

MSC Vertriebs-GmbH Productmarketing Displays & Systems Friedrich-Bergius-Str. 9, D - 65203 Wiesbaden Tel:+49-611-97320-0, Fax:+49-61197320-88 http://www.msc-ge.com

J.con

D13505 Embedded RAMDAC LCD/CRT Controller

Hardware Functional Specification

Document Number: X23A-A-001-14

之友 电话, 020-33819057 Http://www.lcdfriends.com

Copyright © 1998, 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1		1
	1.1 Scope	11
	1.2 Overview Description	11
2	Features	2
	2.1 Memory Interface	12
	2.2 CPU Interface	12
	2.3 Display Support	13
	2.4 Display Modes	13
	2.5 Display Features	13
	2.6 Clock Source	13
	2.7 Miscellaneous	14
3	Typical System Implementation Diagrams 1	5
4	Internal Description	20
	4.1 Block Diagram Showing Datapaths	20
	4.2 Block Descriptions	20
	4.2.1 Register	20
	4.2.2 Host Interface	20
	4.2.3 CPU R/W	20
	4.2.4 Memory Controller	21
	4.2.5 Display FIFO	21
	4.2.6 Cursor FIFO	21
	4.2.7 Look-Up Tables	21
	4.2.8 CRTC	21
	4.2.9 LCD Interface	21
	4.2.10 DAC	21
	4.2.11 Power Save	21
	4.2.12 Clocks	21
5	Pins	22
	5.1 Pinout Diagram	22
	5.2 Pin Description	23
	5.2.1 Host Interface	23
	5.2.2 Memory Interface	29
	5.2.3 LCD Interface	31
	5.2.4 CRT Interface	31
	5.2.5 Miscellaneous	32
	5.3 Summary of Configuration Options	33
	5.4 Multiple Function Pin Mapping	34
	5.5 CRT Interface	37
6	D.C. Characteristics	38

7	A.C. Ch	aracteristics
	7.1 C	PU Interface Timing
	7.1.	1 SH-4 Interface Timing
	7.1.2	2 SH-3 Interface Timing
	7.1.	3 MC68K Bus 1 Interface Timing (e.g. MC68000)
	7.1.4	4 MC68K Bus 2 Interface Timing (e.g. MC68030)
	7.1.:	5 PC Card Interface Timing
	7.1.	6 Generic Interface Timing
	7.1.2	7 MIPS/ISA Interface Timing
	7.1.3	Philips Interface Timing (e.g. PR31500/PR31700)
	7.1.	Θ Toshiba Interface Timing (e.g. TX3912)
	7.1.	10 Power PC Interface Timing (e.g. MPC8xx, MC68040, Coldfire)
	7.2 C	lock Input Requirements
	7.3 M	Temory Interface Timing
	7.3.	EDO-DRAM Read/Write/Read-Write Timing
	7.3.2	2 EDO-DRAM CAS Before RAS Refresh Timing
	7.3.	BEDO-DRAM Self-Refresh Timing
	7.3.4	4 FPM-DRAM Read/Write/Read-Write Timing
	7.3.	5 FPM-DRAM CAS Before RAS Refresh Timing
	7.3.	5 FPM-DRAM Self-Refresh Timing
	7.4 Po	ower Sequencing
	7.4.	1 LCD Power Sequencing
	7.4.2	2 Power Save Status
	7.5 D	isplay Interface
	7.5.	4-Bit Single Monochrome Passive LCD Panel Timing
	7.5.2	8-Bit Single Monochrome Passive LCD Panel Timing
	7.5.	4-Bit Single Color Passive LCD Panel Timing
	7.5.4	8-Bit Single Color Passive LCD Panel Timing (Format 1)
	7.5.	8-Bit Single Color Passive LCD Panel Timing (Format 2)
	7.5.0	5 16-Bit Single Color Passive LCD Panel Timing 86
	7.5.	8-Bit Dual Monochrome Passive LCD Panel Timing
	7.5.	8 8-Bit Dual Color Passive LCD Panel Timing
	7.5.9	9 16-Bit Dual Color Passive LCD Panel Timing
	7.5.	10 16-Bit TFT/D-TFD Panel Timing
	7.5.	11 CRT Timing
8	Registe	rs
	8.1 R	egister Mapping
	8.2 R	egister Descriptions
	8.2.	1 Revision Code Register
	8.2.2	2 Memory Configuration Registers
	8.2.	3 Panel/Monitor Configuration Registers
	8.2.4	4 Display Configuration Registers

	8.2	.5 Clock Configuration Register
	8.2	.6 Power Save Configuration Registers
	8.2	7 Miscellaneous Registers
	8.2	8 Look-Up Table Registers
	8.2	9 Ink/Cursor Registers
9	Displa	y Buffer
	9.1 I	mage Buffer
	9.2 I	nk/Cursor Buffers
	9.3 H	Ialf Frame Buffer .
10	Displa	y Configuration
	10.1 I	Display Mode Data Format
	10.2 I	mage Manipulation
11	Look-l	Jp Table Architecture
	11.1 N	Anochrome Modes
	11.2 0	Color Modes
12	Ink/Cu	rsor Architecture
	12.1 I	nk/Cursor Buffers
	12.2 I	nk/Cursor Data Format
	12.3 I	nk/Cursor Image Manipulation
	12.	3.1 Ink Image
	12.	3.2 Cursor Image
13	Swivel	View™
	13.1 (Concept
	13.2 I	mage Manipulation in SwivelView
	13.3 H	Physical Memory Requirement
	13.4 I	imitations
14	Clocki	ng
	14.1 N	Maximum MCLK: PCLK Ratios
	14.2 H	Grame Rate Calculation
	14.3 H	Bandwidth Calculation
15	Power	Save Modes
16	Mecha	nical Data

THIS PAGE LEFT BLANK

List of Tables

Table 5-1:	Host Interface Pin Descriptions
Table 5-2:	Memory Interface Pin Descriptions
Table 5-2:	LCD Interface Pin Descriptions
Table 5-3:	CRT Interface Pin Descriptions
Table 5-4:	Miscellaneous Interface Pin Descriptions
Table 5-5:	Summary of Power On/Reset Options
Table 5-6:	CPU Interface Pin Mapping
Table 5-7:	Memory Interface Pin Mapping
Table 5-8:	LCD Interface Pin Mapping
Table 6-1:	Absolute Maximum Ratings
Table 6-2:	Recommended Operating Conditions
Table 6-3:	Electrical Characteristics for VDD = 5.0V typical
Table 6-4:	Electrical Characteristics for VDD = 3.3V typical
Table 6-5:	Electrical Characteristics for VDD = 3.0V typical
Table 7-1:	SH-4 Timing
Table 7-2:	SH-3 Timing
Table 7-3:	MC68000 Timing
Table 7-4:	MC68030 Timing
Table 7-5:	PC Card Timing
Table 7-6:	Generic Timing
Table 7-7:	MIPS/ISA Timing
Table 7-8:	Philips Timing
Table 7-9:	Clock Input Requirements for BUSCLK using Philips local bus
Table 7-10:	Toshiba Timing
Table 7-11:	Clock Input Requirements for BUSCLK using Toshiba local bus
Table 7-12:	Power PC Timing
Table 7-13:	Clock Input Requirements for CLKI divided down internally (MCLK = CLKI/2)
Table 7-14:	Clock Input Requirements for CLKI
Table 7-15:	EDO-DRAM Read/Write/Read-Write Timing
Table 7-16:	EDO-DRAM CAS Before RAS Refresh Timing
Table 7-17:	EDO-DRAM Self-Refresh Timing
Table 7-18:	FPM-DRAM Read/Write/Read-Write Timing
Table 7-19:	FPM-DRAM CAS Before RAS Refresh Timing
Table 7-20:	FPM-DRAM CBR Self-Refresh Timing
Table 7-21:	LCD Panel Power Off/ Power On
Table 7-22:	Power Save Status and Local Bus Memory Access Relative to Power Save Mode
Table 7-23:	4-Bit Single Monochrome Passive LCD Panel A.C. Timing
Table 7-24:	8-Bit Single Monochrome Passive LCD Panel A.C. Timing
Table 7-25:	4-Bit Single Color Passive LCD Panel A.C. Timing
Table 7-26:	8-Bit Single Color Passive LCD Panel A.C. Timing (Format 1)

Table 7-27:	8-Bit Single Color Passive LCD Panel A.C. Timing (Format 2)
Table 7-28:	16-Bit Single Color Passive LCD Panel A.C. Timing
Table 7-29:	8-Bit Dual Monochrome Passive LCD Panel A.C. Timing
Table 7-30:	8-Bit Dual Color Passive LCD Panel A.C. Timing
Table 7-31:	16-Bit Dual Color Passive LCD Panel A.C. Timing
Table 7-32:	TFT/D-TFD A.C. Timing
Table 8-1:	S1D13505 Addressing
Table 8-2:	DRAM Refresh Rate Selection
Table 8-3:	Panel Data Width Selection
Table 8-4:	FPLINE Polarity Selection
Table 8-5:	FPFRAME Polarity Selection 105
Table 8-6:	Simultaneous Display Option Selection
Table 8-7:	Bit-per-pixel Selection
Table 8-8:	Pixel Panning Selection
Table 8-9:	PCLK Divide Selection
Table 8-10:	Suspend Refresh Selection
Table 8-11:	MA/GPIO Pin Functionality
Table 8-12:	Minimum Memory Timing Selection
Table 8-13:	RAS#-to-CAS# Delay Timing Select
Table 8-14:	RAS Precharge Timing Select
Table 8-15:	Optimal NRC, NRP, and NRCD values at maximum MCLK frequency
Table 8-16:	Minimum Memory Timing Selection
Table 8-17:	Ink/Cursor Selection
Table 8-18:	Ink/Cursor Start Address Encoding
Table 8-19:	Recommended Alternate FRM Scheme
Table 9-1:	S1D13505 Addressing
Table 12-1:	Ink/Cursor Start Address Encoding
Table 12-2:	Ink/Cursor Color Select
Table 13-2	Minimum DRAM Size Required for SwivelView
Table 14-1:	Maximum PCLK Frequency with EDO-DRAM
Table 14-2:	Maximum PCLK Frequency with FPM-DRAM140
Table 14-3:	Example Frame Rates with Ink Disabled
Table 14-4:	Number of MCLKs required for various memory access
Table 14-5:	Total # MCLKs taken for Display refresh
Table 14-6:	Theoretical Maximum Bandwidth M byte/sec, Cursor/Ink disabled
Table 15-1:	Power Save Mode Function Summary
Table 15-2:	Pin States in Power-save Modes

List of Figures

Figure 3-1:	Typical System Diagram (SH-4 Bus)
Figure 3-2:	Typical System Diagram (SH-3 Bus)
Figure 3-3:	Typical System Diagram (MC68K Bus 1, 16-Bit 68000)
Figure 3-4:	Typical System Diagram (MC68K Bus 2, 32-Bit 68030)
Figure 3-5:	Typical System Diagram (Generic Bus)
Figure 3-6:	Typical System Diagram (NEC VR41xx (MIPS) Bus) 17
Figure 3-7:	Typical System Diagram (Philips PR31500/PR31700 Bus). 18
Figure 3-8:	Typical System Diagram (Toshiba TX3912 Bus) 18
Figure 3-9:	Typical System Diagram (Power PC Bus)
Figure 3-10:	Typical System Diagram (PC Card (PCMCIA) Bus) 19
Figure 5-1:	Pinout Diagram
Figure 5-3:	External Circuitry for CRT Interface
Figure 7-1:	SH-4 Timing
Figure 7-2:	SH-3 Timing
Figure 7-3:	MC68000 Timing
Figure 7-4:	MC68030 Timing
Figure 7-5:	PC Card Timing
Figure 7-6:	Generic Timing
Figure 7-7:	MIPS/ISA Timing
Figure 7-8:	Philips Timing
Figure 7-9:	Clock Input Requirement
Figure 7-10:	Toshiba Timing
Figure 7-11:	Clock Input Requirement
Figure 7-12:	Power PC Timing
Figure 7-13:	Clock Input Requirement
Figure 7-14:	EDO-DRAM Read/Write Timing
Figure 7-15:	EDO-DRAM Read-Write Timing
Figure 7-16:	EDO-DRAM CAS Before RAS Refresh Timing
Figure 7-17:	EDO-DRAM Self-Refresh Timing
Figure 7-18:	FPM-DRAM Read/Write Timing
Figure 7-19:	FPM-DRAM Read-Write Timing
Figure 7-20:	FPM-DRAM CAS Before RAS Refresh Timing
Figure 7-21:	FPM-DRAM Self-Refresh Timing
Figure 7-22:	LCD Panel Power Off / Power On Timing. Drawn with LCDPWR set to active high polarity 74
Figure 7-23:	Power Save Status and Local Bus Memory Access Relative to Power Save Mode
Figure 7-24:	4-Bit Single Monochrome Passive LCD Panel Timing
Figure 7-25:	4-Bit Single Monochrome Passive LCD Panel A.C. Timing
Figure 7-26:	8-Bit Single Monochrome Passive LCD Panel Timing
Figure 7-27:	8-Bit Single Monochrome Passive LCD Panel A.C. Timing
Figure 7-28:	4-Bit Single Color Passive LCD Panel Timing
Figure 7-29:	4-Bit Single Color Passive LCD Panel A.C. Timing
0	

Figure 7-30:	8-Bit Single Color Passive LCD Panel Timing (Format 1)
Figure 7-31:	8-Bit Single Color Passive LCD Panel A.C. Timing (Format 1)
Figure 7-32:	8-Bit Single Color Passive LCD Panel Timing (Format 2)
Figure 7-33:	8-Bit Single Color Passive LCD Panel A.C. Timing (Format 2)
Figure 7-34:	16-Bit Single Color Passive LCD Panel Timing
Figure 7-35:	16-Bit Single Color Passive LCD Panel A.C. Timing
Figure 7-36:	8-Bit Dual Monochrome Passive LCD Panel Timing
Figure 7-37:	8-Bit Dual Monochrome Passive LCD Panel A.C. Timing
Figure 7-38:	8-Bit Dual Color Passive LCD Panel Timing
Figure 7-39:	8-Bit Dual Color Passive LCD Panel A.C. Timing
Figure 7-40:	16-Bit Dual Color Passive LCD Panel Timing
Figure 7-41:	16-Bit Dual Color Passive LCD Panel A.C. Timing
Figure 7-42:	16-Bit TFT/D-TFD Panel Timing
Figure 7-43:	TFT/D-TFD A.C. Timing
Figure 7-44:	CRT Timing
Figure 7-45:	CRT A.C. Timing
Figure 9-1:	Display Buffer Addressing
Figure 10-1:	1/2/4/8 Bit-per-pixel Format Memory Organization
Figure 10-2:	15/16 Bit-per-pixel Format Memory Organization
Figure 10-3:	Image Manipulation
Figure 11-1:	1 Bit-per-pixel Monochrome Mode Data Output Path
Figure 11-2:	2 Bit-per-pixel Monochrome Mode Data Output Path
Figure 11-3:	4 Bit-per-pixel Monochrome Mode Data Output Path
Figure 11-4:	1 Bit-per-pixel Color Mode Data Output Path
Figure 11-5:	2 Bit-per-pixel Color Mode Data Output Path
Figure 11-6:	4 Bit-per-pixel Color Mode Data Output Path
Figure 11-7:	8 Bit-per-pixel Color Mode Data Output Path
Figure 12-1:	Ink/Cursor Data Format.
Figure 12-2:	Cursor Positioning
Figure 13-1:	Relationship Between The Screen Image and the Image Residing in the Display Buffer 135
Figure 16-1:	Mechanical Drawing QFP15

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13505 Embedded RAMDAC LCD/CRT Controller. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This specification will be updated as appropriate. Please check the Epson Electronics America Website at http://www.eea.epson.com or the Epson Research and Development website at http://www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Overview Description

The S1D13505 is a color/monochrome LCD/CRT graphics controller interfacing to a wide range of CPUs and display devices. The S1D13505 architecture is designed to meet the low cost, low power requirements of the embedded markets, such as Mobile Communications, Hand-Held PCs, and Office Automation.

