSOP | | ZT1385F | +3V to +5.5V | 2 | 2 | 1000 | RS232 I/O | NO | YES | NO | 18, 20 | 18-WSOIC, 20-SSOP | #### **Absolute Maximum Ratings** These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. | Power Supply, (V _{CC})0.3V to +6.0V | / | |---|---| | V+0.3V to +7.0V | / | | V-+0.3V to -7.0V | | | V+ + V- +13.0V | / | | I _{CC} (DC V _{CC} or GND current)±100mA | ١ | | Input Voltages | | | TxIN, GREEN, SHUTDOWN, EN0.3V to +6.0V | / | | RxIN±25\ | / | | Output Voltages | | | TxOUT±15V | / | | RxOUT, <u>IDLE</u> –0.3V to (V _{CC} +0.3V) |) | | Short-Circuit Duration | | | TxOUTContinuous | S | | Operating Temperature40°C to +85°C | _ | | Storage Temperature65°C to +150°C | _ | #### Power Dissipation Per Package | 16-pin SSOP (derate 7.20mW/°C above +70°C)584mW | |---| | 16-pin nSOIC (derate 10.00mW/°C above +70°C)720mW | | 16-pin WSOIC (derate 10.10mW/°C above +70°C)787mW | | 16-pin TSSOP (derate 6.80mW/°C above +70°C)556mW | | 16-pin PDIP (derate 11.20mW/°C above +70°C)896mW | | 16-pin QFN (derate 24.00mW/°C above +70°C)2000mW | | 18-pin PDIP (derate 12.60mW/°C above +70°C)962mW | | 18-pin WSOIC (derate 11.10mW/°C above +70°C)850mW | | 20-pin PDIP (derate 12.80mW/°C above +70°C)976mW | | 20-pin SSOP (derate 8.10mW/°C above +70°C)647mW | #### **Storage Considerations** Storage in a low humidity environment is preferred. Large high density plastic packages are moisture sensitive and should be stored in Dry Vapor Barrier Bags. Prior to usage, the parts should remain bagged and stored below 40°C and 60%RH. If the parts are removed from the bag, they should be used within 168 hours or stored in an environment at or below 20%RH. If the above conditions cannot be followed, the parts should be baked for 12 hours at 125°C in order to remove moisture prior to soldering. Zywyn ships product in Dry Vapor Barrier Bags with a humidity indicator card and desiccant pack. The humidity indicator should be below 30%RH. The MSL of this product is 3. The information furnished by Zywyn has been carefully reviewed for accuracy and reliability. Its application or use, however, is solely the responsibility of the user. No responsibility of the use of this information become part of the terms and conditions of any subsequent sales agreement with Zywyn. Specifications are subject to change without the responsibility for any infringement of patents or other rights of third parties which may result from its use. No license or proprietary rights are granted by implication or otherwise under any patent or patent rights of Zywyn Corporation. #### **Electrical Characteristics** Unless otherwise stated, $V_{CC} = +3.0 V$ to +5.0 V, $T_A = T_{min}$ to $T_{max'}$ C1 to C4 = $0.1 \mu F$, typical values apply at $V_{CC} = +3.3 V$ or +5.0 V and $T_A = 25 ^{\circ} C$. | Parameter | Condition | Min | Тур | Max | Units | |---|--|-----------------------------|-------------------------------|-------------------------------|--------------------| | TTL Logic Input TTL Logic Output RS-232 Input RS-232 Output Charge Pump Pin Power Pin | $T_1IN, T_2IN, \overline{GREEN}, \overline{SHUTDOWN}, \overline{EN}$ $R_1OUT, R_2OUT, \overline{IDLE}$ R_1IN, R_2IN T_1OUT, T_2OUT C_1P, C_1N, C_2P, C_2N $V_{CC}, V_{GND}, V_{DD}, V_{SS}$ | | | | | | Charge Pump Caps Temp 0°C to +70°C Temp -40°C to +85°C V _{CC} Voltage Range | C_1P , C_1N , C_2P , C_2N
Commercial Grade
Industrial Grade
$V_{CC} = +5.0V$ Supply
