

Ultralow Noise Microphone with Top Port and Analog Output

DESCRIPTION

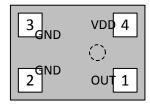
The ZTS6016 is a high quality, low cost, low power analog output top-ported omni-directional MEMS microphone. ZTS6016 consists of a MEMS microphone element and an preamplifier. ZTS6016 has a high SNR and flat wideband frequency response, resulting in natural sound with high intelligibility. Due to built-in filter, ZTS6016 shows high immunity to EMI.

The ZTS6016 is available in a thin 3.10mm \times 2.50mm \times 1.00mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ZTS6016 is halide free.

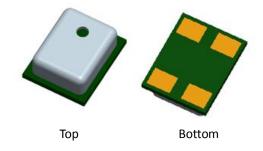
APPLICATIONS

- Mobile telephones
- PDAs
- Digital video cameras
- Portable media devices with audio input

ORDERING INFORMATION

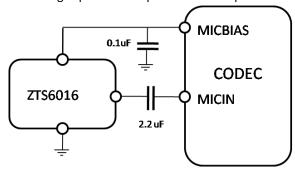

PART	RoHS	Ship, Quantity
ZTS6016	Yes	Tape and Reel, 5.2K

FEATURES


- 3.10mm×2.50mm×1.00mm surface-mount package
- Stable sensitivity over power supply range of 1.5V-3.6V
- SNR of 60dBA
- Sensitivity of -42dBV
- Low current consumption of <100μA
- Multi Chip Module (MCM) Package

Pins Configuration and Description

Bottom View


Top Metal Cover is GND.

Isometric Views of ZTS6016 Microphone Package

Typical Applications

The ZTS6016 output can be connected to a codec microphone input or to a high input impedance gain stage. A dc-blocking capacitor is required at the output of the microphone.

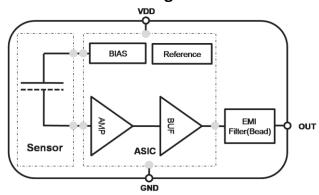
Connect to Audio Codec

Absolute Maximum Ratings

Supply Voltage (VDD)	–0.5V to +4.5V
OUT to GND	0.3V to V _{DD} +0.3V
Input Current to Any Pin	±5mA
Mechanical Shock	10000g
Vibration	. Per MIL-STD-883 Method
	2007, Test Condition B
Temperature Range	40°C to +100°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electro-Static Discharge Sensitivity

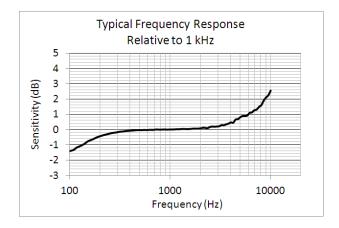

This integrated circuit can be damaged by ESD.

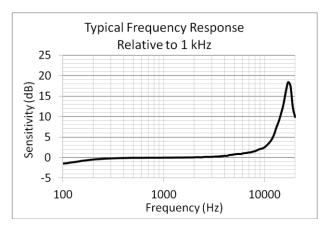
It is recommended that all integrated circuits be handled with proper precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure.

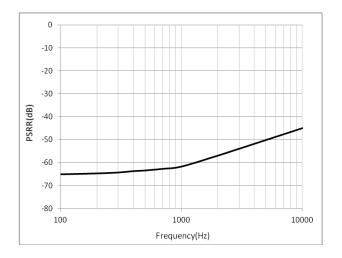
Pins Description

Pin	Symbol	Description
1	OUT	Analog output signal.
2,3	GND	Ground.
4	VDD	Power Supply.

