

eSL Series

16 Bits DSP Sound Processor

Product Specification

DOC. VERSION 1.7

ELAN MICROELECTRONICS CORP. October 2009

Trademark Acknowledgments: IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation. ELAN and ELAN logo *Call* are trademarks of ELAN Microelectronics Corporation.

Copyright © 2006~2009 by ELAN Microelectronics Corporation **All Rights Reserved** Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, Taiwan 30077 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780 elanhk@emc.com.hk

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area) Shenzhen 518057 CHINA Tel: +86 755 2601-0565

Fax: +86 755 2601-0500

USA:

Elan Information Technology Group (USA)

1821 Saratoga Ave., Suite 250 Saratoga, CA 95070 USA Tel:+1 408 366-8225 Fax: +1 408 366-8220

Shanghai:

Elan Microelectronics Shanghai, Ltd.

23/Bldg. #115 Lane 572, Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA Tel: +86 21 5080-3866 Fax: +86 21 5080-4600

Contents

1	General Description	1
2	Features	1
3	Block Diagram	3
4	Selection Table	4
5	Algorithm Selection Table	6
6	Pin Description	8
7	Electrical Characteristics	12
8	Application Circuits	15

Doc. Version	Revision Description	Date
1.0	1. Modified the Pin description in Section 5	2006/10/31
	2. Modified the Operating temperature Range in Section 6.2	
	1. Added a comment after the Selection table in Section 4	
1.1	2. Modified the Application Circuits diagram in Section 7	2007/04/12
	3. Modified the Sampleing Rate Range in Section 4	
	1. Added eSL032	
	2. Modified the Temperature Range in Section 6.2	
1.2	3. Modified the Power Supply voltage in Section 6.3	2007/08/10
	4. Added algorithm suuport such as beat tracking, sound	
	location, speech control, pitch control in Section 2 and 4	
1.3	1. Added package information in Section 4	2007/11/10
1.0	2. Modified Application Circuit in Section 7	2007/11/10
1.4	1. Modified PWM current in Section 6.3	2008/01/10
	2. Added PortC DC characteristic in Section 6.3	2000/01/10
	1. Modified Application Circuits diagram in Section 7	
1.5	2. Modified Algorithm support in Section 2 and 4	2008/10/15
	3. Added eSL032B, eSL128B, eSL256B, eSL512B,	
	eSL512C	
1.6	1. Added algorithm-related section in Section 5	2009/04/15
1.7	1. Modify PC[7:0] pull-up resiter in Section 7.3	2009/10/15
	2. Modified Application Circuit in Section 8	2000/10/10

1 General Description

The ELAN eSL Series IC is a 16-bit DSP Sound Processor with multi-channel speech and instrument playback. It is based on ELAN 16-bit DSP platform. The series has a powerful 16-bit DSP architecture that handles most of the speech/melody functions. Speech and melody can be played back simultaneously. The speech synthesis is implemented by software, and it supports a wide range of compression bit rates and various volume levels. The ELAN eSL Series provides real instrument waveform to obtain good quality melody. The ELAN eSL peripheral includes ADC, RTC, Timer, WDT, SPI, DAC, PWM, etc.

The ELAN eSL Series IC offer Fast, Sleep, Green, and Slow modes of operation. The use of Green/Slow mode will further reduce the power consumption. Green mode also provides RTC function for wake-up purposes.

The ELAN eSL Series enhanced features make it suitable for versatile voice and sound effect product applications. These enhanced versatile features allow users to create products with a wide variety of new fancy ideas.

The ELAN eSL Series has extreme high performance in speech application based on powerful DSP architecture and good algorithm in audio compression.