$V_{CC} = +3.3V$ Supply | 0.1
0
-40
4.5
3 | 0.1
+25
+25
5
3.3 | 1
+70
+85
5.5
3.6 | μF
℃
℃
V | | Supply Current | TTL Inputs = V _{CC} /GND, RS-232 Input = float,
V _{CC} = 3.3V (For ZT3220F, ZT3222F, ZT3232F and ZT1385F) | | 0.5 | 1 | mA | | Supply Current,
AUTOGREEN Disabled | GREEN = V _{CC} , (For ZT3221F and ZT3223F); SHUTDOWN = V _{CC} , (For ZT3221F, ZT3222F, ZT1385F and ZT3223F), TTL Inputs = V _{CC} /GND, RS-232 Input = float, V _{CC} = 3.3V | | 0.5 | 1 | mA | | Supply Current,
AUTOGREEN Enabled | $\overline{\text{GREEN}} = \text{GND, (For ZT3221F and ZT3223F); } \overline{\text{SHUTDOWN}} = V_{CC},$ (For ZT3221F, ZT3222F, ZT1385F and ZT3223F), $\overline{\text{TTL Inputs}} = V_{CC}/\overline{\text{GND, RS-232 Input}} = \text{float, V}_{CC} = 3.3V$ | | 1 | 10 | μΑ | | Supply Current,
SHUTDOWN Enabled | $\overline{\text{GREEN}} = \text{V}_{\text{CC}}/\text{GND}, \text{ (For ZT3221F and ZT3223F);}$ $\overline{\text{SHUTDOWN}} = \text{GND}, \text{ (For ZT3221F, ZT3222F, ZT1385F and ZT3223F),}$ $\overline{\text{TTL Inputs}} = \text{V}_{\text{CC}}/\text{GND}, \text{RS-232 Inputs} = \text{float, V}_{\text{CC}} = 3.3\text{V}$ | | 1 | 10 | μΑ | | TTL LOGIC Input Input Threshold Low Input Threshold High Input Threshold High | $V_{CC} = +5.0V$ Supply $V_{CC} = +3.3V$ Supply | 2.4
2 | | 0.8 | V
V
V | | Input Hysteresis
Input Leakage Current
Input Leakage Current | $V_{IN} = V_{CC}$ and GND, TIN, \overline{EN} , \overline{GREEN} , $\overline{SHUTDOWN}$
$V_{IN} = V_{CC}$ and GND, TIN (For ZT1385F) | | 0.5
±0.01
50 | ±1
200 | V
μΑ
μΑ | | Output Voltage Low Output Voltage High Output Leakage Current | I _{OUT} = 1.6mA
I _{OUT} = -1.0mA
Receiver Outputs Disabled, V _{OUT} = V _{CC} or GND,
SHUTDOWN = GND, EN = V _{CC} | V _{CC} -0.6 | V _{CC} -0.1
±0.05 | 0.4
±10 | V
V
μΑ | | Receiver Input Input Voltage Range Input Threshold Low Input Threshold High | $T_A = T_{min} - T_{max}$ $T_A = 25^{\circ}C, V_{CC} = 5.0V$ $T_A = 25^{\circ}C, V_{CC} = 3.3V$ $V = 25^{\circ}C$ | -25
0.8
0.6 | 1.5
1.2 | +25 | V
V
V | | Input Hysteresis Input Resistance | $T_A = 25$ °C
$V_{IN} = \pm 25$ V, $T_A = 25$ °C | 3 | 0.5 | 7 | V
kΩ | | Transmitter Output Output Voltage Swing Output Resistance Output Short-Circuit Current Output Leakage Current | $R_L = 3k\Omega$, All Outputs are loaded $V_{CC} = V_{DD} = V_{SS} = GND$, $V_{OUT} = \pm 2V$ $V_{OUT} = GND$ Transmitter Disabled, $V_{OLIT} = \pm 12V$ | ±5
300 | ±5 | ±60 | V
Ω
mA
μA | | Parameter Timing Characteristics | Condition | Min | Тур | Max | Units | | $R_L = 3k\Omega$, $C_L = 250pF$, One Transmitter Switching, $T_A = 25^{\circ}C$ | 1,000 | | | kbps | |--|--|---|--|--| | $R_L = 3 \sim 7 k\Omega$, $C_L = 150 pF$ to 250 pF, One Transmitter Switching, $T_A = 25 ^{\circ} C$, Measured from +3V to -3V or -3V to +3V | | 60 | | V/µs | | $C_L = 150 pF$ $C_L = 150 pF$ $t_{PHL} - t_{PLH}$ For ZT3220F, ZT3221F, ZT3222F, ZT3223F only For ZT3220F, ZT3221F, ZT3222F, ZT3223F only | | 0.15
0.15
50
0.2
0.2 | | μs
μs
ns
μs
μs | | For ZT3221F and ZT3223F only
For ZT3221F and ZT3223F only
For ZT3221F and ZT3223F only | | 1
30
100 | | μs
μs
μs | | RS-232 Inputs and Outputs
RS-232 Inputs and Outputs
RS-232 Inputs and Outputs | | ±15
±8
±15 | | kV
kV