Functional Block Diagram


Specifications


 $(T_A = +15^{\circ}C^{\sim} + 25^{\circ}C, V_{DD} = +1.8V, \text{ unless otherwise noted.})$

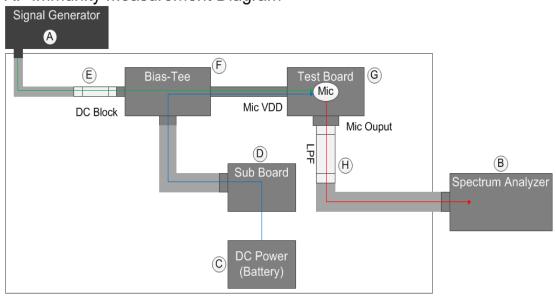

PARAMETER	Symbol	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Directivity				Omni		
Supply Voltage	V_{DD}		1.5		3.6	V
Current Consumption	I _{DD}			80	100	μΑ
Sensitivity (Note)		1KHz, 94dB SPL	-43	-42	-41	dBV
Signal-to-Noise-Ratio	SNR	1KHz, 94dB SPL, A-weighted (20Hz~10KHz)		60		dB
Equivalent Input Noise	EIN			34		dBA SPL
Total Harmonic Distortion	THD	1KHz, 94dB SPL		0.1	0.2	%
Power Supply Rejection Ratio	PSRR	217Hz, 100mV Vp-p, square wave on V_{DD}		65		dBA
Maximum Acoustic Input				126		dB SPL
Output Impedance	Zout				450	Ω
Output DC Offset				0.75		V
Output Current Limit				90		μΑ
Polarity				Noninverting		

Note: Base on BK sound test system.

Typical Performance Characteristics

TDMA Disturbance Immunity

- 65 dB Max @ $500\sim$ 2500MHz (Direct RF injection test according to set figure , this set figure is based on below block diagram.)


Instrument settings

Signal Generator

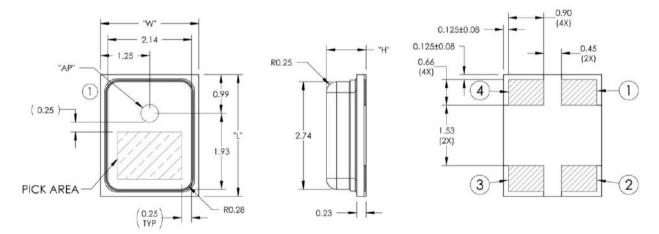
- modulation: 1 kHz, AM, depth 80%
- test frequency and amplitude from frequency/amplitude table

MHz	dBm	MHz	dBm	MHz	dBm	MHz	dBm	MHz	dBm
100	-4.08	600	-2.85	1100	-1.64	1600	-0.52	2100	0.05
200	-3.68	700	-2.61	1200	-1.33	1700	-0.29	2200	0.12
300	-3.31	800	-2.39	1300	-1.25	1800	-0.11	2300	0.27
400	-3.24	900	-2.11	1400	-1.08	1900	-0.04	2400	0.31
500	-3.09	1000	-1.84	1500	-0.86	2000	-0.01	2500	0.45

RF Immunity Measurement Diagram

Α	Signal Generator	Rode & Schwarz SMIQ 03B
В	Spectrum Analyzer	Audio Precision APx525
С	DC Power	Battery 3V
D	Sub Board with RL & Capacitor	C: 0.1uF
Е	DC block	Agilent 11742A
F	Bias-Tee	Mini-Circuits ZFBT-6GW
G	Test Board	ZTS6016 EVB
Н	Low pass filter (Pass band 5M~2.5GHz)	Mini-Circuits SLP-2.5, SLP-5, SLP-150, SLP-450, SLP-1200,SLP-1650

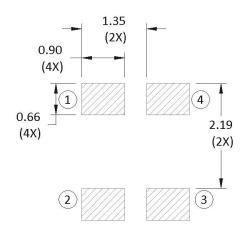
Reliability Tests

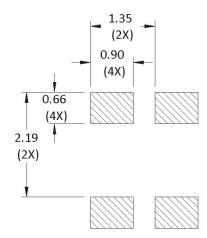

The microphone sensitivity after stress must deviate by no more than ±3dB from the initial value.