The S1D13505 supports multiple CPUs, all LCD panel types, CRT, and additionally provides a number of differentiating features. Products requiring a "Portrait" mode display can take advantage of the SwivelViewTM feature. Simultaneous, Virtual and Split Screen Display are just some of the display modes supported, while the Hardware Cursor, Ink Layer, and the Memory Enhancement Registers offer substantial performance benefits. These features, combined with the S1D13505's Operating System independence, make it an ideal display solution for a wide variety of applications.

2 Features

2.1 Memory Interface

- 16-bit DRAM interface:
 - EDO-DRAM up to 40MHz data rate (80M bytes/sec.).
 - FPM-DRAM up to 25MHz data rate (50M bytes/sec.).
- Memory size options:
 - 512K bytes using one 256K×16 device.
 - 2M bytes using one $1M \times 16$ device.
- Performance Enhancement Register to tailor the memory control output timing for the DRAM device.

2.2 CPU Interface

- Supports the following interfaces:
 - 8/16-bit SH-4 bus interface.
 - 8/16-bit SH-3 bus interface.
 - 8/16-bit interface to 8/16/32-bit MC68000 microprocessors/microcontrollers.
 - 8/16-bit interface to 8/16/32-bit MC68030 microprocessors/microcontrollers.
 - Philips PR31500/PR31700 (MIPS).
 - Toshiba TX3912 (MIPS)
 - 16-bit Power PC (MPC821) microprocessor.
 - 16-bit Epson E0C33 microprocessor.
 - PC Card (PCMCIA).
 - StrongARM (PC Card).
 - NEC VR41xx (MIPS).
 - ISA bus.
- Supports the following interface with external logic:
 - GX486 microprocessor.
- One-stage write buffer for minimum wait-state CPU writes.
- Registers are memory-mapped the M/R# pin selects between the display buffer and register address space.
- The complete 2M byte display buffer address space is addressable as a single linear address space through the 21-bit address bus.

2.3 Display Support

- 4/8-bit monochrome passive LCD interface.
- 4/8/16-bit color passive LCD interface.
- Single-panel, single-drive displays.
- Dual-panel, dual-drive displays.
- Direct support for 9/12-bit TFT/D-TFD; 18-bit TFT/D-TFD is supported up to 64K color depth (16-bit data).
- Embedded RAMDAC (DAC)with direct analog CRT drive.
- Simultaneous display of CRT and passive or TFT/D-TFD panels.

2.4 Display Modes

- 1/2/4/8/15/16 bit-per-pixel (bpp) support on LCD/CRT.
- Up to 16 shades of gray using FRM on monochrome passive LCD panels.
- Up to 4096 colors on passive LCD panels; three 256x4 Look-Up Tables (LUT) are used to map 1/2/4/8 bpp modes into these colors, 15/16 bpp modes are mapped directly using the 4 most significant bits of the red, green and blue colors.
- Up to 64K colors on TFT/D-TFD LCD panels and CRT; three 256x4 Look-Up Tables are used to map 1/2/4/8 bpp modes into 4096 colors, 15/16 bpp modes are mapped directly.

2.5 Display Features

- SwivelViewTM: direct hardware 90° rotation of display image for "portrait" mode display.
- Split Screen Display: allows two different images to be simultaneously viewed on the same display.
- Virtual Display Support: displays images larger than the display size through the use of panning.
- Double Buffering/multi-pages: provides smooth animation and instantaneous screen update.
- Acceleration of screen updates by allocating full display memory bandwidth to CPU (see REG[23h] bit 7).
- Hardware 64x64 pixel 2-bit cursor or full screen 2-bit ink layer.
- Simultaneous display of CRT and passive panel or TFT/D-TFD panel.
 - Normal mode for cases where LCD and CRT screen sizes are identical.
 - Line-doubling for simultaneous display of 240-line images on 240-line LCD and 480-line CRT.
 - Even-scan or interlace modes for simultaneous display of 480-line images on 240-line LCD and 480-line CRT.

2.6 Clock Source

- Single clock input for both the pixel and memory clocks.
- Memory clock can be input clock or (input clock/2), providing flexibility to use CPU bus clock as input.
- Pixel clock can be the memory clock, (memory clock/2), (memory clock/3) or (memory clock/4).

2.7 Miscellaneous

- The memory data bus, MD[15:0], is used to configure the chip at power-on.
- Three General Purpose Input/Output pins, GPIO[3:1], are available if the upper Memory Address pins are not required for asymmetric DRAM support.
- Suspend power save mode can be initiated by either hardware or software.
- The SUSPEND# pin is used either as an input to initiate Suspend mode, or as a General Purpose Output that can be used to control the LCD backlight. Power-on polarity is selected by an MD configuration pin.
- Operating voltages from 2.7 volts to 5.5 volts are supported
- 128-pin QFP15 surface mount package

3 Typical System Implementation Diagrams

Figure 3-1: Typical System Diagram (SH-4 Bus)

Figure 3-2: Typical System Diagram (SH-3 Bus)

Figure 3-3: Typical System Diagram (MC68K Bus 1, 16-Bit 68000)

Figure 3-4: Typical System Diagram (MC68K Bus 2, 32-Bit 68030)

Figure 3-5: Typical System Diagram (Generic Bus)

Figure 3-6: Typical System Diagram (NEC VR41xx (MIPS) Bus)

Figure 3-7: Typical System Diagram (Philips PR31500/PR31700 Bus)

Figure 3-8: Typical System Diagram (Toshiba TX3912 Bus)

Figure 3-9: Typical System Diagram (Power PC Bus)

Figure 3-10: Typical System Diagram (PC Card (PCMCIA) Bus)

4 Internal Description

4.1 Block Diagram Showing Datapaths

4.2 Block Descriptions

4.2.1 Register

The Register block contains all the register latches

4.2.2 Host Interface

The Host Interface (I/F) block provides the means for the CPU/MPU to communicate with the display buffer and internal registers via one of the supported bus interfaces.

4.2.3 CPU R/W

The CPU R/W block synchronizes the CPU requests for display buffer access. If SwivelView is enabled, the data is rotated in this block.

4.2.4 Memory Controller

The Memory Controller block arbitrates between CPU accesses and display refresh accesses as well as generates the necessary signals to interface to one of the supported 16-bit memory devices (FPM-DRAM or EDO-DRAM).

4.2.5 Display FIFO

The Display FIFO block fetches display data from the Memory Controller for display refresh.

4.2.6 Cursor FIFO

The Cursor FIFO block fetches Cursor/ink data from the Memory Controller for display refresh.

4.2.7 Look-Up Tables

The Look-Up Tables block contains three 256x4 Look-Up Tables (LUT), one for each primary color. In monochrome mode, only the green LUT is selected and used. This block contains anti-sparkle circuitry. The cursor/ink and display data are merged in this block.

4.2.8 CRTC

The CRTC generates the sync timing for the LCD and CRT, defining the vertical and horizontal display periods.

4.2.9 LCD Interface

The LCD Interface block performs Frame Rate Modulation (FRM) for passive LCD panels and generates the correct data format and timing control signals for various LCD and TFT/D-TFD panels.

4.2.10 DAC

The DAC is the Digital to Analog converter for analog CRT support.

4.2.11 Power Save

The Power Save block contains the power save mode circuitry.

4.2.12 Clocks

The Clocks module is the source of all clocks in the chip.

5 Pins

5.1 Pinout Diagram

Figure 5-1: Pinout Diagram

128-pin QFP15 surface mount package

Key:

I	=	Input
0	=	Output
IO	=	Bi-Directional (Input/Output)
А	=	Analog
Р	=	Power pin
С	=	CMOS level input
CD	=	CMOS level input with pull down resistor (typical values of $100K\Omega/180K\Omega$ at 5V/3.3V respectively)
CS	=	CMOS level Schmitt input
COx	=	CMOS output driver, x denotes driver type (see tables 6-3, 6-4, 6-5 for details)
TSx	=	Tri-state CMOS output driver, x denotes driver type (see tables 6-3, 6-4, 6-5 for details)
TSxD	=	Tri-state CMOS output driver with pull down resistor (typical values of $100K\Omega/180K\Omega$ at 5V/3.3V) respectively), x denotes driver type (see tables 6-3, 6-4, 6-5 for details)
CNx	=	CMOS low-noise output driver, x denotes driver type (see tables 6-3, 6-4, 6-5 for details)

5.2.1 Host Interface

Table 5-1: Host Interface Pin Descriptions

Bin Nama	Туре	Pin #	Cell	RESET#	Description
FININAINE				State	
		3	cs		 For SH-3/SH-4 Bus, this pin inputs system address bit 0 (A0).
				Hi-Z	For MC68K Bus 1, this pin inputs the lower data strobe (LDS#).
					 For MC68K Bus 2, this pin inputs system address bit 0 (A0).
					 For Generic Bus, this pin inputs system address bit 0 (A0).
					 For MIPS/ISA Bus, this pin inputs system address bit 0 (SA0).
AB0	1				 For Philips PR31500/31700 Bus, this pin inputs system address bit 0 (A0).
					• For Toshiba TX3912 Bus, this pin inputs system address bit 0 (A0).
					• For PowerPC Bus, this pin inputs system address bit 31 (A31).
					 For PC Card (PCMCIA) Bus, this pin inputs system address bit 0 (A0).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
		119-128, 1, 2	с	Hi-Z	 For PowerPC Bus, these pins input the system address bits 19 through 30 (A[19:30]).
AB[12:1]	I				 For all other busses, these pins input the system address bits 12 through 1 (A[12:1]).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.

Pin Name	Туре	Pin #	Cell	RESET# State	Description
					 For Philips PR31500/31700 Bus, these pins are connected to V_{DD}.
					 For Toshiba TX3912 Bus, these pins are connected to V_{DD}.
A DI4 C:4 21	I	115-118	с	Hi-Z	 For PowerPC Bus, these pins input the system address bits 15 through 18 (A[15:18]).
AB[10.13]					 For all other busses, these pins input the system address bits 16 through 13 (A[16:13]).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
			с	Hi-Z	 For Philips PR31500/31700 Bus, this pin inputs the IO write command (/CARDIOWR).
					 For Toshiba TX3912 Bus, this pin inputs the IO write command (CARDIOWR*).
AB17	I	114			• For PowerPC Bus, this pin inputs the system address bit 14 (A14).
					• For all other busses, this pin inputs the system address bit 17 (A17).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
					 For Philips PR31500/31700 Bus, this pin inputs the IO read command (/CARDIORD).
					 For Toshiba TX3912 Bus, this pin inputs the IO read command (CARDIORD*).
AB18	1	113	С	Hi-Z	 For PowerPC Bus, this pin inputs the system address bit 13 (A13).
					• For all other busses, this pin inputs the system address bit 18 (A18).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
	1	112	С	Hi-Z	 For Philips PR31500/31700 Bus, this pin inputs the card control register access (/CARDREG).
					 For Toshiba TX3912 Bus, this pin inputs the card control register (CARDREG*).
AB19					• For PowerPC Bus, this pin inputs the system address bit 12 (A12).
					• For all other busses, this pin inputs the system address bit 19 (A19).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
			с	Hi-Z	 For the MIPS/ISA Bus, this pin inputs system address bit 20. Note that for the ISA Bus, the unlatched LA20 must first be latched before input to AB20.
	I	111			 For Philips PR31500/31700 Bus, this pin inputs the address latch enable (ALE).
AB20					 For Toshiba TX3912 Bus, this pin inputs the address latch enable (ALE).
					 For PowerPC Bus, this pin inputs the system address bit 11 (A11).
					• For all other busses, this pin inputs the system address bit 20 (A20).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.

Pin Name	Туре	Pin #	Cell	RESET# State	Description
		16-31			These pins are the system data bus. For 8-bit bus modes, unused data pins should be tied to V_{DD} .
					 For SH-3/SH-4 Bus, these pins are connected to D[15:0].
					 For MC68K Bus 1, these pins are connected to D[15:0].
					 For MC68K Bus 2, these pins are connected to D[31:16] for 32-bit devices (e.g. MC68030) or D[15:0] for 16-bit devices (e.g. MC68340).
					 For Generic Bus, these pins are connected to D[15:0].
DB[15:0]	10		C/TS2	Hi-7	 For MIPS/ISA Bus, these pins are connected to SD[15:0].
				T -Z	 For Philips PR31500/31700 Bus, these pins are connected to D[31:16].
					 For Toshiba TX3912 Bus, pins [15:8] are connected to D[23:16] and pins [7:0] are connected to D[31:24].
					 For PowerPC Bus, these pins are connected to D[0:15].
					 For PC Card (PCMCIA) Bus, these pins are connected to D[15:0].
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
					This is a multi-purpose pin:
					 For SH-3/SH-4 Bus, this pin inputs the write enable signal for the upper data byte (WE1#).
				Hi-Z	 For MC68K Bus 1, this pin inputs the upper data strobe (UDS#).
		9	CS/TS 2		• For MC68K Bus 2, this pin inputs the data strobe (DS#).
					 For Generic Bus, this pin inputs the write enable signal for the upper data byte (WE1#).
\\/ E 1#					 For MIPS/ISA Bus, this pin inputs the system byte high enable signal (SBHE#).
VVE1#					 For Philips PR31500/31700 Bus, this pin inputs the odd byte access enable signal (/CARDxCSH).
					 For Toshiba TX3912 Bus, this pin inputs the odd byte access enable signal (CARDxCSH*).
					 For PowerPC Bus, this pin outputs the burst inhibit signal (BI#).
					 For PC Card (PCMCIA) Bus, this pin inputs the card enable 2 signal (-CE2).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
					 For Philips PR31500/31700 Bus, this pin is connected to V_{DD}.
					 For Toshiba TX3912 Bus, this pin is connected to V_{DD}.
M/R#	I	5	с	Hi-Z	 For all other busses, this input pin is used to select between the display buffer and register address spaces of the S1D13505. M/R# is set high to access the display buffer and low to access the registers. See Register Mapping.
					See Table 5-6: "CPU Interface Pin Manning" on page 34
					 For Philips PR31500/31700 Bus, this pin is connected to Vnn.
		4	с		 For Toshiba TX3912 Bus, this pin is connected to V_{DD}.
CS#	I			Hi-Z	 For all other busses, this is the Chip Select input.
					See Table 5-6:, "CPU Interface Pin Mapping," on page 34. See the respective AC Timing diagram for detailed functionality.