kV | | | $R_L=3\sim 7k\Omega, C_L=150 pF \ to \ 250 pF, One Transmitter Switching, \\ T_A=25°C, Measured from +3V \ to -3V \ or -3V \ to +3V \\ C_L=150 pF \\ C_L=150 pF \\ t_{PHL}-t_{PLH} \\ For \ ZT3220F, \ ZT3221F, \ ZT3222F, \ ZT3223F \ only \\ For \ ZT3220F, \ ZT3221F, \ ZT3222F, \ ZT3223F \ only \\ For \ ZT3221F \ and \ ZT3223F \ only \\ For \ ZT3221F \ and \ ZT3223F \ only \\ For \ ZT3221F \ and \ ZT3223F \ only \\ RS-232 \ lnputs \ and \ Outputs RS-232 \ lnputs \ and \ Outputs \\ RS-232 \ lnputs \ and \ RS-232 \ lnputs \ and$ | $R_L=3\sim 7k\Omega, C_L=150 \text{pF to } 250 \text{pF, One Transmitter Switching,} \\ T_A=25^{\circ}\text{C, Measured from } +3\text{V to } -3\text{V or } -3\text{V to } +3\text{V} \\ C_L=150 \text{pF} \\ C_L=150 \text{pF} \\ t_{\text{PHL}}-t_{\text{PLH}} \\ \text{For ZT3220F, ZT3221F, ZT3222F, ZT3223F only} \\ \text{For ZT3220F, ZT3221F, ZT3222F, ZT3223F only} \\ \text{For ZT3221F and ZT3223F only} \\ \text{For ZT3221F and ZT3223F only} \\ \text{For ZT3221F and ZT3223F only} \\ \text{RS-232 Inputs and Outputs} $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | # **Product Cross Reference** | | Pin-to-Pin | Pin-to-Pin | Pin-to-Pin | Pin-to-Pin | Pin-to-Pin | |-------------|-------------|----------------|------------|------------|------------| | Part Number | Cross MAXIM | Cross Intersil | Cross TI | Cross ST-M | Cross EXAR | | ZT3220F | n/a | n/a | SNx5C3220 | n/a | SP3220U | | ZT3221F | n/a | n/a | SNx5C3221 | n/a | n/a | | ZT3222F | n/a | n/a | SNx5C3222 | n/a | SP3222U | | ZT3232F | n/a | n/a | SNx5C3232 | n/a | SP3232U | | ZT3223F | MAX3225E | l n/a | SNx5C3223 | n/a | SP3223U | ## Pin Description | | | | n Number | | | | | Name | Description | |---------|---------|---------|----------|---------|---------|-----------|---------|-----------------|--| | ZT3220F | ZT3221F | ZT322 | 22F | ZT3232F | ZT13 | 385F | ZT3223F | | | | 16 Pins | 16 Pins | 18 Pins | 20 Pins | 16 Pins | 18 Pins | 20 Pins | 20 Pins | | | | 1 | 1 | 1 | 1 | - | - | - | 1 | EN. | Receiver Enable. Logic low for
Normal operation. Logic high to
force the receiver outputs into
high impedance state | | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | C1+ | Positive terminal of the boostrapped voltage switch capacitor | | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | V+ | Regulated +5.4V output
generated by the voltage
converter | | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | C1- | Negative terminal of the boostrapped voltage switch capacitor | | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | C2+ | Positive terminal of the inverted voltage switch capacitor | | 7 | 7 | 7 | 7 | 6 | 7 | 7 | 7 | V- | Regulated –5.7V output
generated by the voltage
converter | | 6
d | 6 | 6 | 6 | 5 | 6 | 6 | 6 | C2- | Negative terminal of the invert-
voltage switch capacitor | | 8 | 8 | 14 | 16 | 13 | 14 | 16 | 16 | R1 IN | First RS232 receiver input | | - | - | 9 | 9 | 8 | 9 | 9 | 9 | R2 IN | Second RS232 receiver input | | 9 | 9 | 13 | 15 | 12 | 13 | 15 | 15 | R1 OUT | First TTL/CMOS receiver output | | - | - | 10 | 10 | 9 | 10 | 12 | 10 | R2 OUT | Second TTL/CMOS receiver output | | 11 | 11 | 12 | 13 | 11 | 12 | 14 | 13 | T1 IN | First TTL/CMOS transmitter input | | - | - | 11 | 12 | 10 | 11 | 13 | 12 | T2 IN | Second TTL/CMOS transmitter input | | 13 | 13 | 15 | 17 | 14 | 15 | 17 | 17 | T1 OUT | First RS232 transmitter output | | - | - | 8 | 8 | 7 | 8 | 8 | 8 | T2 OUT | Second RS232 transmitter output | | - | 10 | - | _ | - | - | - | 11 | ĪDLĒ | TTL/CMOS output indicating
AUTOGREEN or SHUTDOWN