2 Features

- MCU
 - 16-bit RISC CPU architecture
 - CPU clock: 20 MHz @ 3.3V
 - Programmable PLL
 - Four CPU operation modes: fast, slow, green, sleep
 - Powerful DSP Instruction Set supports multiplication, division, repeat, loop
 and soft interrupt instructions
 - Saturation mode is supported for multimedia applications
 - Eight general purpose registers (GPR)
 - 21 interrupt sources with 2-level priority
- Memory
 - 32K-word program memory
 - 2K-word data RAM
 - 032/128/256/512K-word data ROM
- Peripherals
 - Real Time Clock (RTC) with wake-up function
 - Four 8-bit timers, two general purpose timers, two multiple-function timers

- 8-bit Watchdog Timer (WDT) with general purpose timer capability
- 40 GPIO + 8 Outputs
- Serial Peripheral Interface (SPI)
- 12-bit Analog to Digital Converter (ADC) with touch panel and MIC inputs
- 12-bit current-steering Digital to Analog Converter (DAC)
- 10-bit resolution Pulse Width Modulation (PWM)

3 Block Diagram

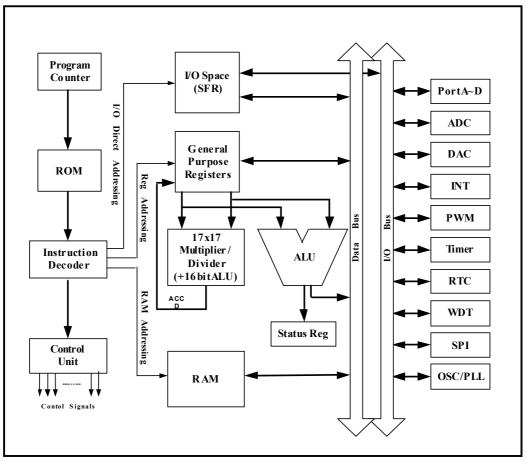


Figure 3-1 ELAN eSL System Block Diagram

4 Selection Table

The ELAN eSL Series integrates an extensive range of features, most of which are common to all devices, except for some distinctive features like, Data ROM, I/O count and Coding Type. For user convenience in the choice of the most suitable product for their application, the following table is provided, which enumerates the main features of each device.

Product No.	eSL032	eSL128	eSL256	eSL512			
Pin Count		8	1				
Program ROM		32K	× 16				
Data RAM		2К	×16				
Data ROM	32Kx16	128K×16	256K×16 512K×16				
Timer	4 × 8-bit timers						
Watchdog		Yes					
PWM	10-bit						
A/D Converter	12-bit						
Current D/A	12-bit						
SPI	1 set						
I/O		40 I/O ports +	8 Output ports				

Product No.	eSL032A*	eSL032B*	eSL128A*	eSL128B*	eSL256A*	eSL256B*	eSL512A*	eSL512B*	eSL512C*
Pin Count					81				
Program ROM					32K × 16				
Data RAM					2K ×16				
Data ROM	32k	(x16	128	≺ ×16	256K×16		512K×16		512K×16
Timer				4	× 8-bit timer	s			
Watchdog					Yes				
PWM					10-bit				
A/D Converter					12-bit				
Current D/A	12-bit								
SPI	1 set								
I/O				40 I/O p	orts + 8 Outp	out ports			

* The product number "A,B,C" means advanced audio algorithm is supported.

5 Algorithm Selection Table

The ELAN eSL Series algorithm feature

- Built-in software voice synthesizer (0.8K ~ 96Kbps@8kHz)
- Multiple flash with volume level option
- Directly controls port output value by waveform (waveform control port)
- Supports mark number in waveform with ROM optimized configuration
- Up to 2-channel speech with different channel sample rate or 1-channel speech + 8-channel melody
- Voice recording in 12, 16, 20, 32, 40, 48 and 96 Kbps@8KHz
- Support beat tracking function to detect music tempo
- Support speed control to adjust playback speed
- Support pitch control to change voice pitch
- Support sound source detection function to detect the angle of sound position
- Support speaker dependent recognition to recognize voice command & control function which is dependent on speaker
- Support speaker independent recognition to recognize voice command & control function which is independent on speaker
- Support handwriting recognition engine to recognize characters, numeral, symbols, and gestures.