<i>Table 5-1:</i>	Host Interface	Pin Descriptions	(Continued)
-------------------	----------------	------------------	-------------

Pin Name	Туре	Pin #	Cell	RESET# State	Description
BUSCLK	1	13	С	Hi-Z	 This pin inputs the system bus clock. It is possible to apply a 2x clock and divide it by 2 internally - see MD12 in <i>Summary of Configuration Options</i>. For SH-3/SH-4 Bus, this pin is connected to CKIO. For MC68K Bus 1, this pin is connected to CLK. For MC68K Bus 2, this pin is connected to CLK. For Generic Bus, this pin is connected to BCLK. For MIPS/ISA Bus, this pin is connected to CLK. For Philips PR31500/31700 Bus, this pin is connected to DCLKOUT. For Toshiba TX3912 Bus, this pin is connected to CLKOUT. For PC Card (PCMCIA) Bus, this pin is connected to CLKI.
BS#	1	6	CS	Hi-Z	 AC Timing diagram for detailed functionality. This is a multi-purpose pin: For SH-3/SH-4 Bus, this pin inputs the bus start signal (BS#). For MC68K Bus 1, this pin inputs the address strobe (AS#). For MC68K Bus 2, this pin inputs the address strobe (AS#). For Generic Bus, this pin is connected to V_{DD}. For MIPS/ISA Bus, this pin is connected to V_{DD}. For Philips PR31500/31700 Bus, this pin is connected to V_{DD}. For Toshiba TX3912 Bus, this pin is connected to V_{DD}. For PowerPC Bus, this pin inputs the Transfer Start signal (TS#). For PC Card (PCMCIA) Bus, this pin is connected to V_{DD}. See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
RD/WR#	1	10	CS	Hi-Z	 This is a multi-purpose pin: For SH-3/SH-4 Bus, this pin inputs the read write signal (RD/WR#). The S1D13505 needs this signal for early decode of the bus cycle. For MC68K Bus 1, this pin inputs the read write signal (R/W#). For MC68K Bus 2, this pin inputs the read write signal (R/W#). For Generic Bus, this pin inputs the read command for the upper data byte (RD1#). For MIPS/ISA Bus, this pin is connected to V_{DD}. For Philips PR31500/31700 Bus, this pin inputs the even byte access enable signal (/CARDxCSL). For Toshiba TX3912 Bus, this pin inputs the read write signal (RD/WR#). For PowerPC Bus, this pin inputs the read write signal (RD/WR#). For PC Card (PCMCIA) Bus, this pin inputs the card enable 1 signal (-CE1). See "Host Bus Interface Pin Mapping" for summary. See the respective AC Timing diagram for detailed functionality.

Table 5-1:	Host Interface	e Pin Descriptions	(Continued)
------------	----------------	--------------------	-------------

Pin Name	Туре	Pin #	Cell	RESET# State	Description
					This is a multi-purpose pin:
	 For SH-3/SH-4 Bus, this pin inputs the read signal (RD# For MC68K Bus 1, this pin is connected to V_{DD}. For MC68K Bus 2, this pin inputs the bus size bit 1 (SIZ For Generic Bus, this pin inputs the read command for the byte (RD0#). For MIPS/ISA Bus, this pin inputs the memory read sign For Philips PR31500/31700 Bus, this pin inputs the memory read sign 				 For SH-3/SH-4 Bus, this pin inputs the read signal (RD#).
					 For MC68K Bus 1, this pin is connected to V_{DD}.
					 For MC68K Bus 2, this pin inputs the bus size bit 1 (SIZ1).
					 For Generic Bus, this pin inputs the read command for the lower data byte (RD0#).
					• For MIPS/ISA Bus, this pin inputs the memory read signal (MEMR#).
RD#		 For Philips PR31500/31700 Bus, this pin inputs the memory read command (/RD). 			
					 For Toshiba TX3912 Bus, this pin inputs the memory read command (RD*).
					• For PowerPC Bus, this pin inputs the transfer size 0 signal (TSIZ0).
		For PC Card (PCMCIA) Bus, this pin inputs the output enable s (-OE).			
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
					This is a multi-purpose pin:
					 For SH-3/SH-4 Bus, this pin inputs the write enable signal for the lower data byte (WE0#).
					 For MC68K Bus 1, this pin must be connected to V_{DD}
					 For MC68K Bus 2, this pin inputs the bus size bit 0 (SIZ0).
					 For Generic Bus, this pin inputs the write enable signal for the lower data byte (WE0#).
	For MIPS/ISA Bus, this pin inputs the mem (MEMW#).	 For MIPS/ISA Bus, this pin inputs the memory write signal (MEMW#). 			
VVL0#	1	0	03	ПI- <u>Z</u>	 For Philips PR31500/31700 Bus, this pin inputs the memory write command (/WE).
					 For Toshiba TX3912 Bus, this pin inputs the memory write command (WE*).
					• For PowerPC Bus, this pin inputs the Transfer Size 1 signal (TSIZ1).
					 For PC Card (PCMCIA) Bus, this pin inputs the write enable signal (- WE).
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.

Table 5-1: Host Interface Pin Descriptions (Continued)

Pin Name	Туре	Pin #	Cell	RESET# State	Description
					The active polarity of the WAIT# output is configurable; the state of MD5 on the rising edge of RESET# defines the active polarity of WAIT# - see "Summary of Configuration Options".
					 For SH-3 Bus, this pin outputs the wait request signal (WAIT#); MD5 must be pulled low during reset by the internal pull-down resistor.
					 For SH-4 Bus, this pin outputs the ready signal (RDY#); MD5 must be pulled high during reset by an external pull-up resistor.
					 For MC68K Bus 1, this pin outputs the data transfer acknowledge signal (DTACK#); MD5 must be pulled high during reset by an external pull-up resistor.
					 For MC68K Bus 2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1#); MD5 must be pulled high during reset by an external pull-up resistor.
					 For Generic Bus, this pin outputs the wait signal (WAIT#); MD5 must be pulled low during reset by the internal pull-down resistor.
WAIT#	0	15	TS2	Hi-Z	 For MIPS/ISA Bus, this pin outputs the IO channel ready signal (IOCHRDY); MD5 must be pulled low during reset by the internal pull- down resistor.
					 For Philips PR31500/31700 Bus, this pin outputs the wait state signal (/CARDxWAIT); MD5 must be pulled low during reset by the internal pull-down resistor.
					 For Toshiba TX3912 Bus, this pin outputs the wait state signal (CARDxWAIT*); MD5 must be pulled low during reset by the internal pull-down resistor.
					 For PowerPC Bus, this pin outputs the transfer acknowledge signal (TA#); MD5 must be pulled high during reset by an external pull-up resistor.
					 For PC Card (PCMCIA) Bus, this pin outputs the wait signal (-WAIT); MD5 must be pulled low during reset by the internal pull-down resistor.
					See <i>"Host Bus Interface Pin Mapping"</i> for summary. See the respective AC Timing diagram for detailed functionality.
RESET#	I	11	cs	0	Active low input that clears all internal registers and forces all outputs to their inactive states. Note that active high RESET signals must be inverted before input to this pin.

Table 5-1: Host Interface Pin Descriptions (Continued)

5.2.2 Memory Interface

Pin Name	Туре	Pin #	Cell	RESET# State	Description
					 For dual-CAS# DRAM, this is the column address strobe for the lower byte (LCAS#).
LCAS#	0	51	CO1	1	• For single-CAS# DRAM, this is the column address strobe (CAS#).
					See <i>"Memory Interface Pin Mapping"</i> for summary. See <i>Memory Interface Timing</i> for detailed functionality.
					This is a multi-purpose pin:
					 For dual-CAS# DRAM, this is the column address strobe for the upper byte (UCAS#).
UCAS#	0	52	CO1	1	 For single-CAS# DRAM, this is the write enable signal for the upper byte (UWE#).
					See <i>"Memory Interface Pin Mapping"</i> for summary. See <i>Memory Interface Timing</i> for detailed functionality.
					 For dual-CAS# DRAM, this is the write enable signal (WE#).
WE#	0	53	CO1	1	 For single-CAS# DRAM, this is the write enable signal for the lower byte (LWE#).
					See <i>"Memory Interface Pin Mapping"</i> for summary. See <i>Memory Interface Timing</i> for detailed functionality.
RAS#	0	54	CO1	1	Row address strobe - see <i>Memory Interface Timing</i> for detailed functionality.
					Bi-Directional memory data bus.
MD[15:0]	Ю	34, 36, 38, 40, 42, 44, 46, 48, 49, 47, 45, 43, 41, 39, 37, 35	C/TS 1D	Hi-Z	During reset, these pins are inputs and their states at the rising edge of RESET# are used to configure the chip - see <i>Summary of Configuration Options</i> . Internal pull-down resistors (typical values of $100K\Omega/180K\Omega$ at 5V/3.3V respectively) pull the reset states to 0. External pull-up resistors can be used to pull the reset states to 1.
					See Memory Interface Timing for detailed functionality.

Table 5-2: Memory Interface Pin Descriptions

Pin Name	Туре	Pin #	Cell	RESET# State	Description
MA[8:0]	0	58, 60, 62, 64, 66, 67, 65, 63, 61	CO1	Output	Multiplexed memory address - see <i>Memory Interface Timing</i> for functionality.
MA9	ю	56	C/TS 1	Output	 This is a multi-purpose pin: For 2M byte DRAM, this is memory address bit 9 (MA9). For asymmetrical 512K byte DRAM, this is memory address bit 9 (MA9). For symmetrical 512K byte DRAM, this pin can be used as general purpose IO pin 3 (GPIO3). Note that unless configured otherwise, this pin defaults to an input and must be driven to a valid logic level. See "Memory Interface Pin Mapping" for summary. See Memory Interface Timing for detailed functionality.
MA10	Ю	59	C/TS 1	Output	 This is a multi-purpose pin: For asymmetrical 2M byte DRAM this is memory address bit 10 (MA10). For symmetrical 2M byte DRAM and all 512K byte DRAM this pin can be used as general purpose IO pin 1 (GPIO1). Note that unless configured otherwise, this pin defaults to an input and must be driven to a valid logic level. See "Memory Interface Pin Mapping" for summary. See Memory Interface Timing for detailed functionality.
MA11	Ю	57	C/TS 1	Output	 This is a multi-purpose pin: For asymmetrical 2M byte DRAM this is memory address bit 11 (MA11). For symmetrical 2M byte DRAM and all 512K byte DRAM this pin can be used as general purpose IO pin 2 (GPIO2). Note that unless configured otherwise, this pin defaults to an input and must be driven to a valid logic level. See <i>"Memory Interface Pin Mapping"</i> for summary. See <i>Memory Interface Timing</i> for detailed functionality.

5.2.3 LCD Interface

Pin Name	Туре	Pin #	Cell	RESET# State	Description
FPDAT[15:0]	0	95-88, 86-79	CN3	Output	Panel data bus. Not all pins are used for some panels - see <i>LCD</i> Interface Pin Mapping for details. Unused pins are driven low.
FPFRAME	0	73	CN3	Output	Frame pulse
FPLINE	0	74	CN3	Output	Line pulse
FPSHIFT	0	77	CO3	Output	Shift clock
LCDPWR	0	75	CO1	0utput if MD[10]=0 1 if MD[10]=1	LCD power control output. The active polarity of this output is selected by the state of MD10 at the rising edge of RESET# - see <i>Summary of</i> <i>Configuration Options</i> . This output is controlled by the power save mode circuitry - see <i>Power Save Modes</i> for details.
DRDY	0	76	CN3	Output	 This is a multi-purpose pin: For TFT/D-TFD panels this is the display enable output (DRDY). For passive LCD with Format 1 interface this is the 2nd Shift Clock (FPSHIFT2) For all other LCD panels this is the LCD backplane bias signal (MOD). See LCD Interface Pin Mapping and REG[02h] for details.

Table 5-2: LCD Interface Pin Descriptions

5.2.4 CRT Interface

Table 5-3: CRT Interface Pin Descriptions

Pin Name	Туре	Pin #	Cell	RESET # State	Description
HRTC	Ю	107	CN3	Output	Horizontal retrace signal for CRT
VRTC	Ю	108	CN3	Output	Vertical retrace signal for CRT
RED	0	100	А		Analog output for CRT color Red
GREEN	0	103	А		Analog output for CRT color Green
BLUE	0	105	А		Analog output for CRT color Blue
IREF	I	101	A		Current reference for DAC - see <i>Analog Pins</i> . This pin must be left unconnected if the DAC is not needed.

5.2.5 Miscellaneous

Pin Name	Туре	Pin #	Cell	RESET# State	Description
				Hi-Z if MD[9]=0	 This pin can be used as a power-down input (SUSPEND#) or as an output possibly used for controlling the LCD backlight power: When MD9 = 0 at rising edge of RESET#, this pin is an active-low Schmitt input used to put the S1D13505 into
SUSPEND#	ю	71	CS/TS1	High if MD[10:9]=01	Hardware Suspend mode - see Section 15, "Power Save Modes" for details.
				Low if MD[10:9]=11	 When MD[10:9] = 01 at rising edge of RESET#, this pin is an output (GPO) with a reset state of 1. The state of GPO is controlled by REG[21h] bit 7.
					 When MD[10:9] = 11 at rising edge of RESET#, this pin is an output (GPO) with a reset state of 0. The state of GPO is controlled by REG[21h] bit 7.
CLKI	I	69	с		Input clock for the internal pixel clock (PCLK) and memory clock (MCLK). PCLK and MCLK are derived from CLKI - see REG[19h] for details.
TESTEN	Ι	70	CD	Hi-Z	Test Enable. This pin should be connected to V_{SS} for normal operation.
VDD	Ρ	12, 33, 55, 72, 97, 109	Ρ		V _{DD}
DACVDD	Р	99, 102, 104	Р		DAC V _{DD}
VSS	Ρ	14, 32, 50, 68, 78, 87, 96, 110	Р		V _{SS}
DACVSS	Р	98, 106	Р		DAC V _{SS}

Table 5-4: Miscellaneous Interface Pin Descriptions

5.3 Summary of Configuration Options

Pin Name	value on this pin at rising edge of RESET# is used to configure: (1/0)									
	1	0								
MD0	8-bit host bus interface	16-bit host bus interface								
MD[3:1]	Select host bus interface:MD[11] = 0: 000 = SH-3/SH-4 bus interface 001 = MC68K Bus 1 010 = MC68K Bus 2 011 = Generic 100 = Reserved 101 = MIPS/ISA 110 = PowerPC 111 = PC Card (when MD11 = 1 Philips PR31500/PR31700 or Toshiba TX3912 Bus)									
MD4	Little Endian	Big Endian								
MD5	WAIT# is active high (1 = insert wait state)	WAIT# is active low (0 = insert wait state)								
MD[7:6]	Memory Address/GPIO configuration: 00 = symmetrical 256K×16 DRAM. MA[8:0] = DRAM 01 = symmetrical 1M×16 DRAM. MA[9:0] = DRAM a 10 = asymmetrical 256K×16 DRAM. MA[9:0] = DRAM 11 = asymmetrical 1M×16 DRAM. MA[11:0] = DRAM	Memory Address/GPIO configuration: 00 = symmetrical 256K×16 DRAM. MA[8:0] = DRAM address. MA[11:9] = GPIO2,1,3 pins. 01 = symmetrical 1M×16 DRAM. MA[9:0] = DRAM address. MA[10:11] = GPIO2,1 pins. 10 = asymmetrical 256K×16 DRAM. MA[9:0] = DRAM address. MA[10:11] = GPIO2,1 pins. 11 = asymmetrical 1M×16 DRAM. MA[11:0] = DRAM address.								
MD8	Not used									
MD9	SUSPEND# pin configured as GPO output	SUSPEND# pin configured as SUSPEND# input								
MD10	Active low LCDPWR polarity or active high GPO polarity	Active high LCDPWR polarity or active low GPO polarity								
MD11	Alternate Host Bus Interface Selected	Primary Host Bus Interface Selected								
MD12	BUSCLK input divided by 2	BUSCLK input divided by 2 BUSCLK input not divided								
MD[15:13]	Not used									