status | | 16 | 16 | 18 | 20 | I | 18 | 20 | 20 | SHUTDOWN | Shutdown control. A logic LOW to disable drivers and voltage converter | | - | 12 | _ | 1 | - | - | - | 14 | GREEN | A logic HIGH to override AUTO-
GREEN circuitry keeping
transmitters ON.
(SHUTDOWN must be HIGH) | | 14 | 14 | 16 | 18 | 15 | 16 | 18 | 18 | GND | Ground | | 15 | 15 | 17 | 19 | 16 | 17 | 19 | 19 | V _{CC} | +3V to +5.5V Supply Voltage | | 10, 12 | - | - | 11, 14 | - | 1 | 1, 10, 11 | - | NC | No connect | # **Pin Description** ZT3232LFEQ (5x5 16-QFN Package) | 1 | C1- | | |----|-------|--| | 2 | C1- | Negative terminal of the boostrapped voltage switch capacitor | | 2 | C2+ | Positive terminal of the inverted voltage switch capacitor | | 3 | C2- | Negative terminal of the boostrapped voltage switch capacitor. | | 4 | V- | Regulated –5.7V output generated by the voltage converter | | 5 | T2OUT | Second RS232 transmitter output | | 6 | R2IN | Second RS232 receiver input. | | 7 | R2OUT | Second TTL/CMOS receiver output. | | 8 | T2IN | Second TTL/CMOS transmitter input. | | 9 | T1IN | First TTL/CMOS transmitter input | | 10 | R10UT | First TTL/CMOS receiver output. | | 11 | R1IN | First RS232 receiver input. | | 12 | T1OUT | First RS232 transmitter output | | 13 | GND | Ground. | | 14 | VCC | +3V to +5.5V Supply Voltage | | 15 | C1+ | Positive terminal of the boostrapped voltage switch capacitor | | 16 | V+ | Regulated +5.4V output generated by the voltage onverter | #### **Circuit Description** Proprietary Switch-Capacitor Regulated Voltage Converter Different from other suppliers, Zywyn uses a patent pending switch-capacitor voltage-controlled source and sink current generators design to provide powerful bipolar voltages to maintain compliant EIA/RS232 levels regardless of power supply fluctuations. The design consists of an internal regulated oscillator, a two phase clock cycling, regulated complementary MOS switches, fast switching diode and switch capacitors. The switch capacitor bi-directional current generators operate with Zywyn's proprietary smartly regulated complementary MOS switches and fast switching diode from its proprietary high voltage process technology. The efficiency of these bi-directional current generators is well over 70%. The switching frequency is generated by an internal oscillator and regulated by the current loads. The switch capacitor pump design delivers higher negative bucked voltage than the positive boosted voltage to achieve a balanced voltage controlled source and sink current generators resulting a balanced bipolar voltage supplies to the chip. With its unique proprietary design technique, Zywyn's interface product series provide a better power efficient, stable and compliant EIA/RS232 levels with superior low power consumption. #### Controlled Power-Down The ZT3220F, ZT3221F, ZT3222F and ZT3223F have a low-power shutdown mode controlled by the SHUTDOWN pin. During shutdown the driver output and the switch-capacitor regulated voltage converter are disabled with the supply current falls to less than $1\mu A$. The ZT3221F and ZT3223F use Zywyn's patent pending AUTOGREEN circuitry to set/reset latches, which enable the circuit shutdown function when a RS232 cable is disconnected or when the peripheral is turned off and reduce the power supply drain to a 1µA supply current. Otherwise, when a RS232 cable is connected or when the peripheral is turned on, the devices will automatically become active again. #### **ESD** Immunity