Product No.	eSL032	eSL128	eSL256	eSL512				
Audio**	Up to 2-channel speech with different channel sample rate or 1-channel speech + 8-channel melody							
Coding Type**	12K/16K/20K/32K/40K/48K/96K bps @ 8KHz							
Sampling Rate Range**		6kHz ~ 48KHz						
Recording	Yes							

Product No.	eSL032A*	eSL128A*	eSL256A*	eSL512A*	eSL032B*	eSL128B*	eSL256A*	eSL512B*	eSL512C*
Audio**	Up to 2-cha	annel speech	with differen	t channel sa	mple rate or	1-channel sp	eech + 8-cha	innel melody	
Coding Type**				0.8K~96K b	ops @ 8KHz				12K/16K/20K/32K/40K /48K/96K bps @8KHz
Sampling Rate Range**					6kHz ~ 4	48KHz			
Recording	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Beat Tracking	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Speaker Independent Recognition	No	No	No	No	Yes	Yes	Yes	Yes	No
Speaker Dependent Recognition	No	No	No	No	Yes	Yes	Yes	Yes	No
Recording	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Sound Source Detection	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Speech Speed/Pitch Control	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hand Writing Recognition	No	No	No	No	No	No	No	No	Yes

^{*} The product number "A,B,C" means advanced algorithm is supported. A series support vocal high compress application. B series support voice recognition (SI/SD) application, C series support hand write recognition (HWR) application

** For more detailed information, refer to the Assembler Reference Manual, C Macro Reference Manual and related Application note.

6 Pin Description

6.1 Power Supply

Name	Туре	Supply Voltage	Description
VDD_CPU	Р	3V	Positive power supply for CPU, digital peripheral and DRAM
VDD_PM	Р	3V	Positive power supply for PROM, DROM and POR
VDD_OSC	Р	3V	Positive power supply for Oscillator system and PLL
IOVDD_PWM	Р	3V, 5V	Positive power supply for Port D and PWM I/O pad
IOVDD_PB	Р	3V, 5V	Positive power supply for Port A.2~15 and Port B I/O pad
IOVDD_PC	Р	3V, 5V	Positive power supply for Port C I/O pad
VSS_CPU	Р	GND	Negative power supply for CPU, digital peripheral and DRAM
VSS_PM	Р	GND	Negative power supply for PROM, DROM and POR
VSS_OSC	Р	GND	Negative power supply for Oscillator system and PLL
IOVSS_PWM	Р	GND	Negative power supply for Port D and PWM I/O pad
IOVSS_PB	Р	GND	Negative power supply for Port A.2~15 and Port B I/O pad
IOVSS_PC	Р	GND	Negative power supply for Port C I/O pad
AVDD_AD	Р	3V	Positive power supply for A/D
AVDD_DA	Р	3V	Positive power supply for D/A
AVSS_AD	Р	GND	Negative power supply for A/D
AVSS_DA	Р	GND	Negative power supply for D/A
VREF	Р	3V	External reference voltage input pin for A/D and MIC
RVIN	Р	5V	Regulator voltage input
RVOUT	Р	3V	Regulator voltage output 3.0V

NOTE

The AVDD_AD, VREF are analog voltage input that need to separate with other digital voltage input to reduce noise issue. For example, you can use on-chip regulator to be the analog voltage source. Or you can refer to development board reference circuit.

6.2 System Control

Name	Туре	Description		
RSTB	I	RSTB is the low active global reset input*		
TEST	I	Test mode select pin (High active). Internal pull down. For chip internal test only, normally connect to VSS.		
OSCI	I	Crystal or RC oscillator connecting pin RC or Crystal selection is by OSCS pin		
OSCO	0	Crystal oscillator connecting pin		
OSCS	I	RC or Crystal selection: 0 = RC 1 = Crystal		
PLLC	I	PLL loop filter capacitor **		

^{*} This pin has an internal pull-up 150K Ω resistor, refer to the Application Circuit