Table 5-5: Summary of Power On/Reset Options

5.4 Multiple Function Pin Mapping

S1D1350 5 Pin	SH-3	SH-4	MC68K Bus 1	MC68K Bus 2	Generic	MIPS/ISA	Philips PR31500 /PR31700	Toshiba TX3912	PowerPC	PC Card (PCMCIA)
Names	100	100	1.00	100	100	1 1 1 4 0 0				100
AB20	A20	A20	A20	A20	A20	LatchA20	ALE	ALE	A11	A20
AB19	A19	A19	A19	A19	A19	SA19	/CARDREG	CARDREG*	A12	A19
AB18	A18	A18	A18	A18	A18	SA18	/CARDIORD	CARDIORD*	A13	A18
AB17	A17	A17	A17	A17	A17	SA17	/CARDIOWR	CARDIOWR*	A14	A17
AB[16:13]	A[16:13]	A[16:13]	A[16:13]	A[16:13]	A[16:13]	SA[16:13]	V _{DD}	V _{DD}	A[15:18]	A[16:13]
AB[12:1]	A[12:1]	A[12:1]	A[12:1]	A[12:1]	A[12:1]	SA[12:1]	A[12:1]	A[12:1]	A[19:30]	A[12:1]
AB0	A0 ¹	A0	LDS#	A0	A0 ¹	SA0	A0 ¹	A0 ¹	A31	A0 ¹
DB[15:8]	D[15:8]	D[15:8]	D[15:8]	D[31:24]	D[15:8]	SD[15:8]	D[31:24]	D[31:24]	D[0:7]	D[15:8]
DB[7:0]	D[7:0]	D[7:0]	D[7:0]	D[23:16]	D[7:0]	SD[7:0]	D[23:16]	D[23:16]	D[8:15	D[7:0]
WE1#	WE1#	WE1#	UDS#	DS#	WE1#	SBHE#	/CARDxCSH	CARDxCSH*	BI#	-CE2
M/R#			Externa	al Decode			V	DD	External Decode	
CS#	External Decode						V	DD	External Decode	
BUSCLK	CKIO	CKIO	CLK	CLK	BCLK	CLK	DCLKOUT	DCLKOUT	CLKOUT	CLKI
BS#	BS#	BS#	AS#	AS#	V _{DD}	V _{DD}	V _{DD}	V _{DD}	TS#	V _{DD}
RD/WR#	RD/WR#	RD/WR#	R/W#	R/W#	RD1#	V _{DD}	/CARDxCSL	CARDxCSL*	RD/WR#	-CE1
RD#	RD#	RD#	V _{DD}	SIZ1	RD0#	MEMR#	/RD	RD*	TSIZ0	-OE
WE0#	WE0#	WE0#	V _{DD}	SIZ0	WE0#	MEMW#	/WE	WE*	TSIZ1	-WE
WAIT#	WAIT#	RDY	DTACK#	DSACK1#	WAIT#	IOCHRDY	/CARDxWAIT	CARDxWAIT*	TA#	-WAIT
RESET#	RESET#	RESET#	RESET#	RESET#	RESET#	inverted RESET	RESET#	PON*	RESET#	inverted RESET

Table 5-6:	CPU	Interface	Pin	Mapping
------------	-----	-----------	-----	---------

Note ¹ The bus signal A0 is not used by the S1D13505 internally.

64 042505	FPM/EDO-DRAM										
Pin Names	Sym 2	56Kx16	Asym 2	56Kx16	Sym 1	Mx16	Asym 1Mx16				
i in Names	2-CAS#	2-WE#	2-CAS#	CAS# 2-WE# 2-CAS# 2-WI		2-WE#	2-CAS#	2-WE#			
MD[15:0]	D[15:0]										
MA[8:0]	A[8:0]										
MA9	GP	103		A	A9						
MA10	GPIO1							A10			
MA11	GPIO2						A11				
UCAS#	UCAS#	UWE#	UCAS#	UWE#	UCAS#	UWE#	UCAS#	UWE#			
LCAS#	LCAS#	CAS#	LCAS#	CAS#	LCAS#	CAS#	LCAS#	CAS#			
WE#	WE# LWE#		WE#	LWE#	WE#	LWE#	WE#	LWE#			
RAS#	RAS#										

Table 5-7:	Memory	Interface	Pin	Mapping
------------	--------	-----------	-----	---------

Note

All GPIO pins default to input on reset and unless programmed otherwise, should be connected to either V_{SS} or IO V_{DD} if not used.

S1D13505	Monochrome Passive Panel			Color Passive Panel							Color TET/D-TED Papal		
Pin Names	Single		Dual	Single	Single Format 1	Single Format 2	Single	Dı	ıal				
	4-bit	8-bit	8-bit	4-bit	8-bit	8-bit	16-Bit	8-bit	16-bit	9-bit	12-bit	18-bit	
FPFRAME	FPFRAME												
FPLINE		FPLINE											
FPSHIFT						FPS	SHIFT						
DRDY	MOD				FPSHIFT 2		M	DD		DRDY			
FPDAT0	driven 0	D0	LD0	driven 0	D0	D0	D0	LD0	LD0	R2	R3	R5	
FPDAT1	driven 0	D1	LD1	driven 0	D1	D1	D1	LD1	LD1	R1	R2	R4	
FPDAT2	driven 0	D2	LD2	driven 0	D2	D2	D2	LD2	LD2	R0	R1	R3	
FPDAT3	driven 0	D3	LD3	driven 0	D3	D3	D3	LD3	LD3	G2	G3	G5	
FPDAT4	D0	D4	UD0	D0	D4	D4	D4	UD0	UD0	G1	G2	G4	
FPDAT5	D1	D5	UD1	D1	D5	D5	D5	UD1	UD1	G0	G1	G3	
FPDAT6	D2	D6	UD2	D2	D6	D6	D6	UD2	UD2	B2	B3	B5	
FPDAT7	D3	D7	UD3	D3	D7	D7	D7	UD3	UD3	B1	B2	B4	
FPDAT8	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D8	driven 0	LD4	B0	B1	B3	
FPDAT9	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D9	driven 0	LD5	driven 0	R0	R2	
FPDAT10	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D10	driven 0	LD6	driven 0	driven 0	R1	
FPDAT11	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D11	driven 0	LD7	driven 0	G0	G2	
FPDAT12]	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D12	driven 0	UD4	driven 0	driven 0	G1	
FPDAT13	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D13	driven 0	UD5	driven 0	driven 0	G0	
FPDAT14	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D14	driven 0	UD6	driven 0	B0	B2	
FPDAT15	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D15	driven 0	UD7	driven 0	driven 0	B1	

Table 5-8: LCD Interface Pin Mapping
5.5 CRT Interface

The following figure shows the external circuitry for the CRT interface.

Figure 5-3: External Circuitry for CRT Interface

6 D.C. Characteristics

Symbol	Parameter	Rating	Units
V _{DD}	Supply Voltage	V _{SS} - 0.3 to 6.0	V
DAC V _{DD}	Supply Voltage	V _{SS} - 0.3 to 6.0	V
V _{IN}	Input Voltage	V _{SS} - 0.3 to V _{DD} + 0.5	V
V _{OUT}	Output Voltage	V _{SS} - 0.3 to V _{DD} + 0.5	V
T _{STG}	Storage Temperature	-65 to 150	° C
T _{SOL}	Solder Temperature/Time	260 for 10 sec. max at lead	° C

Table 6-1: Absolute Maximum Ratings

Table 6-2: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{DD}	Supply Voltage	$V_{SS} = 0 V$	2.7	3.0/3.3/5.0	5.5	V
V _{IN}	Input Voltage		V _{SS}		V _{DD}	V
T _{OPR}	Operating Temperature		-40	25	85	° C

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{DDS}	Quiescent Current	Quiescent Conditions			400	uA
I _{IZ}	Input Leakage Current		-1		1	μA
I _{OZ}	Output Leakage Current		-1		1	μA
V _{OH}	High Level Output Voltage	VDD = min I _{OL} = -4mA (Type1), -8mA (Type2) -12mA (Type3)	V _{DD} - 0.4			v
V _{OL}	Low Level Output Voltage	VDD = min I _{OL} = 4mA (Type1), 8mA (Type2) 12mA (Type3)			0.4	v
V _{IH}	High Level Input Voltage	CMOS level, V _{DD} = max	3.5			V
V _{IL}	Low Level Input Voltage	CMOS level, V _{DD} = min			1.0	V
V _{T+}	High Level Input Voltage	CMOS Schmitt, V _{DD} = 5.0V			4.0	V
V _{T-}	Low Level Input Voltage	CMOS Schmitt, V _{DD} = 5.0V	0.8			V
V _{H1}	Hysteresis Voltage	CMOS Schmitt, V _{DD} = 5.0V	0.3			V
R _{PD}	Pull Down Resistance	$V_{I} = V_{DD}$	50	100	200	kΩ
CI	Input Pin Capacitance				12	pF
C _O	Output Pin Capacitance				12	pF
C _{IO}	Bi-Directional Pin Capacitance				12	pF

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{DDS}	Quiescent Current	Quiescent Conditions			290	uA
I _{IZ}	Input Leakage Current		-1		1	μA
I _{OZ}	Output Leakage Current		-1		1	μA
V _{OH}	High Level Output Voltage	VDD = min I _{OL} = -2mA (Type1), -4mA (Type2) -6mA (Type3)	V _{DD} - 0.3			V
V _{OL}	Low Level Output Voltage	VDD = min I _{OL} = 2mA (Type1), 4mA (Type2) 6mA (Type3)			0.3	V
V _{IH}	High Level Input Voltage	CMOS level, V _{DD} = max	2.2			V
V _{IL}	Low Level Input Voltage	CMOS level, V _{DD} = min			0.8	V
V _{T+}	High Level Input Voltage	CMOS Schmitt, V _{DD} = 3.3V			2.4	V
V _{T-}	Low Level Input Voltage	CMOS Schmitt, V _{DD} = 3.3V	0.6			V
V _{H1}	Hysteresis Voltage	CMOS Schmitt, V _{DD} = 3.3V	0.1			V
R _{PD}	Pull Down Resistance	$V_{I} = V_{DD}$	90	180	360	kΩ
Cl	Input Pin Capacitance				12	pF
CO	Output Pin Capacitance				12	pF
C _{IO}	Bi-Directional Pin Capacitance				12	pF

Table 6-4: Electrical Characteristics for VDD = 3.3V typical

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{DDS}	Quiescent Current	Quiescent Conditions			260	uA
I _{IZ}	Input Leakage Current		-1		1	μA
I _{OZ}	Output Leakage Current		-1		1	μA
V _{OH}	High Level Output Voltage	VDD = min I _{OL} = -1.8mA (Type1), -3.5mA (Type2) -5mA (Type3)	V _{DD} - 0.3			v
V _{OL}	Low Level Output Voltage	VDD = min I _{OL} = 1.8mA (Type1), 3.5mA (Type2) 5mA (Type3)			0.3	v
V _{IH}	High Level Input Voltage	CMOS level, V _{DD} = max	2.0			V
V _{IL}	Low Level Input Voltage	CMOS level, V _{DD} = min			0.8	V
V _{T+}	High Level Input Voltage	CMOS Schmitt, V _{DD} = 3.0V			2.3	V
V _{T-}	Low Level Input Voltage	CMOS Schmitt, V _{DD} = 3.0V	0.5			V
V _{H1}	Hysteresis Voltage	CMOS Schmitt, V _{DD} = 3.0V	0.1			V
R _{PD}	Pull Down Resistance	$V_{I} = V_{DD}$	100	200	400	kΩ
CI	Input Pin Capacitance				12	pF
C _O	Output Pin Capacitance				12	pF
C _{IO}	Bi-Directional Pin Capacitance				12	pF

Page 41

7 A.C. Characteristics

Conditions: $V_{DD} = 3.0V \pm 10\%$ and $V_{DD} = 5.0V \pm 10\%$ $T_A = -40^\circ$ C to 85° C T_{rise} and T_{fall} for all inputs must be ≤ 5 nsec (10% ~ 90%) $C_L = 50$ pF (CPU Interface), unless noted $C_L = 100$ pF (LCD Panel Interface) $C_L = 10$ pF (Display Buffer Interface) $C_L = 10$ pF (CRT Interface)

7.1 CPU Interface Timing

7.1.1 SH-4 Interface Timing

Figure 7-1: SH-4 Timing

Note

Note

The SH-4 Wait State Control Register for the area in which the S1D13505 resides must be set to a non-zero value. The SH-4 read-to-write cycle transition must be set to a non-zero value (with reference to BUSCLK).

		3.0V ^a 5.0V ^b				
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	15		15		ns
t2	Clock pulse width high	6		6		ns
t3	Clock pulse width low	6		6		ns
t4	A[20:0], M/R#, RD/WR# setup to CKIO	3		3		ns
t5	A[20:0], M/R#, RD/WR# hold from CS#	0		0		ns
t6	BS# setup	4		4		ns
t7	BS# hold	1		1		ns
t8	CSn# setup	4		4		ns
t9 ²	Falling edge RD# to D[15:0] driven	0		0		ns
t10	Rising edge CSn# to RDY# tri-state	5	25	2.5	10	ns
t11 ¹	Falling edge CSn# to RDY# driven	0	15	0	10	ns
t12	CKIO to WAIT# delay	4	20	3.6	12	ns
t13	D[15:0] setup to 2 nd CKIO after BS# (write cycle)	10		10		ns
t14	D[15:0] hold (write cycle)	0		0		ns
t15	D[15:0] valid to RDY# falling edge (read cycle)	0		0		ns
t16	Rising edge RD# to D[15:0] tri-state (read cycle)	5	25	2.5	10	ns

Tahle	7-1.	SH-4	Timino
I unic	/ - 1 .	$DII^{-}T$	1 mmmg

^a Two Software WAIT States Required

^b One Software WAIT State Required

- 1. If the S1D13505 host interface is disabled, the timing for RDY# driven is relative to the falling edge of CSn# <u>or</u> the first positive edge of CKIO after A[20:0], M/R# becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[15:0] driven is relative to the falling edge of RD# <u>or</u> the first positive edge of CKIO after A[20:0], M/R# becomes valid, whichever one is later.

7.1.2 SH-3 Interface Timing

Figure 7-2: SH-3 Timing

Note

The above timing diagram is not applicable if the BUSCLK divided by 2 configuration option is selected.

Note

The SH-3 Wait State Control Register for the area in which the S1D13505 resides must be set to a non-zero value.