1 Heat Test Operational	Tomporatura, 05 / 2°C
1.Heat Test, Operational	Temperature: 85±3°C
	Humidity: 85±5%RH
	Duration: 12 hours
2 Cold Tost On a matical	Voltage: Applied
2.Cold Test, Operational	Temperature: -40±3°C
	Duration: 12 hours
	Voltage: Applied
3.Heat Test, Non-Operational	Temperature: 85±3°C
	Humidity: 50±5%RH
	Duration: 96 hours
	Voltage: Not Applied
4.Cold Test, Non-Operational	Temperature: -40±3°C
	Duration: 96 hours
	Voltage: Not Applied
5.Condensation Test, Non-Operational	Temperature: 25±3°C and 55±3°C
	Humidity: 95±5%RH
	Duration: 1 hours each, during 10 minutes
	ramp, 45 cycles
	Voltage: Not applied
6.Temperature Cycling, Non-Operational	Temperature: -40±3°C and 85±3°C
	Humidity: 50±5% RH
	Duration: 2 hours each, during 6 hours
	ramp, 5 cycles
7.71	Voltage: Not applied
7.Thermal Shock Test, Non-Operational	Temperature: -40±3°C and 85±3°C
	Duration: 30 minutes each, during 5
	minutes ramp, 256 cycles
8.Free Fall Test 1.5m	Voltage: Not applied Placed inside test fixture and dropped on
O.ITEC FAIL IEST T.JIII	concrete from height 1.5m.
	(1)3 times by 6 surfaces
	(2)1 times by 0 surfaces
	(3)1 times by 8 corners
9.Random Vibration	Temperature: 23±5°C
3.Nanuoni vibiauon	Humidity: 35~70% RH
	Duration: 2 hours each axis(X,Y,Z)
	Power Spectral Density:
	5Hz 0.10m2/s3(=1.0391*10-3g2/Hz)
	12Hz 2.20m2/s3(=1.0391*10-3g2/Hz)
	20Hz 2.20m2/s3(=22.8602*10-3g2/Hz)
	200Hz 0.04m2/s3(=0.41534*10-3g2/Hz)
	200Hz 0.04m2/s3(=0.41564*10-3g2/Hz)
10.Repeated Low Level Free Fall Test	Placed inside test fixture and dropped on
10. Nepeated Low Level Flee Fall lest	rubber mat from height of 10cm.
	Each face 2500 times(Total 6 faces, 15000times)
11 1m Repeated Rotating	Placed inside test fixture and dropped on steel
11.1m Repeated Rotating Free Fall	sheet from height of 1.0m.
i i ee i aii	100 times(all faces)
	Rotation speed of barrel: 10~12 falls/minute
12 Fron Fall Tost for master have	
12.Free Fall Test for master box	Corner drop: Each Corner 1 time
	Edge drop: Each Edge 1 time

	Face drop: Each Face 1 time
13.Random Vibration for master box	Sinusoidal wave vibration
	Frequency: 5~50Hz
	Acceleration:7.4m/s2(0.76G)
	Sweep speed:9Hz/min(5~50Hz, one way 5 min)
	Test duration: Direction of Face 1-3 20min
	Direction of Face 2-4 20min
	Direction of Face 5-6 20min
	Sample and direction of vibration: 1 direction
	for 1 sample
	Package on vibrating table: Free
14.Substrate bending Test	Deflection: 3mm
	Rate: 0.5mm/sec
15.Adhesion	Load: 10 N
	Duration: 10 seconds
16.Electrostatic Discharge Test	Capacitance: 150pF
	Resistance: 330Ω
	Duration: 10 times
	Air Discharge: Level 3(+/-8kV)
	Direct contact discharge: Level 1 (+/-2kV)
17.ESD-Human Body Model	3 discharges of ±2 kV direct contact to I/O pins.
	(100pF,1500Ω)
18.ESD-Charged Device Model	3 discharges of ± 500V direct contact to I/O
	pins.
19. ESD-Machine Mode	3 discharges of ±200 V direct contact to I/O
	pins.
20.Self alignment effect	Displacement: 0.15mm