Electro-Static Discharge (ESD) is an important factor when implementing a serial port into a system. In some applications, it is crucial that the ESD protection for the system must meet a certain tolerance level. Since RS232 transceiver devices are exposed to the outside world, there are many environmental factors that can effect the serial port and even subject it to transients that could potentially damage the transceiver itself. The RS232 transceiver is usually routed from the serial port connector to the transceiver IC through the metal trace on the printed circuit board. This trace will have some small amount of resistance that will add some protection in terms of limiting transient current to the IC. However for added voltage protection, transient voltage suppressors (TVS) or transzorbs, which are back-to-back diode arrays clamp, are usually necessary to protect the serial port circuity. To further reduce cost within their system, more engineers are requiring higher ESD tolerances from the transceiver ICs themselves without having to add costly TVS circuitry. Zywyn's RS232 transceivers includes built-in transient voltage suppression where external ESD circuitry is not necessary to meet the MIL-STD-883, Method 3015, Human Body Model and the EN61000-4-2 Air/Contact Discharge tests. The Human Body Model has been the generally accepted ESD testing method for semiconductors. This test is intended to simulate the human body's potential to store electrostatic energy and discharge it to an integrated circuit upon close proximity or contact. This method will test the IC's capability to withstand an ESD transient during normal handling such as in manufacturing areas where the ICs tend to be handled frequently. EN61000-4-2 is used for testing ESD on equipment and systems. For system manufacturers, they must guarantee a certain amount of ESD protection since the system itself is exposed to the outside environment and human presence. EN61000-4-2 specifies that the system is required to withstand an amount of static electricity when ESD is applied to exposed metal points and surfaces of the equipment that are accessible to personnel during normal usage. The transceiver IC receives most of the ESD current when the ESD source is applied to the connector pins. There are two methods within EN61000-4-2, the Air Discharge method and the Contact Discharge method. With the Air Discharge Method, an ESD voltage is applied to the equipment under test through air, which simulates an electrically charged person ready to connect a cable onto the rear of the system and the high energy potential on the person discharges through an arcing path to the rear panel of the system before he or she even touches the system. The Contact Discharge Method applies the ESD current directly to the EUT. This method was devised to reduce the unpredictability of the ESD arc. The discharge current rise time is constant since the energy is directly transferred without the air-gap arc inconsistencies. Zywyn's RS232 transceivers meets and exceeds the minimum criteria for EN61000-4-2 with \pm 15kV for Air Gap Discharge and \pm 8kV for Contact Discharge. | Operation Status | GREEN | SHUTDOWN | EN | Signal at R _X IN | IDLE | T _X OUT | R _X OUT | |----------------------|-------------|----------|----|-----------------------------|------|--------------------|--------------------| | Shutdown | don't care | 0 | 0 | present | 1 | tri-state | active | | | don't care | 0 | 0 | not present | 0 | tri-state | active | | | don't' care | 0 | 1 | present | 1 | tri-state | tri-state | | | don't' care | 0 | 1 | not present | 0 | tri-state | tri-state | | Normal without GREEN | 1 | 1 | 0 | present | 1 | active | active | | | 1 | 1 | 0 | not present | 0 | active | active | | | 1 | 1 | 1 | present | 1 | active | tri-state | | | 1 | 1 | 1 | not present | 0 | active | tri-state | | Normal with GREEN | 0 | 1 | 0 | present | 1 | active | active | | | 0 | 1 | 0 | not present | 0 | tri-state | tri-state | | | 0 | 1 | 1 | present | 1 | active | tri-state | | | 0 | 1 | 1 | not present | 0 | tri-state | tri-state | Table 1. ZT32xxF Truth Table rev. 06 ## **Typical Application Circuits** 16-pin SSOP/TSSOP/WSOIC 16-pin SSOP/TSSOP #### **Typical Application Circuits** 20-Pin SSOP/TSSOP 10 18-Pin PDIP/WSOIC ## **Typical Application Circuits** #### 16-Pin PDIP/SSOP/SOIC/TSSOP/WSOIC 20-Pin PDIP/SSOP/TSSOP ## **Typical Application Circuits** 18-pin WSOIC 20-pin SSOP ## **Typical Application Circuits** 16-pin QFN #### **Typical Test Circuits** Figure 1. ZT32xxF TxIN to TxOut (no load) at 1Mbps waveform #### **RS232 Signal Characteristics** Figure 1 shows the normal RS232 transceiver function with a TTL/CMOS signal applied to the input on channel 1 and the resultant RS232 output shown on channel 2. This figure shows a typical RS232 line driver output without loading. In other words, this is the open circuit RS232 output voltage. The charge pump voltage converter efficiently converts the necessary voltage for the driver's output transistors so that the RS232 output is close to the ideal rail voltage of 6.6V. Figure 2 shows the RS232 transceiver function using the TTL/CMOS input on channel 1 while showing the RS232 output on channel 2. This figure shows the RS232 signal while the output is loaded with 3kohms and 250pF. The resistive load is the receiver's input impedance as the driver's output is looped back to the receiver's input. The resultant output on channel 3 #### **Maximum Data Rate Test Circuit** Notes: A. $R_I = 3k\Omega$, $C_I = 250pF$, $T_A = 25^{\circ}C$, One Driver Switching B. The pulse generator had the following characteristics: PRR = 1000 kbps, Zo = 50Ω , 50% duty cycle, $T_r \& T_f \le 10 ns$. C. $\overline{SHUTDOWN} = V_{CC}$ when applicable. Figure 2. ZT32xxF TxIN to TxOut to RxOut (loopback to Rx with 250pF load) at 1Mbps waveform is the receiver's TTL/CMOS output. While loaded with a typical RS232 load, the driver's output level only drops 0.2V from its open circuit voltage while running at 1Mbps. The RS-232 output on channel 2 also shows good signal integrity while at the high data rates, which allows the receiver to process the signal will minimum skew and delay. Zywyn's low-drop driver circuitry working with its efficient voltage regulator allows superior line driving capability with the bonus of ± 15 kV ESD immunity. rev. 06 #### **Typical Test Circuits** #### **Driver Transition-Region Slew Rate Test Circuit** Notes: A. $\rm R_L$ = 3k~7k Ω , $\rm C_L$ = 150pF to 250pF, One Driver Switching, $T_A = 25^{\circ}C$, Measured from +3V to -3V or -3V to +3V. B. The pulse generator had the following characteristics: PRR = 1000 kbps, Zo = 50Ω , 50% duty cycle, $T_r \& T_f \le 10$ ns. C. $\overline{SHUTDOWN} = V_{CC}$ when applicable. # Driver Propagation (t_{PHL} & t_{PLH}) Test Circuit Notes: A. All drivers loaded with R_L = $3k\Omega$, C_L = 1000pF. B. The pulse generator had the following characteristics: PRR = 1000 kbps, Zo = 50Ω , 50% duty cycle, $T_r \& T_f \le 10$ ns. C. $\overline{\text{SHUTDOWN}} = V_{CC}$ when applicable. # Receiver Propagation Delay Times Test Circuit Notes: A. $C_1 = 150 pF$, including probe and jig capacitance. B. The pulse generator had the following characteristics: PRR = 1000 kbps, Zo = 50Ω , 50% duty cycle, $T_r \& T_f \le 10 ns$. C. $\overline{SHUTDOWN} = V_{CC}$ when applicable. 15 #### **Package Information** Specifications subject to change without notice **Zywyn Corporation** SPECIFIED. THERWISE DIMENSION FOLLOW ACCEPTABLE SPEC. REFERENCE DOCUMENT : JEDEC SPEC MO-153 PO-TSSOP-008 Specifications subject to change without notice mm SCALE : 15/1 SHEET 1 OF 1 ZT32xxF 0.75 0.076 8, 0.65 0.60 1.00 0.45 0.026 0.0177 CHECK BY FanWin Lin Parker APPROVAL: 09/13/02 09/13/02 UNIT : 0.0295 0,003 NOTE: - CONTROLLING DIMENSION: INCH LEAD FRAME MATERIAL: COPPER 194 DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, TIE BAR BURRS AND CATE BURRS MOLD FLASH, TIE BAR BURRS AND CATE BURRS SHALL NOT EXCEED 0.006*[0.15mm] PER END DIMENSION "E" DOES NOT INCLUDE INTERLEAD FLASH, INTERLEAD FLASH SHALL NOT EXCEED 0.010*[0.25mm] PER SIDE. DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.003*[0.08mm] IOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM MATERIAL CONDITION, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT, MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.00028*[0.07mm] TOLFRANCE: ±0.010*[0.25mm] UNLESS OTHERWISE SPECIFIED. - SPECIFIED, 6. OTHERWISE DIMENSION FOLLOW ACCEPTABLE - 7. REFERENCE DOCUMENT : JEDEC SPEC MS-012 | | DIMENSIO | NS IN MILL | IMETERS | DIMENSIONS IN INCHES | | | | |---------|----------|------------|---------|----------------------|-------|--------|--| | SYMBOLS | MIN | NOM | MAX | MIN | NOM | MAX | | | A | 1.47 | 1,60 | 1,73 | 0.058 | 0.063 | 0.068 | | | A1 | 0.10 | | 0.25 | 0,004 | | 0,010 | | | A2 | | 1.45 | | | 0.057 | | | | Ь | 0.33 | 0.41 | 0,51 | 0.013 | 0.016 | 0,020 | | | С | 0.19 | 0.20 | 0.25 | 0.0075 | 0.008 | 0.0098 | | 8. 9,80 9,91 10,01 0.386 0.390 0.394 D 5.79 6,20 0,228 0,236 0,244 E1 3.81 3,91 3.99 0.150 0.154 0.157 1,27 0.050 е 1.27 0.3B 0.71 0.015 0.028 0.050 0.076 0.003 8. 16-pin nSOIC | arrame veno | | | | | | | | | |-------------|-----------|---------------------------|------------------|----------|--|--|--|--| | CUSTOMER: | | ZYWYN CORPORATION | | | | | | | | | | Z 1 VV 1 1 V | ZIWIN COM ONAHON | | | | | | | APPROVED BY | DATE | TITLE: | | | | | | | | DRAW BY: | | 16L SMALL OUTLINE PACKAGE | | | | | | | | Monica Chen | 11/09/99" | DRAWIN | IG(0.150") | | | | | | | CHECK BY: | | | (01100 / | | | | | | | Leo Chan | 11/10/99 | | | | | | | | | APPROVAL | | DWG. NO. PO- | SOP-003 | REV. 0 | | | | | | APPROVAL | 11/10/99 | * 11 17 m | | | | | | | | | | UNIT : | SCALE : 12/1 | SHEET OF | | | | | | Jack Tu | 11/11/99 | INCH | 12/1 | | | | | | | | | | | | | | | | NOTE : - 1. CONTROLLING DIMENSION : INCH 2. LEAD FRAME MATERIAL : COPPER 194 3. DIMENSION "O DOES NOT INCLUDE MOLD FLASH, TIE BAR BURRS AND CATE BURRS. MOLD FLASH, TIE BAR BURRS AND CATE BURRS. MOLD FLASH, TIE BAR BURRS AND CATE BURRS SHALL NOT EXCEED 0.006"[0.15mm] PER END DIMENSION "E" DOES NOT INCLUDE INTERLEAD FLASH, INTERLEAD FLASH SHALL NOT EXCEED 0.010"[0.25mm] PER SIDE. 4. DIMENSION "D" DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.003"[0.08mm] TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT, MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.0028"[0.07mm] 5. TOLERANCE : ±0.010"[0.25mm] UNLESS OTHERWISE SPECIFIED. 