** This pin must connect a 47nF capacitor to ground, refer to the Application Circuit

6.3 DAC Output

Name	Туре	Description
DACO	0	Current D/A output pin

6.4 Two-stage Amplifier & Touch Pad Positioning

Name	Туре	Description	
AMPO	0	Post Amplifier output	
MIC	I	Microphone signal input (AC coupling from microphone signal)	
AGC	I	Automatic Level Control adjustment pin	
Xn	I	Touch Pad positioning for X axis under negative voltage level	
Yn	I	Touch Pad positioning for Y axis under negative voltage level	
XP/ADIN0	I	Touch Pad positioning for X axis under positive voltage level Analog input channel 0	
YP/ADIN1 I		Touch Pad positioning for Y axis under positive voltage level Analog input channel 1	

6.5 I/O Port

• Port A Attributes and Definitions

Name	Function	Туре	Description
	GPIO	J/O	General-purpose I/O function
PA[0]	PWM0	0	PWM Output 0
	GPIO	I/O	General-purpose I/O function
PA[1]	PWM1	0	PWM Output 1
PA[2]	GPIO	I/O	General-purpose I/O function
PA[3]	GPIO	I/O	General-purpose I/O function
DALA	GPIO	I/O	General-purpose I/O function
PA[4]	TEX12	I	External Timer 2 clock input
DATE	GPIO	I/O	General-purpose I/O function
PA[5]	TEX13	Ι	External Timer 3 clock input
PA [6]	GPIO	I/O	General-purpose I/O function
PA [7]	GPIO	I/O	General-purpose I/O function
DA [0]	GPIO	I/O	General-purpose I/O function
PA [8]	TCCP2	I/O	Timer 2 capture input or compare output
	GPIO	I/O	General-purpose I/O function
PA [9]	TCCP3	I/O	Timer 3 capture input or compare output
DA [10]	GPIO	I/O	General-purpose I/O function
PA [10]	EXINT0	I	External Interrupt 0 input
DA [11]	GPIO	I/O	General-purpose I/O function
PA [11]	EXINT1	I	External Interrupt 1 input
	GPIO	I/O	General-purpose I/O function with programmable high current
PA [12]	/SS	Ι	SPI function In Slave mode: used as chip select input In Master mode: used as I/O pin with programmable high current
PA [13]	GPIO	I/O	General-purpose I/O function with programmable high current
FA [15]	MOSI	I/O	SPI function (Master output / Slave input) with programmable high current
	GPIO	I/O	General-purpose I/O function with programmable high current
PA [14]	MISO	I/O	SPI function (Master input / Slave output) with programmable high current
	GPIO	I/O	General-purpose I/O function with programmable high current
PA [15]	SCK	I/O	SPI function with programmable high current In Master mode: used as serial clock output In Slave mode: used as serial clock input

• Port B Attributes and Definitions

Name	Function	Туре	Description				
PB [7:0]	GPIO	I/O	General-purpose I/O function				
		I	Wake-up function with programmable pull-up resistor				
PB [15:8]	GPIO	I/O General-purpose I/O function		General-purpose I/O function			
				Wake-up function with programmable pull-up resistor			

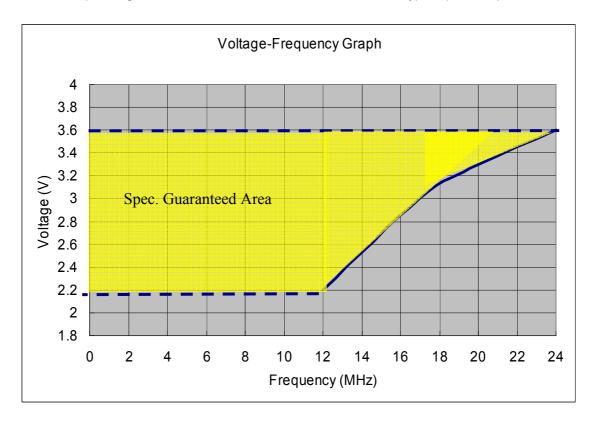
• Port C Attributes and Definitions

Name	Function	Туре	Description				
PC [1:0]	GPIO	I/O	General-purpose I/O function				
		I	Input with programmable pull-up resistor				
PC [7:2]	GPIO	I/O	General-purpose I/O function				
		I	Input with programmable pull-up resistor				
	ADIN2~7	I	Analog Input channels				