MECHANICAL SPECIFICATIOPNS

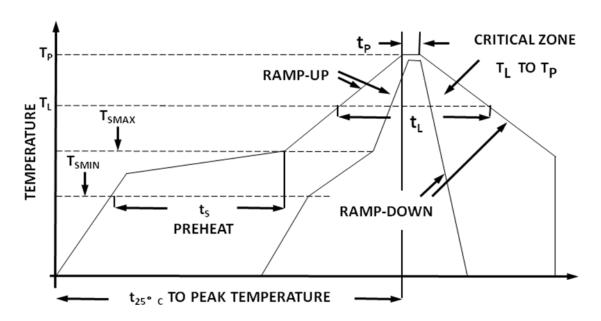



ITEM	DIMENSION	TOLERANCE	UNITS
Length (L)	3.10	±0.10	mm
Width (W)	2.50	±0.10	mm
Height (H)	1.00	±0.10	mm
Acoustic Port (AP)	Ø0.45	±0.05	mm

RECOMMENDED CUSTOMER LAND PATTERN

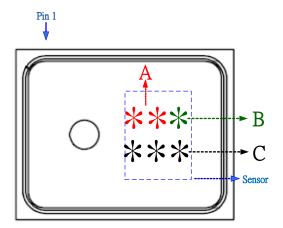
The recommended PCB land pattern for the ZTS6016 should have a 1:1 ratio to the solder pads on the microphone package. Care should be taken to avoid applying solder paste to the sound hole in PCB. The dimensions of suggested solder paste pattern refer to the land pattern.

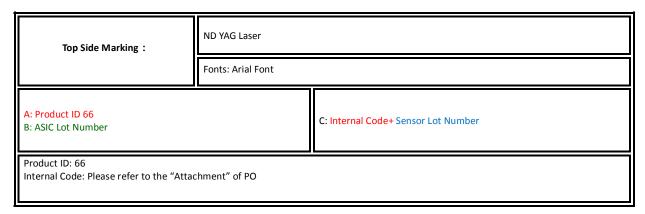
PCB Land Pattern Layout (Dimensions Shown in mm).


Suggested Solder Paste Stencil Pattern Layout.

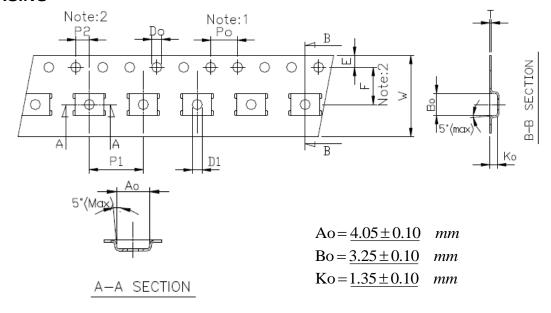
 ${\bf Copyright} \ {\bf @} \ {\bf ZillTek} \ {\bf Technology} \ {\bf Corp}.$

SOLDER FLOW PROFILE


The reflow profile specified in this section describes expected maximum heat exposure of components during the reflow process of NMP product PWBs. Temperature is measured on top of component. All components have to tolerate at least this profile five times (5x) without affecting electrical performance, mechanical performance or reliability.

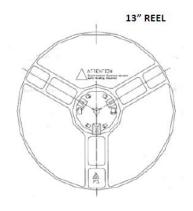


Pb-free and Sn63/Pb37 reflow profile requirements for soldering heat resistance:

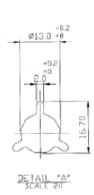

Parameter		Reference	Pb-Free	Sn63/Pb37
Average Ram	np Rate	T _L to T _P	1.25°C/sec max	1.25°C/sec max
	Minimum Temperature	T _{SMIN}	100°C	100°C
Prehear	Maximum Temperature	T _{SMAX}	200°C	150°C
	Time	T _{SMIN} to T _{SMAX}	60sec to 75sec	60sec to 75sec
Ramp-Up Ra	te	T _{SMAX} to T _L	1.25°C/sec	1.25°C/sec
Time Mainta	Time Maintained Above Liquidous		50sec	60sec to 75sec
Liquidous Temperature		T _L	217°C	183°C
Peak Temperature		T _P	260°C +0°C/-5°C	215°C +3°C/-3°C
Time Within +5°C of Actual Peak Temperature		t _P	20 sec to 30 sec	20 sec to 30 sec
Ramp-Down Rate		T _{peak}	3°C/sec max	3°C/sec max
Time +25 Temperature	- (-2500)		5 min max	5 min max