6. OTHERWISE DIMENSION FOLLOW ACCEPTABLE SPEC. 7. REFERENCE DOCUMENT : JEDEC SPEC MS-013 - REFERENCE DOCUMENT : JEDEC SPEC MS-013 | | SYMBOLS | DIMENSIO | DNS IN MIL | LIMETERS | DIMEN | SIONS IN | INCHES | | |--|---------|----------|------------|----------|-------|----------|--------|-----| | | STMBULS | MIN | NOM | MAX | MIN | NOM | MAX | | | | Α | 2.36 | 2,49 | 2.64 | 0.093 | 0,098 | 0.104 | 1 | | | A1 | 0.10 | | 0.30 | 0.004 | | 0.012 |] | | | A2 | | 2.31 | | | 0.091 | | L | | | b | 0.33 | 0.41 | 0.51 | 0.013 | 0.016 | 0.020 | ζcι | | | С | 0.18 | 0.23 | 0.28 | 0.007 | 0.009 | 0.011 | 1 | | | D | 10,08 | 10,31 | 10.49 | 0,397 | 0.406 | 0.413 | Т | | | E | 10,01 | 10,31 | 10,64 | 0,394 | 0,406 | 0,419 | DF | | | E1 | 7.39 | 7.49 | 7.59 | 0,291 | 0,295 | 0,299 | 0. | | | | | | | | | | | 1,27 0,076 18 0.015 0,032 0.38 0.81 | 0,104 | 1 | | | 16-ni | n w c c c c | | |---|-------------|------------|-------------|---------------|--------------|--| | U.1U4 | | | | 10-01 | n wSOIC | | | 0.012 | | | | • | | | | | | | | | | | | 0.020 | CUSTOMER : | | 7V\\/V\I | CORPO | DATION | | | 0.011 | | | Z I VV I IN | CORFO | NATION | | | 0.413 | APPROVED BY | DATE | TITLE: | | | | | 0,419 | DRAW HY: | | 16L WIDE I | BODY SMALL OU | TLINE | | | 0,299 | Monica Chen | 10/28/99 | PACKAGE I | DRAWING | | | | | CHECK BY: | 11/01/99 | | | | | | 0.050 | APPROVAL: | | DWG. NO. PO | 0-SOP-004 | REV. 0 | | | | APPROVAL: | 11/02/- 09 | UNIT : | SCALE : n // | | | | 8, | Fack Tu | 11/02/98 | | SCALE: 8/1 | SHEET 1 OF 1 | | | Specifications subject to change without notice | | | | | | | Dec 2013 ## Green Package SMD IR Reflow Profile Information Zywyn Green Packages are Pb-free and RoHS compliance. ## **Ordering Information** | Part Number | Temperature Range | Package Type | | |-------------|-------------------|--------------|----------| | ZT3220LFEA | -40°C to +85°C | 16-pin SSOP | (| | ZT3220LFET | -40°C to +85°C | 16-pin WSOIC | (| | ZT3220LFEY | -40°C to +85°C | 16-pin TSSOP | (| | ZT3221LFEA | -40°C to +85°C | 16-pin SSOP | (| | ZT3221LFEY | -40°C to +85°C | 16-pin TSSOP | (| | ZT3222LFEA | -40°C to +85°C | 20-pin SSOP | (| | ZT3222LFET | -40°C to +85°C | 18-pin WSOIC | (| | ZT3222LFEY | -40°C to +85°C | 20-pin TSSOP | (| | ZT3223LFEA | -40°C to +85°C | 20-pin SSOP | (| | ZT3223LFEY | -40°C to +85°C | 20-pin TSSOP | (| | ZT3232LFEA | -40°C to +85°C | 16-pin SSOP | (| | ZT3232LFEN | -40°C to +85°C | 16-pin nSOIC | (| | ZT3232LFET | -40°C to +85°C | 16-pin WSOIC | (| | ZT3232LFEY | -40°C to +85°C | 16-pin TSSOP | (| | ZT3232LFEQ | -40°C to +85°C | 16-pin QFN | (| | ZT1385LFEA | -40°C to +85°C | 20-pin SSOP | (| | ZT1385LFET | -40°C to +85°C | 18-pin WSOIC | (| Please contact the factory for pricing and availability on Tape-and-Reel options. #### **Zywyn Corporation** Headquarters and Sales Office 1270 Oakmead Parkway, Suite 201 • Sunnyvale, CA 94085 • Tel: (408) 733-3225 • Fax: (408) 733-3206 Email: sales@zywyn.com • www.zywyn.com Zywyn Corporation reserves the right to make changes to any products described herein. Zywyn does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. © 2010 Zywyn Corporation