Note: Port C [7:2] is pin-shared with ADC input. There is no Schmitt Trigger Input when input is from Port C [7:2]

• Port D Attributes and Definitions

Name	Function	Туре	Description
PD [0]	GPO	0	General-purpose output function with high drive current (1 * Tg delay)*
PD [1]	GPO	0	General-purpose output function with high drive current (5 * Tg delay)*
PD [2]	GPO	0	General-purpose output function with high drive current (2 * Tg delay) *
PD [3]	GPO	0	General-purpose output function with high drive current (6 * Tg delay)*
PD [4]	GPO	0	General-purpose output function with high drive current (3 * Tg delay) *
PD [5]	GPO	0	General-purpose output function with high drive current (7 * Tg delay) *
PD [6]	GPO	0	General-purpose output function with high drive current (4 * Tg delay) *
PD [7]	GPO	0	General-purpose output function with high drive current (8 * Tg delay)*


Tg = 4 nano-second for low noise design consideration

7 Electrical Characteristics

7.1 CPU Voltage – Frequency Graph

The speed of a MOS device depends on voltage, temperature, and process variation. Performance analysis is based on a combination of these three factors. The central operating condition is characterized at 3.3V, 25°C, and typical process parameters.

7.2 Absolute Maximum Ratings

Parameter	Pins	Symbol	Condition	Rated Value	Unit	
Power supply voltage	VDD	V _{DD}	T _A =25°C	-0.3 to +6.0	V	
Input voltage	All Input	V _{IN}	T _A =25°C	-0.3 to VDD+0.3	v	
Operating temperature range	_	Τ _Α	_	-40 to +85	°C	
Storage temperature range	—	T _{STR}	_	-65 to +150		

7.3 DC Characteristics

Standard operation conditions: VDD = 3V, GND=0V, $T_A = 25^{\circ}C$

Parameter	Pins	Symbol	Condition	Rat	Unit			
Falameter	FIIIS	Symbol	Condition	Min.	Тур.	Max.	Onnt	
Power supply voltage	VDD ¹	V _{DD}	2 batteries	2.2	3.0	3.6		
i ower supply voltage	VDD		3 batteries	3.6	4.5	5.5		
Input voltage	_	V _{IN1}	_	VDD×0.7		VDD	V	
input voltage	—	V _{IN2}	_	0	_	VDD×0.3	v	
Input threshold voltage	_	—	_	0.5×VDD		0.75×VDD		
(Schmitt Trigger)	_	—	_	0.2×VDD	_	0.4×VDD		
Dull up register	PC [7:0]	V _{PUOL}	Vin=GND	50	100	150		
Pull-up resistor	/RESET	V _{PU1L}	Vin=GND	500	1000	1500	kΩ	
	/RESET	V _{PU1H}	Vin=2V	80	100	120		
Pull-down resistor	TEST	R _{PD}	Vin=1V	80	100	120		

¹Refer to the User Manual Voltage Regulator section for details.

Devenedar	Dine	Quinch ol	Condition	Rated Value			Unit
Parameter	Pins	Symbol	Condition	Min.	Тур.	Max.	Unit
Ports A, B,C output high current	IOH0	IOH0	VDD=3V VOH=2.4V	-2	-3	_	
Ports A, B,C output low current	IOL0	IOL0	VDD=3V VOL=0.4V	2	3	_	
Port D output high current	IOH1	IOH1	VDD=3V VOH=2.4V	-7	-10	_	
Port D output low current	IOL1	IOL1	VDD=3V VOL=0.4V	7	10	_	
Port A[12:15] high current (HD enabled)	IOH2	IOH2	VDD=3V VOH=2.4V	-7	-10	_	
Port A[12:15] low current (HD enabled)	IOL2	IOL2	VDD=3V VOL=0.4V	7	10	_	
PWM output high current	PWM0 PWM1	IPWMH	VDD=3V VOH=VDD/2 Max. volume	-140	-150	_	mA
PWM output low current	PWM0 PWM1	IPWML	VDD=3V VOL=VDD/2 Max. volume	140	150	_	
DAC output current	DACO	IDAC	VDD=2.2~3.3V	2.5	3	—	
Regulator output current	RVOUT	IOUT	RVIN=4.5V RVOUT=3.0V Fast, Slow mode	70	_	_	-
			RVIN = 4.5V RVOUT = 3.0V Green, Sleep mode	7	_	_	
Fast mode current consumption increment per MHz	_	IFAST	VDD=3V No load DAC off	_	700	800	
Slow mode current consumption	_	ISLOW	VDD=3V No load DAC off	_	70	80	μA
Green mode current consumption	_	IGREEN	VDD=3V	_	8	10	
Sleep mode current	_	ISLEEP	VDD=3V Regulator on	_	1.5	2	
consumption			VDD = 3V Regulator off	_	1	1.2	
CPU operation frequency	_	Fsys	VDD = 3V	14	16	—	MHz