MARKING RULE

PACKAGING

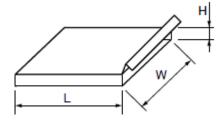


Unit: mm

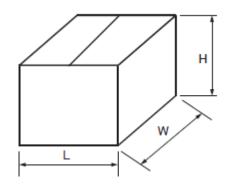

Symbol	Spec.
K1	-
Po	4.0 ± 0.10
P1	8.0 ± 0.10
P2	2.0 ± 0.05
D _o	1.55 ± 0.05
D1	1.50 (MIN)
E	1.75 ± 0.10
F	5.50 ± 0.05
10P ₀	40.0 ± 0.10
W	12.0 ± 0.20
Т	0.30 ± 0.05

Notice:

- $1 \cdot 10$ Sprocket hole pitch cumulative tolerance is ± 0.1 mm.
- $\mathbf{2}\cdot\mathbf{Pocket}$ position relative to sprocket hole measured as true position of pocket not pocket hole.
- $3 \cdot A_0 \& B_0$ measured on a place 0.3mm above the bottom of the pocket to top surface of the carrier.
- $4\cdot K_{\text{O}}$ measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 5 · Carrier camber shall be not that 1mm per 100mm through a length of 250mm.



Part NO.	Reel Diameter	Quantity Per Reel	Quantity Per Inner Box	Quantity Per Outer Box
ZTS6011BV	13"	5,200	5,200	46,800


Dimensions for Inner Box

Unit: mm

L	W	Н
335	339	45

Dimensions for Outer Box

Unit: mm

L	W	Н
445	360	372

Pick and place guidelines of process

Rules of cleaning

Due to Clean the PCBA gap will make MEMS Mic. unit work improperly, please do not clean it by way of ultrasonic or use any cleaning solution to wash the soldered MEMS Mic. unit. If the PCB need to be cleaned, please seal with a tape on the both side of the acoustic hole to avoid foreign material and liquid invaded.

MEMS Mic. is a electro-acoustic component which rely on its diaphragm vibrate in response to sound pressure, so that the sound pressure can be converted to electrical signals; Base on the above, If any cleaning liquid inject the Mic. unit, the vibrate spacing of the diaphragm would be constrained. As a result of that, if the diaphragm cannot vibrate well, it will make the output signal smaller or even no output.

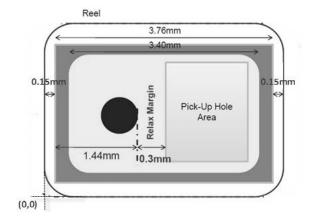
Rules of the pressure of vacuum nozzle

If the Vacuum nozzle pressure is much more on the metal cap, it will directly affect the displacement of the diaphragm structure. When the displacement pressure is greater than the Max input sound pressure, the diaphragm will be damaged or cracked.

Note that Vacuum nozzle pressure cannot greater than 7PSI.

1K Pa = 0.145 pounds (lb / in2) = 0.0102 KGF / CM2 = 0.0098 atm.

Rules of protection measurement


- 1 · Please do not let the vacuum nozzle suck the microphone acoustic hole
- 2 · Do not vacuum the anti-static bag when repackaging the MEMS Mic..
- 3 · Do not blow the acoustic hole when cleaning the PCBA with air gun.

Rules of the placement of vacuum nozzle

When pick and place the Mic. unit, the SMT Vacuum Tube should be placed in the center of the left and right sides of Mic. unit and keeps 0.5mm from the edge of the acoustic hole.

This pick and place guidelines can apply to all series of ZillTek Top-Port MEMS Mic. products.