		3.0)V ^a	5.0)V ^b]
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	15.1		15.1		ns
t2	Clock pulse width high	6		6		ns
t3	Clock pulse width low	6		6		ns
t4	A[20:0], M/R#, RD/WR# setup to CKIO	3		3		ns
t5	A[20:0], M/R#, RD/WR# hold from CS#	0		0		ns
t6	BS# setup	4		4		ns
t7	BS# hold	1		1		ns
t8	CSn# setup	4		4		ns
t9 ²	Falling edge RD# to D[15:0] driven	0		0		ns
t10	Rising edge CSn# to WAIT# tri-state	5	25	2.5	10	ns
t11 ¹	Falling edge CSn# to WAIT# driven	0	15	0	10	ns
t12	CKIO to WAIT# delay	4	20	3.6	12	ns
t13	D[15:0] setup to 2 nd CKIO after BS# (write cycle)	10		10		ns
t14	D[15:0] hold (write cycle)	0		0		ns
t15	D[15:0] valid to WAIT# rising edge (read cycle)	0		0		ns
t16	Rising edge RD# to D[15:0] tri-state (read cycle)	5	25	2.5	10	ns

Table 7-2: SH-3 Timing

^a Two Software WAIT States Required

^b One Software WAIT State Required

- 1. If the S1D13505 host interface is disabled, the timing for WAIT# driven is relative to the falling edge of CSn# <u>or</u> the first positive edge of CKIO after A[20:0], M/R# becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[15:0] driven is relative to the falling edge of RD# <u>or</u> the first positive edge of CKIO after A[20:0], M/R# becomes valid, whichever one is later.

7.1.3 MC68K Bus 1 Interface Timing (e.g. MC68000)

Figure 7-3: MC68000 Timing

Note

		3.	0V	5.	0V]
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	20		20		ns
t2	Clock pulse width high	6		6		ns
t3	Clock pulse width low	6		6		ns
t4	A[20:1], M/R# setup to first CLK where $CS# = 0 AS# = 0$, and either UDS#=0 or LDS# = 0	10		10		ns
t5	A[20:1], M/R# hold from AS#	0		0		ns
t6	CS# hold from AS#	0		0		ns
t7	R/W# setup to before to either UDS#=0 or LDS# = 0	10		10		ns
t8	R/W# hold from AS#	0		0		ns
t9 ¹	AS# = 0 and CS# = 0 to DTACK# driven high	0		0		ns
t10	AS# high to DTACK# high	3	18	3	12	ns
t11	First BCLK where AS# = 1 to DTACK# high impedance		25		10	ns
t12	D[15:0] valid to third CLK where $CS\# = 0 AS\# = 0$, and either UDS#=0 or LDS# = 0 (write cycle)	10		10		ns
t13	D[15:0] hold from falling edge of DTACK# (write cycle)	0		0		ns
t14 ²	Falling edge of UDS#=0 or LDS#=0 to D[15:0] driven (read cycle)	0		0		ns
t15	D[15:0] valid to DTACK# falling edge (read cycle)	0		0		ns
t16	UDS# and LDS# high to D[15:0] invalid/high impedance (read cycle)	5	25	2.5	10	ns
t17	AS# high setup to CLK	2		2		ns

Tahle	7-3.	MC68000	Timino
I uo ic	/	11000000	1 unung

1. If the S1D13505 host interface is disabled, the timing for DTACK# driven high is relative to the falling edge of CS#, AS# or the first positive edge of CLK after A[20:1], M/R# becomes valid,

whichever one is later.

2. If the S1D13505 host interface is disabled, the timing for D[15:0] driven is relative to the falling edge of UDS#, LDS# or the first positive edge of CLK after A[20:1], M/R# becomes valid, whichever one is later.

7.1.4 MC68K Bus 2 Interface Timing (e.g. MC68030)

Figure 7-4: MC68030 Timing

Note

Page 4	19
--------	----

		3.	0V	5.0V]	
Symbol	Parameter	Min	Max	Min	Max	Units	
t1	Clock period	20		20		ns	
t2	Clock pulse width high	6		6		ns	
t3	Clock pulse width low	6		6		ns	
t4	A[20:0], SIZ[1:0], M/R# setup to first CLK where $CS# = 0 AS# = 0$, and either UDS#=0 or LDS# = 0	10		10		ns	
t5	A[20:0], SIZ[1:0], M/R# hold from AS#	0		0		ns	
t6	CS# hold from AS#	0		0		ns	
t7	R/W# setup to DS#	10		10		ns	
t8	R/W# hold from AS#	0		0		ns	
t9 ¹	AS# = 0 and CS# = 0 to DSACK1# driven high	0		0		ns	
t10	AS# high to DSACK1# high	3	18	3	12	ns	
t11	First BCLK where AS# = 1 to DSACK1# high impedance	5	25	2.5	10	ns	
t12	D[31:16] valid to third CLK where CS# = 0 AS# = 0, and either UDS#=0 or LDS# = 0 (write cycle)	10		10		ns	
t13	D[31:16] hold from falling edge of DSACK1# (write cycle)	0		0		ns	
t14 ²	Falling edge of UDS#=0 or LDS# = 0 to D[31:16] driven (read cycle)	0		0		ns	
t15	D[31:16] valid to DSACK1# falling edge (read cycle)	0		0		ns	
t16	UDS# and LDS# high to D[31:16] invalid/high impedance (read cycle)	5	25	2.5	10	ns	
t17	AS# high setup to CLK	2		2		ns	

Tahle	7-4.	MC68030	Timino
1 unic	/	MC00050	1 unung

- 1. If the S1D13505 host interface is disabled, the timing for DSACK1# driven high is relative to the falling edge of CS#, AS# <u>or</u> the first positive edge of CLK after A[20:0], M/R# becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[31:16] driven is relative to the falling edge of UDS#, LDS# <u>or</u> the first positive edge of CLK after A[20:0], M/R# becomes valid, whichever one is later.

7.1.5 PC Card Interface Timing

Figure 7-5: PC Card Timing

Note

		3.	0V	5.	0V	
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	20		20		ns
t2	Clock pulse width high	6		6		ns
t3	Clock pulse width low	6		6		ns
t4	A[20:0], M/R# setup to first CLK where CS# = 0 and either -OE = 0 or - WE = 0	10		10		ns
t5	A[20:0], M/R# hold from rising edge of either -OE or -WE	0		0		ns
t6	CS# hold from rising edge of either -OE or -WE	0		0		ns
t7 ¹	Falling edge of either -OE or -WE to -WAIT driven low	0	15	0	10	ns
t8	Rising edge of either -OE or -WE to -WAIT tri-state	5	25	2.5	10	ns
t9	D[15:0] setup to third CLK where CS# = 0 and -WE = 0 (write cycle)	10		10		ns
t10	D[15:0] hold (write cycle)	0		0		ns
t11 ²	Falling edge -OE to D[15:0] driven (read cycle)	0		0		ns
t12	D[15:0] setup to rising edge -WAIT (read cycle)	0		0		ns
t13	Rising edge of -OE to D[15:0] tri-state (read cycle)	5	25	5	10	ns

Table 7-5: PC Card Timing

- 1. If the S1D13505 host interface is disabled, the timing for -WAIT driven low is relative to the falling edge of -OE, -WE <u>or</u> the first positive edge of CLK after A[20:0], M/R# becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[15:0] driven is relative to the falling edge of -OE <u>or</u> the first positive edge of CLK after A[20:0], M/R# becomes valid, whichever one is later.

7.1.6 Generic Interface Timing

Figure 7-6: Generic Timing

Note

		3.	0V	5.0V		1	
Symbol	Parameter	Min	Max	Min	Max	Units	
t1	Clock period	20		20		ns	
t2	Clock pulse width high	6		6		ns	
t3	Clock pulse width low	6		6		ns	
t4	A[20:0], M/R# setup to first CLK where CS# = 0 and either RD0#,RD1#,WE0# or WE1# = 0	10		10		ns	
t5	A[20:0], M/R# hold from rising edge of either RD0#,RD1#,WE0# or WE1# = 0	0		0		ns	
t6	CS# hold from rising edge of either RD0#,RD1#,WE0# or WE1# = 0	0		0		ns	
t7 ¹	Falling edge of either RD0#,RD1#,WE0# or WE1# to WAIT# driven low	0	15	0	10	ns	
t8	Rising edge of either RD0#,RD1#,WE0# or WE1# to WAIT# tri-state	5	25	2.5	10	ns	
t9	D[15:0] setup to third CLK where CS# = 0 and WE0#,WE1# = 0 (write cycle)	10		10		ns	
t10	D[15:0] hold (write cycle)	0		0		ns	
t11 ²	Falling edge RD0#,RD1# to D[15:0] driven (read cycle)	0		0		ns	
t12	D[15:0] setup to rising edge WAIT# (read cycle)	0		0		ns	
t13	Rising edge of RD0#,RD1# to D[15:0] tri-state (read cycle)	5	25	5	10	ns	

Table 7-6: Generic Timing

- If the S1D13505 host interface is disabled, the timing for WAIT# driven low is relative to the falling edge of RD0#, RD1#, WE0#, WE1# <u>or</u> the first positive edge of CLK after A[20:0], M/R# becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[15:0] driven is relative to the falling edge of RD0#, RD1# or the first positive edge of CLK after A[20:0], M/R# becomes valid, whichever one is later.

7.1.7 MIPS/ISA Interface Timing

Figure 7-7: MIPS/ISA Timing

Note

				5.0V			
Symbol	Parameter	Min	Max	Min	Max	Units	
t1	Clock period	20		20		ns	
t2	Clock pulse width high	6		6		ns	
t3	Clock pulse width low	6		6		ns	
t4	LatchA20, SA[19:0], M/R#, SBHE# setup to first BUSCLK where CS# = 0 and either MEMR# = 0 or MEMW# = 0	10		10		ns	
t5	LatchA20, SA[19:0], M/R#, SBHE# hold from rising edge of either MEMR# or MEMW#	0		0		ns	
t6	CS# hold from rising edge of either MEMR# or MEMW#	0		0		ns	
t7 ¹	Falling edge of either MEMR# or MEMW# to IOCHRDY# driven low	0		0		ns	
t8	Rising edge of either MEMR# or MEMW# to IOCHRDY# tri-state	5	25	2.5	10	ns	
t9	SD[15:0] setup to third BUSCLK where CS# = 0 MEMW# = 0 (write cycle)	10		10		ns	
t10	SD[15:0] hold (write cycle)	0		0		ns	
t11 ²	Falling edge MEMR# to SD[15:0] driven (read cycle)	0		0		ns	
t12	SD[15:0] setup to rising edge IOCHRDY# (read cycle)	0		0		ns	
t13	Rising edge of MEMR# toSD[15:0] tri-state (read cycle)	5	25	5	10	ns	

Table 7-7: MIPS/ISA Timing

- 1. If the S1D13505 host interface is disabled, the timing for IOCHRDY driven low is relative to the falling edge of MEMR#, MEMW# <u>or</u> the first positive edge of BUSCLK after LatchA20, SA[19:0], M/R# becomes valid, whichever one is later.
- If the S1D13505 host interface is disabled, the timing for SD[15:0] driven is relative to the falling edge of MEMR# or the first positive edge of BUSCLK after LatchA20, SA[19:0], M/R# becomes valid, whichever one is later.

7.1.8 Philips Interface Timing (e.g. PR31500/PR31700)

Figure 7-8: Philips Timing

		3.	0V	5.	0V]
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	13.3		13.3		ns
t2	Clock pulse width low	6		6		ns
t3	Clock pulse width high	6		6		ns
t4	ADDR[12:0] setup to first CLK of cycle	10		10		ns
t5	ADDR[12:0] hold from command invalid	0		0		ns
t6	ADDR[12:0] setup to falling edge ALE	10		10		ns
t7	ADDR[12:0] hold from falling edge ALE	5		5		ns
t8	-CARDREG hold from command invalid	0		0		ns
t9 ¹	Falling edge of chip select to -CARDxWAIT driven	0	15	0	9	ns
t10	Command invalid to -CARDxWAIT tri-state	5	25	2.5	10	ns
t11	D[31:16] valid to first CLK of cycle (write cycle)	10		10		ns
t12	D[31:16] hold from rising edge of -CARDxWAIT	0		0		
t13 ²	Chip select to D[31:16] driven (read cycle)	1		1		ns
t14	D[31:16] setup to rising edge -CARDxWAIT (read cycle)	0		0		ns
t15	Command invalid to D[31:16] tri-state (read cycle)	5	25	2.5	10	ns

Table 7-8: Philips Timing

- 1. If the S1D13505 host interface is disabled, the timing for -CARDxWAIT driven is relative to the falling edge of chip select <u>or</u> the second positive edge of DCLKOUT after ADDR[12:0] becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[31:16] driven is relative to the falling edge of chip select <u>or</u> the second positive edge of DCLKOUT after ADDR[12:0] becomes valid, whichever one is later.

Note

The Philips interface has different clock input requirements as follows:

Figure 7-9: Clock Input Requirement

Table	7-9.	Clock	Innut	Require	ments	for	BUSCLK	usino	Philins	local	hus
I ubie	/->.	CIUCK	тры	пецине	menus	jur	DUSCLK	using	1 mups	iocui	ous

Symbol	Parameter	Min	Max	Units
T _{OSC}	Input Clock Period)	13.3		ns
t _{PWH}	Input Clock Pulse Width High	6		ns
t _{PWL}	Input Clock Pulse Width Low	6		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t _r	Input Clock Rise Time (10% - 90%)		5	ns

7.1.9 Toshiba Interface Timing (e.g. TX3912)

Figure 7-10: Toshiba Timing

		3.]			
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	13.3		13.3		ns
t2	Clock pulse width low	5.4		5.4		ns
t3	Clock pulse width high	5.4		5.4		ns
t4	ADDR[12:0] setup to first CLK of cycle	10		10		ns
t5	ADDR[12:0] hold from command invalid	0		0		ns
t6	ADDR[12:0] setup to falling edge ALE	10		10		ns
t7	ADDR[12:0] hold from falling edge ALE	5		5		ns
t8	CARDREG* hold from command invalid	0		0		ns
t9 ¹	Falling edge of chip select to CARDxWAIT* driven	0	15	0	9	ns
t10	Command invalid to CARDxWAIT* tri-state	5	25	2.5	10	ns
t11	D[31:16] valid to first CLK of cycle (write cycle)	10		10		ns
t12	D[31:16] hold from rising edge of CARDxWAIT*	0		0		
t13 ²	Chip select to D[31:16] driven (read cycle)	1		1		ns
t14	D[31:16] setup to rising edge CARDxWAIT* (read cycle)	0		0		ns
t15	Command invalid to D[31:16] tri-state (read cycle)	5	25	2.5	10	ns

Table 7-10: Toshiba Timing

- 1. If the S1D13505 host interface is disabled, the timing for CARDxWAIT* driven is relative to the falling edge of chip select <u>or</u> the second positive edge of DCLKOUT after ADDR[12:0] becomes valid, whichever one is later.
- 2. If the S1D13505 host interface is disabled, the timing for D[31:16] driven is relative to the falling edge of chip select <u>or</u> the second positive edge of DCLKOUT after ADDR[12:0] becomes valid, whichever one is later.