8 Application Circuits

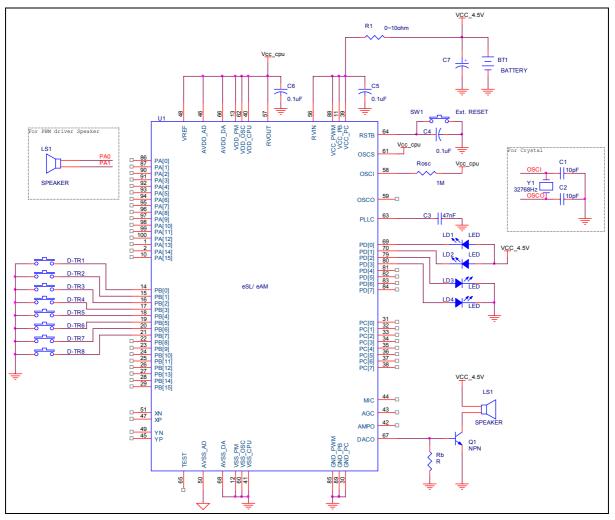


Figure 8-1 ELAN eSL Series Series with 4.5V No ADC Application Circuit Diagram

NOTE

The AVDD_AD, VREF are analog voltage input that need to separate with other digital voltage input to reduce noise issue. For example, you can use on-chip regulator to be the analog voltage source. Or you can refer to development board reference circuit.

eSL Series 16 Bits DSP Sound Processor

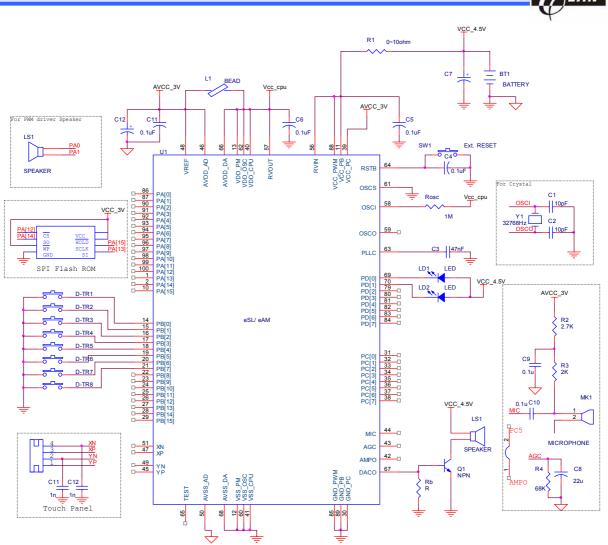


Figure 8-2 ELAN eSL Series Application Circuit Diagram with A/D, D/A using BJT, SPI and PWM for 4.5V Support

NOTE

The AVDD_AD, VREF are analog voltage input that need to separate with other digital voltage input to reduce noise issue. For example, you can use on-chip regulator to be the analog voltage source. Or you can refer to development board reference circuit.

NOTE

For different package type, the system characteristic issue such as power consumption due to IO pad floating must controlled by software. For example, if user don't bonding IO pad, you must set IO pad type is input with pull-up resister or output to prevent power consumption.

