

Description	The iT2008 applications iT2008K pro greater than consumptio linearity. Inp	K is a broadband traveling was where low-frequency extens ovides saturated output power or 25 dBm up to 20 GHz. Avera n as low as 3.15 W is obtaine out and output ports are DC co	ive amplit ion capat r greater age gain i d by bias oupled.	fier desig bilities an than 29 is 9.5 dE ing for b	gned for re also r dBm up 3 to 20 G est outp	high outp equired. T to 14 GH: GHz. DC p out power	ut power he z and ower and good	
Features	Frequency range: 2 GHz – 20 GHz with							
	low-frequency extension to 10 MHz							
	 P_{3dB} (2 GHz – 14 GHz): 29 dBm P_{3dB} (14 GHz – 20 GHz): 27 dBm Gain: 9.5 dB DC power consumption: 3.15 W DC bias conditions: 9 V at 350 mA W(i) type constraint flamme products 							
	➤ "K" type of	ceramic flange package						
Absolute			-	1				
Maximum	Symbol	Parameters/conditions	Min.	Max.	Units			
Patings	V _{DD}	Positive supply voltage		11	V			
Katings	V _{GG}	Negative supply voltage	-2	0	V			
	I _{DD}	Positive supply current		900	mA			
	I _{GG}	Negative supply current		1.8	mA			
	Pin	RF input power		25	dBm			
	Pdiss_DC	DC power dissipation (no RF)		5	W			
	Tch	Operating channel temperature		150	ື ຕ			
	IM Tet	Storage temperature	-65	320	υ Γ			
	131		-00	100	0			
Electrical								
Characteristics	Symbol	Parameters/conditions		Min	. Ту	p. Max	. Units	
	BW	Frequency range		2		20	GHz	
(at 25 ℃)	S21	Small signal gain		7.5	5 9.	5	dB	
50 ohm system	<u> </u>	Gain flatness			1	+/-2	dB	
Quiescent current	S11 S22				-1	2 -0 2 -8	dB	
(I _{DDQ}) = 350 mA	S12	Isolation				2 -0	dB	
	Pade	Output power at 3 dB gain compression					-	
	500	2 - 14 GHz			5 29	9	dBm	
		14 - 20 GHz		25.	5 2	7	dBm	
	P _{1dB} Output power at1 dB gain compression							
		2 - 14 GHz		26.	5 28	8	dBm	
		14 - 20 GHz			5 20	6	dBm	

www.iterrac.com

 This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status.

 August 21 2006
 Doc. 4086
 Rev 1.1
 2

 This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status.

 August 21 2006
 Doc. 4086
 Rev 1.1
 4

 This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status.

 August 21 2006
 Doc. 4086
 Rev 1.1
 5

iTerra Communications 2400 Geng Road, Ste. 100, Palo Alto, CA 94303 Phone (650) 424-1937, Fax (650) 424-1938

 This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status.

 August 21 2006
 Doc. 4086
 Rev 1.1
 6

iTerra Communications 2400 Geng Road, Ste. 100, Palo Alto, CA 94303 Phone (650) 424-1937, Fax (650) 424-1938

Recommended Procedure	CAUTION: LOSS OF GATE VOLTAGE (V _{GG}) WHILE CORRESPONDING DRAIN VOLTAGE (V _{DD}) IS PRESENT CAN DAMAGE THE AMPLIFIER.						
for Biasing and	The following procedure must be considered to properly test the amplifier.						
Operation	The iT2008K amplifier is biased with a positive drain supply (V_{DD}) and one negative gate supply (V_{GG}). The recommended bias conditions for the iT2008 are $V_{DD} = 9.0$ V, $I_{DDQ} = 350$ mA. To achieve this drain current level, V_{GG} is typically biased between -0.7 V and -0.9 V. Drain bias V_{DD} MUST be applied through lead 6. An external DC blocking capacitor is needed at the RFin (1) lead. The gate voltage (V_{GG}) MUST be applied prior to the drain voltage (V_{DD}) during power-up and removed after the drain voltage is removed during the power-down.						
	CAUTION: LOSS OF GATE VOLTAGE (VGG) WHILE CORRESPONDING DRAIN VOLTAGE (VDD) IS PRESENT CAN DAMAGE THE AMPLIFIER.						
	Biasing sequence:						
	1. Apply -2 V to V _{GG} .						
	2. Apply 0 V to V _{DD} .						
	3. Adjust V_{DD} to 4.5 V.						
	4. Adjust V_{GG} to -1 V.						
	5. Adjust V_{DD} to 9 V.						
	$(V_{GG}, typically biased between -0.7 V and -0.9 V).$						
Low-Frequency Operation	An external DC blocking capacitor is needed at the RFin (1) lead. 0.1 μ F capacitors on leads (4,8) are necessary for low frequency extension. An external low-loss bias tee at the RFout (6) must be used for applications as low as 10 MHz. It is recommended that the drain bias tee be decoupled with a large capacitance (\geq 100 μ F) for low frequency stability.						
Application	CAUTION: THIS IS AN ESD SENSITIVE DEVICE						
Information	These devices should be handled with care and stored in a dry nitrogen environment. These are ESD sensitive devices and should be handled with appropriate caution, including the use of wrist- grounding straps. All die attach and wire/ribbon bond equipment must be grounded to prevent static discharges through the device.						
www.iterrac.com	This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status. iTerra Communications 2400 Geng Road, Ste. 100, Palo Alto, CA 94303 Deam (SED) 404 4027 Free (SED) 404 4027						
	August 21 2006 Doc. 4086 Rev 1.1 7 Priore (650) 424-1937, Fax (650) 424-1938						