Note

The Toshiba interface has different clock input requirements as follows:

Figure 7-11: Clock Input Requirement

Table 7-11.	Clock Innut	Romiromonts	for RUSCI K usin	a Tashiha lacal hus
<i>Iubic</i> / -11.	сюск три	Requirements J	or DOSCER usin	g rosmou iocui ous

Symbol	Parameter	Min	Мах	Units
T _{osc}	Input Clock Period)	13.3		ns
t _{PWH}	Input Clock Pulse Width High	5.4		ns
t _{PWL}	Input Clock Pulse Width Low	5.4		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t _r	Input Clock Rise Time (10% - 90%)		5	ns

7.1.10 Power PC Interface Timing (e.g. MPC8xx, MC68040, Coldfire)

Figure 7-12: Power PC Timing

Note

		3.	0V	5.	0V	1
Symbol	Parameter	Min	Max	Min	Max	Units
t1	Clock period	25		20		ns
t2	Clock pulse width low	6		6		ns
t3	Clock pulse width high	6		6		ns
t4	AB[11:31], RD/WR#, TSIZ[0:1], M/R# setup	10		10		ns
t5	AB[11:31], RD/WR#, TSIZ[0:1], M/R# hold	0		0		ns
t6	CS# setup	10		10		ns
t7	CS# hold	0		0		ns
t8	TS# setup	7		10		ns
t9	TS# hold	5		0		ns
t10	CLKOUT to TA# driven	0		0		ns
t11	CLKOUT to TA# low	3	19	3	12	ns
t12	CLKOUT to TA# high	3	19.7	3	13	ns
t13	negative edge CLKOUT to TA# tri-state	5	25	2.5	10	ns
t14	CLKOUT to BI# driven	0	18	0	11	ns
t15	CLKOUT to BI# high	3	16	3	10	ns
t16	negative edge CLKOUT to BI# tri-state	5	25	2.5	10	ns
t17	D[0:15] setup to 2nd CLKOUT after TS# = 0 (write cycle)	10		10		ns
t18	D[0:15] hold (write cycle)	0		0		ns
t19	CLKOUT to D[0:15] driven (read cycle)	0		0		ns
t20	D[0:15] valid to TA# falling edge (read cycle)	0		0		ns
t21	CLKOUT to D[0:15] tri-state (read cycle)	5	25	2.5	10	ns

7.2 Clock Input Requirements

Figure 7-13: Clock Input Requirement

Symbol	Parameter	Min	Max	Units
T _{osc}	Input Clock Period	12.5		ns
t _{PWH}	Input Clock Pulse Width High	5.6		ns
t _{PWL}	Input Clock Pulse Width Low	5.6		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t	Input Clock Rise Time (10% - 90%)		5	ns

Table 7-14: Clock Input Requirements for CLKI

Symbol	Parameter	Min	Max	Units
T _{OSC}	Input Clock Period	25		ns
t _{PWH}	Input Clock Pulse Width High	11.3		ns
t _{PWL}	Input Clock Pulse Width Low	11.3		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t _r	Input Clock Rise Time (10% - 90%)		5	ns

Note

When CLKI is more than 40MHz, REG[19h] bit 2 must be set to 1 (MCLK = CLKI/2).

7.3 Memory Interface Timing

7.3.1 EDO-DRAM Read/Write/Read-Write Timing

Figure 7-14: EDO-DRAM Read/Write Timing

Figure 7-15: EDO-DRAM Read-Write Timing

Symbol	Parameter	Min	Max	Units
t1	Internal memory clock period	25		ns
	Random read cycle REG[22h] bit 6-5 == 00	5t1		ns
t2	Random read cycle REG[22h] bit 6-5 == 01	4t1		ns
	Random read cycle REG[22h] bit 6-5 == 10	3t1		ns
	RAS# precharge time (REG[22h] bits 3-2 = 00)	2t1 - 3		ns
t3	RAS# precharge time (REG[22h] bits 3-2 = 01)	1.45 t1 - 3		ns
	RAS# precharge time (REG[22h] bits 3-2 = 10)	1t1 - 3		ns
	RAS# to CAS# delay time (REG[22h] bit 4 = 0 and bits 3-2 = 00 or 10)	2t1 - 3		ns
t4	RAS# to CAS# delay time (REG[22h] bit 4 = 1 and bits 3-2 = 00 or 10)	1t1 - 3		ns
	RAS# to CAS# delay time (REG[22h] bits 3-2 = 01)	1.45 t1 - 3		ns
t5	CAS# precharge time	0.45 t1 - 3		ns
t6	CAS# pulse width	0.45 t1 - 3		ns
t7	RAS# hold time	1 t1 - 3		ns
	Row address setup time (REG[22h] bits 3-2 = 00)	2.45 t1		ns
t8	Row address setup time (REG[22h] bits 3-2 = 01)	2 t1		ns
	Row address setup time (REG[22h] bits 3-2 = 10)	1.45 t1		ns
t9	Row address hold time (REG[22h] bits 3-2 = 00 or 10)	0.45 t1 - 3		ns
	Row address hold time (REG[22h] bits 3-2 = 01)	1 t1 - 3		ns
t10	Column address setup time	0.45 t1 - 3		ns
t11	Column address hold time	0.45 t1 - 3		ns

Table 7-15: EDO-DRAM Read/Write/Read-Write Timing

Symbol	Parameter	Min	Max	Units
	Read Command Setup (REG[22h] bit 4 = 0 and bits 3-2 = 00)	4.45 t1 - 3		ns
	Read Command Setup (REG[22h] bit 4 = 0 and bits 3-2 = 10)	3.45 t1 - 3		ns
t12	Read Command Setup (REG[22h] bit 4 = 1 and bits 3-2 = 00)	3.45 t1 - 3		ns
	Read Command Setup (REG[22h] bit 4 = 1 and bits 3-2 = 10)	2.45 t1 - 3		ns
	Read Command Setup (REG[22h] bits 3-2 = 01)	3.45 t1 - 3		ns
	Read Command Hold (REG[22h] bit $4 = 0$ and bits $3-2 = 00$)	3.45 t1 - 3		ns
	Read Command Hold (REG[22h] bit $4 = 0$ and bits $3-2 = 10$)	2.45 t1 - 3		ns
t13	Read Command Hold (REG[22h] bit $4 = 1$ and bits $3-2 = 00$)	2.45 t1 - 3		ns
	Read Command Hold (REG[22h] bit $4 = 1$ and bits $3-2 = 10$)	1.45 t1 - 3		ns
	Read Command Hold (REG[22h] bits 3-2 = 01)	2.45 t1 - 3		ns
t14	Read Data Setup referenced from CAS#	5		ns
t15	Read Data Hold referenced from CAS#	3		ns
t16	Last Read Data Setup referenced from RAS#	5		ns
t17	Bus Turn Off from RAS#	3	t1- 5	ns
t18	Write Command Setup	0.45 t1- 3		ns
t19	Write Command Hold	0.45 t1 - 3		ns
t20	Write Data Setup	0.45 t1 - 3		ns
t21	Write Data Hold	0.45 t1 - 3		ns
t22	MD Tri-state	0.45 t1	0.45t1 + 21	ns
t23	CAS# to WE# active during Read-Write cycle	1 t1 - 3		ns
t24	Write Command Setup during Read-Write cycle	1.45 t1- 3		ns
t25	Last Read Data Setup referenced from WE# during Read-Write cycle	10		ns
t26	Bus Tri-state from WE# during Read-Write cycle	0	t1- 5	ns

Table 7-15: EDO-DRAM	Read/Write/Read-Write Timing
raote / rev bb o braini	rection in the rection in the running

7.3.2 EDO-DRAM CAS Before RAS Refresh Timing

Figure 7-16: EDO-DRAM CAS Before RAS Refresh Timing

Symbol	Parameter	Min	Max	Units
t1	Internal memory clock period	25		ns
	RAS# precharge time (REG[22h] bits 3-2 = 00)	2t1 - 3		ns
t2	RAS# precharge time (REG[22h] bits 3-2 = 01)	1.45t1 - 3		ns
	RAS# precharge time (REG[22h] bits 3-2 = 10)	1t1 - 3		ns
	RAS# pulse width (REG[22h] bit $6-5 = 00$ and bits $3-2 = 00$)	3 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 00 and bits 3-2 = 01)	3.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 00 and bits 3-2 = 10)	4 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 01 and bits 3-2 = 00)	2 t1 - 3		ns
t3	RAS# pulse width (REG[22h] bit 6-5 = 01 and bits 3-2 = 01)	2.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 01 and bits 3-2 = 10)	3 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 10 and bits 3-2 = 00)	1 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 10 and bits 3-2 = 01)	1.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bit 6-5 = 10 and bits 3-2 = 10)	2 t1 - 3		ns
t4	CAS# pulse width	t2		ns
t5	CAS# setup time (REG[22h] bits 3-2 = 00 or 10)	0.45 t1 - 3		ns
IJ	CAS# setup time (REG[22h] bits 3-2 = 01)	1 t1 - 3		ns

Table 7-16: EDO-DRAM CAS Before RAS Refresh Timing

Symbol	Parameter	Min	Max	Units
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 00 and bits 3-2 = 00)	2.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 00 and bits 3-2 = 01)	3 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 00 and bits 3-2 = 10)	3.45 t1 - 3		ns
t6	CAS# Hold to RAS# (REG[22h] bit 6-5 = 01 and bits 3-2 = 00)	1.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 01 and bits 3-2 = 01)	2 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 01 and bits 3-2 = 10)	2.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 10 and bits 3-2 = 00)	0.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 10 and bits 3-2 = 01)	1 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bit 6-5 = 10 and bits 3-2 = 10)	1.45 t1 - 3		ns

Table 7-16: EDO-DRAM CAS Before RAS Refresh Timing

Page 67

7.3.3 EDO-DRAM Self-Refresh Timing

Figure 7-17: EDO-DRAM Self-Refresh Timing

Symbol	Parameter	Min	Max	Units
t1	Internal memory clock period	25		ns
t2	RAS# precharge time (REG[22h] bits 3-2 = 00)	2 t1 - 3		ns
	RAS# precharge time (REG[22h] bits 3-2 = 01)	1.45t1 - 3		ns
	RAS# precharge time (REG[22h] bits 3-2 = 10)	1 t1 - 3		ns
t3	RAS# to CAS# precharge time (REG[22h] bits 3-2 = 00)	1.45t1 - 3		ns
	RAS# to CAS# precharge time (REG[22h] bits 3-2 = 01 or 10)	0.45t1 - 3		ns
t4	CAS# setup time (REG[22h] bits 3-2 = 00 or 10)	0.45t1 - 3		ns
	CAS# setup time (REG[22h] bits 3-2 = 01)	1 t1 - 3		ns
+5	CAS# precharge time (REG[22h] bits 3-2 = 00)	2 t1 - 3		ns
t5	CAS# precharge time (REG[22h] bits 3-2 = 01 or 10)	1 t1 - 3		ns

Table 7-17: EDO-DRAM Self-Refresh Timing

7.3.4 FPM-DRAM Read/Write/Read-Write Timing

Figure 7-18: FPM-DRAM Read/Write Timing

Figure 7-19: FPM-DRAM Read-Write Timing

Symbol	Parameter	Min	Мах	Units
t1	Internal memory clock period	40		ns
	Random read cycle REG[22h] bit 6-5 == 00	5t1		ns
t2	Random read cycle REG[22h] bit 6-5 == 01	4t1		ns
	Random read cycle REG[22h] bit 6-5 == 10	3t1		ns
	RAS# precharge time (REG[22h] bits 3-2 = 00)	2 t1 - 3		ns
t3	RAS# precharge time (REG[22h] bits 3-2 = 01)	1.45 t1 - 3		ns
	RAS# precharge time (REG[22h] bits 3-2 = 10)	1 t1 - 3		ns
t4	RAS# to CAS# delay time (REG[22h] bit 4 = 1 and bits 3-2 = 00 or 10)	1.45 t1 - 3		ns
	RAS# to CAS# delay time (REG[22h] bit 4 = 0 and bits 3-2 = 00 or 10)	2.45 t1 - 3		ns
	RAS# to CAS# delay time (REG[22h] bit 4 = 1 and bits 3-2 = 01)	1t1 - 3		ns
	RAS# to CAS# delay time (REG[22h] bit 4 = 0 and bits 3-2 = 01)	2t1 - 3		ns
t5	CAS# precharge time	0.45 t1 - 3		ns
t6	CAS# pulse width	0.45 t1 - 3		ns
t7	RAS# hold time	0.45 t1 - 3		ns
	Row address setup time (REG[22h] bits 3-2 = 00)	2 t1 - 3		ns
t8	Row address setup time (REG[22h] bits 3-2 = 01)	1.45 t1 - 3		ns
	Row address setup time (REG[22h] bits 3-2 = 10)	1 t1 - 3		ns

Table 7-18: FPM-DRAM Read/Write/Read-Write Timing

Symbol	Parameter	Min	Max	Units
t9	Row address hold time (REG[22h] bits 3-2 = 00 or 10)	t1 - 3		ns
	Row address hold time (REG[22h] bits 3-2 = 01)	0.45 1t1 - 3		ns
t10	Column address setup time	0.45 t1 - 3		ns
t11	Column address hold time	0.45 t1 - 3		ns
t12	Read Command Setup (REG[22h] bit 4 = 0 and bits 3-2 = 00)	4.45 t1 - 3		ns
	Read Command Setup (REG[22h] bit $4 = 0$ and bits $3-2 = 01$ or 10)	3.45 t1 - 3		ns
	Read Command Setup (REG[22h] bit 4 = 1 and bits 3-2 = 00)	3.45 t1 - 3		ns
	Read Command Setup (REG[22h] bit 4 = 1 and bits 3-2 = 01 or 10)	2.45 t1 - 3		ns
t13	Read Command Hold (REG[22h] bit $4 = 0$ and bits $3-2 = 00$)	4 t1 - 3		ns
	Read Command Hold (REG[22h] bit $4 = 0$ and bits 3- 2 = 01 or 10)	3 t1 - 3		ns
	Read Command Hold (REG[22h] bit $4 = 1$ and bits $3-2 = 00$)	3 t1 - 3		ns
	Read Command Hold (REG[22h] bit 4 = 1 and bits 3- 2 = 01 or 10)	2 t1 - 3		ns
t14	Read Data Setup referenced from CAS#	5		ns
t15	Bus Tri-State	3	t1- 5	ns
t16	Write Command Setup	0.45 t1- 3		ns
t17	Write Command Hold	0.45 t1 - 3		ns
t18	Write Data Setup	0.45 t1 - 3		ns
t19	Write Data Hold	0.45 t1 - 3		ns
t20	MD Tri-state	0.45 t1	0.45t1 + 21	ns
t21	CAS# to WE# active during Read-Write cycle	0.45 t1 - 3		ns

Table 7-18: FPM-DRAM Read/Write/Read-Write Timing	3
---	---

Page 71

Page 72

7.3.5 FPM-DRAM CAS Before RAS Refresh Timing

Figure 7-20: FPM-DRAM CAS Before RAS Refresh Timing

Symbol	Parameter	Min	Max	Units
t1	Internal memory clock period	40		ns
t2	RAS# precharge time (REG[22h] bits 3-2 = 00)	2.45 t1 - 3		ns
	RAS# precharge time (REG[22h] bits 3-2 = 01 or 10)	1.45 t1 - 3		ns
t3	RAS# pulse width (REG[22h] bits $6-5 = 00$ and bits $3-2 = 00$)	2.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bits 6-5 = 00 and bits 3- 2 = 01 or 10)	3.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bits $6-5 = 01$ and bits $3-2 = 00$)	1.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bits 6-5 = 01 and bits 3- 2 = 01 or 10)	2.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bits $6-5 = 10$ and bits $3-2 = 00$)	0.45 t1 - 3		ns
	RAS# pulse width (REG[22h] bits 6-5 = 10 and bits 3- 2 = 01 or 10)	1.45 t1 - 3		ns
t4	CAS# pulse width (REG[22h] bits 3-2 = 00)	2 t1 - 3		ns
	CAS# pulse width (REG[22h] bits 3-2 = 01 or 10)	1 t1 - 3		
t5	CAS# Setup to RAS#	0.45 t1 - 3		ns
t6	CAS# Hold to RAS# (REG[22h] bits $6-5 = 00$ and bits $3-2 = 00$)	2.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bits 6-5 = 00 and bits 3-2 = 01 or 10)	3.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bits 6-5 = 01 and bits 3-2 = 00)	1.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bits 6-5 = 01 and bits 3-2 = 01 or 10)	2.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bits 6-5 = 10 and bits 3-2 = 00)	0.45 t1 - 3		ns
	CAS# Hold to RAS# (REG[22h] bits 6-5 = 10 and bits 3-2 = 01 or 10)	1.45 t1 - 3		ns

Table 7-19: FPM-DRAM CAS Before RAS Refresh Timing
7.3.6 FPM-DRAM Self-Refresh Timing

Figure 7-21: FPM-DRAM Self-Refresh Timing

Table 7-20:	FPM-DRAM	CBR Self-Refresh	Timing
10010 / 20.	I I MI DIUMMI	ODIT Dely Refresh	1 1111115

Symbol	Parameter	Min	Max	Units
t1	Internal memory clock	40		ns
±0	RAS# precharge time (REG[22h] bits 3-2 = 00)	2.45 t1 - 1		ns
ιz	RAS# precharge time (REG[22h] bits 3-2 = 01 or 10)	1.45 t1 - 1		ns
+2	RAS# to CAS# precharge time (REG[22h] bits 3-2 = 00)	2 t1		ns
13	RAS# to CAS# precharge time (REG[22h] bits 3-2 = 01 or 10)	1 t1		ns
t4	CAS# setup time (CAS# before RAS# refresh)	0.45 t1 - 2		ns

7.4 Power Sequencing

7.4.1 LCD Power Sequencing

Figure 7-22: LCD Panel Power Off / Power On Timing. Drawn with LCDPWR set to active high polarity

Table	7-21:	LCD	Panel	Power	Off/	Power	On
					-JJ'		

Symbol	Parameter	Min	Max	Units
t1	SUSPEND# or LCD ENABLE BIT low to LCDPWR off		2T _{FPFRAME} + 8T _{PCLK}	ns
t2	SUSPEND# or LCD ENABLE BIT low to FPFRAME inactive		1	Frames
t3	FPFRAME inactive to FPLINE, FPSHIFT, FPDATA, DRDY inactive	128		Frames
t4	SUSPEND# to CLKI inactive	130		Frames
t5	SUSPEND# or LCD ENABLE BIT high to FPLINE, FPSHIFT, FPDATA, DRDY active		T _{FPFRAME} + 8T _{PCLK}	ns
t6	FPLINE, FPSHIFT, FPDATA, DRDY active to LCDPWR, on and FPFRAME active	128		Frames
t7	CLKI active to SUSPEND# inactive	0		ns

Note

Where $T_{FPFRAME}$ is the period of FPFRAME and T_{PCLK} is the period of the pixel clock.

7.4.2 Power Save Status

Figure 7-23: Power Save Status and Local Bus Memory Access Relative to Power Save Mode

Note

Power Save can be initiated through either the SUSPEND# pin or Software Suspend Enable Bit.

Table 7-22: Power Save Status and Local Bus Memory Access Relative to Power Save Mode

Symbol	Parameter	Min	Max	Units
t1	Power Save initiated to rising edge of Power Save Status and the last time memory access by the local bus may be performed.	129	130	Frames
t2	Power Save deactivated to falling edge of Power Save Status		12	MCLK
t3	Falling edge of Power Save Status to the earliest time the local bus may perform a memory access		8	MCLK

Note

It is recommended that memory access not be performed after a Power Save Mode has been initiated.

7.5 Display Interface

7.5.1 4-Bit Single Monochrome Passive LCD Panel Timing

Figure 7-24: 4-Bit Single Monochrome Passive LCD Panel Timing

VDP =	Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP =	Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP =	Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP =	Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-25: 4-Bit Single Monochrome Passive LCD Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE pulse width	9			Ts
t4	FPLINE period	note 3			
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPLINE pulse trailing edge to FPSHIFT falling edge	t10 + t11			Ts
t8	FPSHIFT period	4			Ts
t9	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t10	FPLINE pulse trailing edge to FPSHIFT rising edge	20			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPSHIFT pulse width low	2			Ts
t13	UD[3:0] setup to FPSHIFT falling edge	2			Ts
t14	UD[3:0] hold to FPSHIFT falling edge	2			Ts

						_	
Table 7-23. A-Rit	Sinole	Monochrome	Passive	LCD	Panel A	C	Timino
1 uoic / 25. / Dii	Singici	nonocmonic	I USSIVC	L C D	1 unci 11	· U.	1 minis

2. $t1_{min} = t4_{min} - 14Ts$

3. $t4_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

4. $t_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$

5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 27] Ts$

6. $t9_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 18] Ts$

7.5.2 8-Bit Single Monochrome Passive LCD Panel Timing

Figure 7-26: 8-Bit Single Monochrome Passive LCD Panel Timing

= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1

- VDP= Vertical Display PeriodVNDP= Vertical Non-Display Period
 - n-Display Period = (REG[0
- HDP = Horizontal Display Period HNDP = Horizontal Non-Display Period
- = (REG[0Ah] bits [5:0]) + 1
- = ((REG[04h] bits [6:0]) + 1)*8Ts
- = ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-27: 8-Bit Single Monochrome Passive LCD Panel A.C. Timing

Table 7-24: 8-Bit Single Monochrome Passive LCD Panel A.C. Timing			
Parameter	Min	Тур	Ma

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE pulse width	9			Ts
t4	FPLINE period	note 3			
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPLINE pulse trailing edge to FPSHIFT falling edge	t10 + t11			Ts
t8	FPSHIFT period	8			Ts
t9	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t10	FPLINE pulse trailing edge to FPSHIFT rising edge	20			Ts
t11	FPSHIFT pulse width high	4			Ts
t12	FPSHIFT pulse width low	4			Ts
t13	UD[3:0], LD[3:0] setup to FPSHIFT falling edge	4			Ts
t14	UD[3:0], LD[3:0] hold to FPSHIFT falling edge	4			Ts

- 2. $t1_{min} = t4_{min} 14Ts$
- 3. t4_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts
- 4. $t5_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$
- 5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 25] Ts$
- 6. t9_{min} = [((REG[05h] bits [4:0]) + 1)*8 16] Ts

7.5.3 4-Bit Single Color Passive LCD Panel Timing

Figure 7-28: 4-Bit Single Color Passive LCD Panel Timing

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP	= Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-29: 4-Bi	t Single Color	Passive LCD	Panel A.C. Timing
-------------------	----------------	-------------	-------------------

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE pulse width	9			Ts
t4	FPLINE period	note 3			
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPLINE pulse trailing edge to FPSHIFT falling edge	t10 + t11			Ts
t8	FPSHIFT period	1			Ts
t9	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t10	FPLINE pulse trailing edge to FPSHIFT rising edge	21			Ts
t11	FPSHIFT pulse width high	0.45			Ts
t12	FPSHIFT pulse width low	0.45			Ts
t13	UD[3:0], setup to FPSHIFT falling edge	0.45			Ts
t14	UD[3:0], hold from FPSHIFT falling edge	0.45			Ts

Table 7-25: 4-Bit Single Color Passive LCD Panel A.	С.	Timing
---	----	--------

2. $t1_{min} = t4_{min} - 14Ts$

3. $t4_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

4. $t5_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$

5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 28] Ts$

6. t9_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 19] Ts

7.5.4 8-Bit Single Color Passive LCD Panel Timing (Format 1)

Figure 7-30: 8-Bit Single Color Passive LCD Panel Timing (Format 1)

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP	= Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-31: 8-Bit Single Color Passive LCD Panel A.C. Timing (Format 1)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE pulse width	9			Ts
t4	FPLINE period	note 3			
t5a	FPSHIFT2 falling edge to FPLINE pulse leading edge	note 4			
t5b	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t6	FPLINE pulse trailing edge to FPSHIFT2 rising, FPSHIFT falling edge	t9 + t10			Ts
t7	FPSHIFT2, FPSHIFT period	4			Ts
t8a	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t8b	FPSHIFT2 falling edge to FPLINE pulse trailing edge	note 7			
t9	FPLINE pulse trailing edge to FPSHIFT rising edge	20			Ts
t10	FPSHIFT2, FPSHIFT pulse width high	2			Ts
t11	FPSHIFT2, FPSHIFT pulse width low	2			Ts
t12	UD[3:0], LD[3:0] setup to FPSHIFT2 rising, FPSHIFT falling edge	1			Ts
t13	UD[3:0], LD[3:0] hold from FPSHIFT2 rising, FPSHIFT falling edge	1			Ts

Table 7-26: 8-Bit Single	Color Passive LCD	Panel A.C. Timing	(Format 1)
--------------------------	-------------------	-------------------	------------

2. $t1_{min} = t4_{min} - 14Ts$

3. t4_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts

4. $t5_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 27] Ts$

5. $t5_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 29] Ts$

6. t8_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 20] Ts

7. $t8_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 18] Ts$

7.5.5 8-Bit Single Color Passive LCD Panel Timing (Format 2)

Figure 7-32: 8-Bit Single Color Passive LCD Panel Timing (Format 2)

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP	= Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-33: 8-Bit Single Color Passive LCD Panel A.C. Timing (Format 2)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE period	note 3			
t4	FPLINE pulse width	9			Ts
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t8	FPLINE pulse trailing edge to FPSHIFT falling edge	t14 + 2			
t9	FPSHIFT period	2			Ts
t10	FPSHIFT pulse width low	1			Ts
t11	FPSHIFT pulse width high	1			Ts
t12	UD[3:0], LD[3:0] setup to FPSHIFT falling edge	1			Ts
t13	UD[3:0], LD[3:0] hold to FPSHIFT falling edge	1			Ts
t14	FPLINE pulse trailing edge to FPSHIFT rising edge	20			Ts

Table 7-27: 8-Bit Single	Color Passive LCD	Panel A.C. Timing	(Format 2)
--------------------------	-------------------	-------------------	------------

2. $t1_{min} = t3_{min} - 14Ts$

3. $t_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

4. $t5_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$

5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 28] Ts$

6. t7_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 19] Ts

7.5.6 16-Bit Single Color Passive LCD Panel Timing

Figure 7-34: 16-Bit Single Color Passive LCD Panel Timing

VDP	= Vertical Display Period
VNDP	= Vertical Non-Display Period

- = (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
- = (REG[0Ah] bits [5:0]) + 1
- HDP = Horizontal Display Period
- = ((REG[04h] bits [6:0]) + 1)*8Ts
- HNDP = Horizontal Non-Display Period
- $= ((REG[05h] bits [4:0]) + 1)^{*8Ts}$ = ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-35: 16-Bit Single Color Passive LCD Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE period	note 3			
t4	FPLINE pulse width	9			Ts
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t8	FPLINE pulse trailing edge to FPSHIFT falling edge	t14 + 3			Ts
t9	FPSHIFT period	5			Ts
t10	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	UD[7:0], LD[7:0] setup to FPSHIFT falling edge	2			Ts
t13	UD[7:0], LD[7:0] hold to FPSHIFT falling edge	2			Ts
t14	FPLINE pulse trailing edge to FPSHIFT rising edge	20			Ts

Table 7-28: 16-	-Bit Single C	Color Passive I	LCD Pane	el A.C. Timing
-----------------	---------------	-----------------	----------	----------------

2. $t1_{min} = t3_{min} - 14Ts$

3. $t_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

4. $t5_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$

5. t6_{min} = [(REG[05h] bits [4:0]) + 1)*8 - 27] Ts

6. t7_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 18] Ts

7.5.7 8-Bit Dual Monochrome Passive LCD Panel Timing

Figure 7-36: 8-Bit Dual Monochrome Passive LCD Panel Timing

- = Vertical Display Period VDP = (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1 VNDP = Vertical Non-Display Period HDP = Horizontal Display Period
- HNDP = Horizontal Non-Display Period
- = (REG[0Ah] bits [5:0]) + 1
- = ((REG[04h] bits [6:0]) + 1)*8Ts
- = ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-37: 8-Bit Dual Monochrome Passive LCD Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE period	note 3			
t4	FPLINE pulse width	9			Ts
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t8	FPLINE pulse trailing edge to FPSHIFT falling edge	t14 + 2			Ts
t9	FPSHIFT period	4			Ts
t10	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	UD[3:0], LD[3:0] setup to FPSHIFT falling edge	2			Ts
t13	UD[3:0], LD[3:0] hold to FPSHIFT falling edge	2			Ts
t14	FPLINE pulse trailing edge to FPSHIFT rising edge	12			Ts

Table 7-29: 8-Bit Dual Monochrome	e Passive LCD Panel A.C.	Timing
-----------------------------------	--------------------------	--------

2. $t1_{min} = t3_{min} - 14Ts$

3. $t_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

- 4. $t_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$
- 5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 19] Ts$
- 6. t7_{min} = [((REG[05h] bits [4:0]) + 1)*8 10] Ts

7.5.8 8-Bit Dual Color Passive LCD Panel Timing

Figure 7-38: 8-Bit Dual Color Passive LCD Panel Timing

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP	= Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-39: 8-Bit Dual Color Passive LCD Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE period	note 3			
t4	FPLINE pulse width	9			Ts
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t8	FPLINE pulse trailing edge to FPSHIFT falling edge	t14 + t11			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width low	0.45			Ts
t11	FPSHIFT pulse width high	0.45			Ts
t12	UD[3:0], LD[3:0] setup to FPSHIFT falling edge	0.45			Ts
t13	UD[3:0], LD[3:0] hold to FPSHIFT falling edge	0.45			Ts
t14	FPLINE pulse trailing edge to FPSHIFT rising edge	13			Ts

2. $t1_{min} = t3_{min} - 14Ts$

3. $t_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

- 4. $t5_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$
- 5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 20] Ts$
- 6. t7_{min} = [((REG[05h] bits [4:0]) + 1)*8 11] Ts

7.5.9 16-Bit Dual Color Passive LCD Panel Timing

Figure 7-40: 16-Bit Dual Color Passive LCD Panel Timing

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], RE0
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1
HNDP	= Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1

- = Horizontal Non-Display Period
-]) + 1)*8Ts

REG[08h] bits [7:0]) + 1

= ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-41: 16-Bit Dual Color Passive LCD Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE pulse trailing edge	note 2			
t2	FPFRAME hold from FPLINE pulse trailing edge	14			Ts (note 1)
t3	FPLINE period	note 3			
t4	FPLINE pulse width	9			Ts
t5	MOD transition to FPLINE pulse trailing edge	1		note 4	Ts
t6	FPSHIFT falling edge to FPLINE pulse leading edge	note 5			
t7	FPSHIFT falling edge to FPLINE pulse trailing edge	note 6			
t8	FPLINE pulse trailing edge to FPSHIFT falling edge	t14 + 2			
t9	FPSHIFT period	2			Ts
t10	FPSHIFT pulse width low	1			Ts
t11	FPSHIFT pulse width high	1			Ts
t12	UD[7:0], LD[7:0] setup to FPSHIFT falling edge	1			Ts
t13	UD[7:0], LD[7:0] hold to FPSHIFT falling edge	1			Ts
t14	FPLINE pulse trailing edge to FPSHIFT rising edge	12			Ts

Table 7-31: 16-Bit Dual Color Passive LCD Panel A.C. Tim	ing
--	-----

2. $t1_{min} = t3_{min} - 14Ts$

3. $t_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] + 33 Ts$

4. $t5_{min} = [(((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8)-1] Ts$

5. $t6_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 20] Ts$

6. t7_{min} = [((REG[05h] bits [4:0]) + 1)*8 - 11] Ts

7.5.10 16-Bit TFT/D-TFD Panel Timing

Figure 7-42: 16-Bit TFT/D-TFD Panel Timing

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP	= Horizontal Non-Display Period	= HNDP ₁ + HNDP ₂ = ((REG[05h] bits [4:0]) + 1)*8Ts

Figure 7-43: TFT/D-TFD A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPSHIFT period	1			Ts (note 1)
t2	FPSHIFT pulse width high	0.45			Ts
t3	FPSHIFT pulse width low	0.45			Ts
t4	data setup to FPSHIFT falling edge	0.45			Ts
t5	data hold from FPSHIFT falling edge	0.45			Ts
t6	FPLINE cycle time	note 2			
t7	FPLINE pulse width low	note 3			
t8	FPFRAME cycle time	note 4			
t9	FPFRAME pulse width low	note 5			
t10	horizontal display period	note 6			
t11	FPLINE setup to FPSHIFT falling edge	0.45			Ts
t12	FPFRAME pulse leading edge to FPLINE pulse leading edge phase difference	note 7			
t13	DRDY to FPSHIFT falling edge setup time	0.45			Ts
t14	DRDY pulse width	note 8			
t15	DRDY falling edge to FPLINE pulse leading edge	note 9			
t16	DRDY hold from FPSHIFT falling edge	0.45			Ts
t17	FPLINE pulse leading edge to DRDY active	note 10		250	Ts

Table 7	7-32:	TFT/D-TFD A.C.	Timing
			0

2. $t6_{min} = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0])+1)*8] Ts$

3. t7_{min} = [((REG[07h] bits [3:0])+1)*8] Ts

4. t8 min = [((REG[09h] bits [1:0], REG[08h] bits [7:0])+1) + ((REG[0Ah] bits [5:0])+1)] lines

5. $t9_{min} = [((REG[0Ch] bits [2:0])+1)] lines$

6. $t10_{min} = [((REG[04h] bits [6:0])+1)*8] Ts$

7. $t12_{min} = [((REG[06h] bits [4:0])*8)+1] Ts$

8. $t14_{min} = [((REG[04h] bits [6:0])+1)*8] Ts$

9. t15_{min} = [((REG[06h] bits [4:0])+1)*8 - 2] Ts

10. t17_{min} = [((REG[05h] bits [4:0])+1)*8 - ((REG[06h] bits [4:0])+1)*8 + 2]

7.5.11 CRT Timing

Figure 7-44: CRT Timing

VDP	= Vertical Display Period	= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1
VNDP	= Vertical Non-Display Period	= (REG[0Ah] bits [5:0]) + 1
HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1)*8Ts
HNDP	= Horizontal Non-Display Period	= HNDP ₁ + HNDP ₂ = ((REG[05h] bits [4:0]) + 1)*8Ts

Note

The signals RED, GREEN and BLUE are analog signals from the embedded DAC and represent the color components which make up each pixel.

Figure 7-45: CRT A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	VRTC cycle time		note 1		
t2	VRTC pulse width low		note 2		
t3	VRTC falling edge to FPLINE falling edge phase difference		note 3		

t8 min = [((REG[09h] bits 1:0, REG[08h] bits 7:0)+1) + ((REG[0Ah] bits 6:0)+1)] lines 1.

- 2. $t9_{min} = [((REG[0Ch] bits 2:0)+1)] lines$ $3. <math>t12_{min} = [((REG[06h] bits 4:0)+1)*8] Ts$

8 Registers

8.1 Register Mapping

The S1D13505 registers are memory mapped. The system addresses the registers through the CS#, M/R#, and AB[5:0] input pins. When CS# = 0 and M/R# = 0, the registers are mapped by address bits AB[5:0], e.g. REG[00h] is mapped to AB[5:0] = 000000, REG[01h] is mapped to AB[5:0] = 000001. See the table below:

CS#	M/R#	Access
0	0	 Register access: REG[00h] is addressed when AB[5:0] = 0 REG[01h] is addressed when AB[5:0] = 1 REG[n] is addressed when AB[5:0] = n
0	1	Memory access: the 2M byte Display Buffer is addressed by AB[20:0]
1	х	S1D13505 not selected

Table 8-1: S1D13505 Addressing

8.2 Register Descriptions

Unless specified otherwise, all register bits are reset to 0 during power-on. Reserved bits should be written 0 when programming unless otherwise noted.

8.2.1 Revision Code Register

Revision Code Register REG[00h] F									
Product Code Bit 5	Product Code Bit 4	Product Code Bit 3	Product Code Bit 2	Product Code Bit 1	Product Code Bit 0	Revision Code Bit 1	Revision Code Bit 0		
bits 7-2	bits 7-2 Product Code Bits [5:0] This is a read-only register that indicates the product code of the chip. The product code for the S1D13505 is 000011.								
bits 1-0	Poits 1-0 Revision Code Bits [1:0] This is a read-only register that indicates the revision code of the chip. The revision code for the S1D13505F00A is 00.								

8.2.2 Memory Configuration Registers

Memory Configuration RegisterREG[01h]RW							
n/a	Refresh Rate Bit 2	Refresh Rate Bit 1	Refresh Rate Bit 0	n/a	WE# Control	n/a	Memory Type

bits 6-4

DRAM Refresh Rate Select Bits [2:0]

These bits specify the divisor used to generate the DRAM refresh rate from the input clock (CLKI).

DRAM Refresh Rate Select Bits [2:0]	CLKI Frequency Divisor	Example Refresh Rate for CLKI = 33MHz	Example period for 256 refresh cycles at CLKI = 33MHz	
000	64	520 kHz	0.5 ms	
001	128	260 kHz	1 ms	
010	256	130 kHz	2 ms	
011	512	65 kHz	4 ms	
100	1024	33 kHz	8 ms	
101	2048	16 kHz	16 ms	
110	4096	8 kHz	32 ms	
111	8192	4 kHz	64 ms	

Table 8-2	C: DRAM	Refresh	Rate	Selection
100002	. Diumi	nepresn	nunc	Derection

bit 2

WE# Control When this bit = 1, 2-WE# DRAM is selected. When this bit = 0, 2-CAS# DRAM is selected.

bit 0

Memory Type When this bit = 1, FPM-DRAM is selected.

When this bit = 0, EDO-DRAM is selected.

This bit should be changed only when there are no read/write DRAM cycles. This condition occurs when all of the following are true: the Display FIFO is disabled (REG[23h] bit 7 = 1), and the Half Frame Buffer is disabled (REG[1Bh] bit 0 = 1), and the Ink/Cursor is inactive

(Reg[27h] bits 7-6 = 00). This condition also occurs when the CRT and LCD enable bits (Reg[0Dh] bits 1-0) have remained 0 since chip reset. For further programming information, see *S1D13505 Programming Notes and Examples*, document number X23A-G-003-xx.

8.2.3 Panel/Monitor Configuration Registers

Panel Type REG[02h]	e Register						RW		
EL Panel Enable	n/a	Panel Data Width Bit 1	Panel Data Width Bit 0	Panel Data Format Select	Color/Mono. Panel Select	Dual/Single Panel Select	TFT/ Passive LCD Panel Select		
bit 7	EL Wi at mo	Panel Mode En hen this bit = 1, 1 60Hz frame rate odulation circuitr	able EL Panel suppo) the identical p y is frozen for o	rt mode is enable anel data is sent t one frame.	d. Every 26214 o two consecuti	3 frames (approxive frames, i.e. the	ximately 1 hour he frame rate		
bits 5-4	Pa Th	nel Data Width H lese bits select th	Bits [1:0] e LCD interface	e data width as sh	nown in the follo	owing table.			
		1	Table 8-3: Panel	Data Width Selection	on				
	Panel Data Width Bits [1:0]		Passive LCD Panel Data Width Size		TFT/D-TFD Panel Data Width Size		h		
	00		4-bit		9-bit				
	C)1	8-bit		12-bit				
	1	0	16-bit		16-bit				
	1	1	Reserved		Re	served			
bit 3	Pa Wi Wi	nel Data Format hen this bit = 1, o hen this bit = 0, j	Select color passive L0 passive LCD pa	CD panel data for nel data format 1	mat 2 is selecte is selected.	d.			
bit 2	Color/Mono Panel Select When this bit = 1, color passive LCD panel is selected. When this bit = 0, monochrome passive LCD panel is selected.								
bit 1	Dual/Single Panel Select When this bit = 1, dual passive LCD panel is selected. When this bit = 0, single passive LCD panel is selected.								
bit 0	When this bit = 0, single passive LCD panel is selected. TFT/Passive LCD Panel Select When this bit = 1, TFT/D-TFD panel is selected. When this bit = 0, passive LCD panel is selected.								

MOD Rate R REG[03h]	egister						RW
n/a	n/a	MOD Rate Bit 5	MOD Rate Bit 4	MOD Rate Bit 3	MOD Rate Bit 2	MOD Rate Bit 1	MOD Rate Bit 0
bits 5-0	MO Whe put.	D Rate Bits [5:0 en the DRDY pi When this regis)] n is configured a ter is zero, the N	as MOD, this re 10D output sign	gister controls the al toggles every	ne toggle rate of FPFRAME. WI	the MOD out- nen this register

put. When this register is zero, the MOD output signal toggles every FPFRAME. When this register is non-zero, its value represents the number of FPLINE pulses between toggles of the MOD output signal.

Horizontal Display Width Register REG[04h] RW								
n/a	Horizontal							
	Display Width							
	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

bits 6-0

Horizontal Display Width Bits [6:0]

These bits specify the LCD panel and/or the CRT horizontal display width as follows.

Contents of this Register = (Horizontal Display Width $\div 8$) - 1

For passive LCD panels the Horizontal Display Width must be divisible by 16, and for TFT LCD panels/CRTs the Horizontal Display Width must be divisible by 8. The maximum horizontal display width is 1024 pixels.

Note

This register must be programmed such that $REG[04h] \ge 3$ (32 pixels)

Note

When setting a horizontal resolution greater than 767 pixels, with a color depth of 15/16 bpp, the Memory Offset Registers (REG[16h], REG[17h]) must be set to a virtual horizontal pixel resolution of 1024.

Horizontal Non-Display Period RegisterREG[05h]RW								
n/a	n/a	n/a	Horizontal Non-Display Period Bit 4	Horizontal Non-Display Period Bit 3	Horizontal Non-Display Period Bit 2	Horizontal Non-Display Period Bit 1	Horizontal Non-Display Period Bit 0	

bits 4-0

Horizontal Non-Display Period Bits [4:0]

These bits specify the horizontal non-display period.

Horizontal non-display period (pixels) = (Horizontal Non-Display Period Bits [4:0] + 1) × 8

The recommended minimum value which should be programmed into this register is 3 (32 pixels). The maximum value which can be programmed into this register is 1Fh, which gives a horizontal non-display period of 256 pixels.

Note

This register must be programmed such that $REG[05h] \ge 3$ and $(REG[05h] + 1) \ge (REG[06h] + 1) + (REG[07h] bits [3:0] + 1)$

HRTC/FPLINE Start Position Register REG[06h] RW									
n/a	n/a	n/a	HRTC/ FPLINE Start Position Bit 4	HRTC/ FPLINE Start Position Bit 3	HRTC/ FPLINE Start Position Bit 2	HRTC/ FPLINE Start Position Bit 1	HRTC/ FPLINE Start Position Bit 0		
hits 4-0 HRTC/FPI INF Start Position Bits [4:0]									

bits 4-0

HRIC/FPLINE Start Position Bits [4:0]

For CRT and TFT/D-TFD, these bits specify the delay from the start of the horizontal non-display period to the leading edge of the HRTC pulse and FPLINE pulse respectively.

HRTC/FPLINE start position (pixels) = (HRTC/FPLINE Start Position Bits [4:0] + 1) × 8 - 2

Note

This register must be programmed such that $(\text{REG}[05h] + 1) \ge (\text{REG}[06h] + 1) + (\text{REG}[07h] \text{ bits } [3:0] + 1)$

HRTC/FPLINE Pulse Width Register REG[07h] RW								
HRTC Polarity Select	FPLINE Polarity Select	n/a	n/a	HRTC/ FPLINE Pulse Width Bit 3	HRTC/ FPLINE Pulse Width Bit 2	HRTC/ FPLINE Pulse Width Bit 1	HRTC/ FPLINE Pulse Width Bit 0	
bit 7 HRTC Polarity Select This bit selects the polarity of the HRTC pulse to the CRT. When this bit = 1, the HRTC pulse is active high. When this bit = 0, the HRTC pulse is active low.								
bit 6 FPLINE Polarity Select This bit selects the polarity of the FPLINE pulse to TFT/D-TFD or passive LCD. When this bit = 1, the FPLINE pulse is active high for TFT/D-TFD and active low for passive LC When this bit = 0, the FPLINE pulse is active low for TFT/D-TFD and active high for passive LC							or passive LCD. or passive LCD.	

Table 8-4: FPLINE Polarity Selection

FPLINE Polarity Select	Passive LCD FPLINE Polarity	TFT/D-TFD FPLINE Polarity
0	active high	active low
1	active low	active high

bits 3-0

HRTC/FPLINE Pulse Width Bits [3:0]

For CRT and TFT/D-TFD, these bits specify the pulse width of HRTC and FPLINE respectively. For passive LCD, FPLINE is automatically created and these bits have no effect.

HRTC/FPLINE pulse width (pixels) = (HRTC/FPLINE Pulse Width Bits [3:0] + 1) × 8

The maximum HRTC pulse width is 128 pixels.

Note

This register must be programmed such that $(\text{REG}[05h] + 1) \ge (\text{REG}[06h] + 1) + (\text{REG}[07h] \text{ bits } [3:0] + 1)$

Vertical Disp REG[08h]	olay Height Re	egister 0					RW
Vertical Display Height Bit 7	Vertical Display Height Bit 6	Vertical Display Height Bit 5	Vertical Display Height Bit 4	Vertical Display Height Bit 3	Vertical Display Height Bit 2	Vertical Display Height Bit 1	Vertical Display Height Bit 0
Vertical Disp REG[09h]	blay Height Re	egister 1					RW
n/a	n/a	n/a	n/a	n/a	n/a	Vertical Display Height Bit 9	Vertical Display Height Bit 8
REG[08h] bits REG[09h] bits	7-0 Vert 1-0 The	ical Display He se bits specify tl	ight Bits [9:0] he vertical displ	ay height.			
	Vert	ical display heig	ght (lines) = Ver	tical Display H	eight Bits [9:0]	+ 1	
	• Fo (V	or CRT, TFT/D- /ertical resoluti	-TFD, and singlion of the displ	e passive LCD j ay) - 1, e.g. EF	panel this regist h for a 240-line	er is programme display.	ed to:
	• Fe ((or dual-panel pa vertical resolution	ssive LCD not i tion of the disp	in simultaneous blay)/2) - 1, e.g.	display mode, t EFh for a 480-1	his register is pr ine display.	ogrammed to:
	• Fo (V	or all simultaned ertical resoluti	ous display mod ion of the CRT	les, this register) - 1, e.g. 1DFh	is programmed for a 480-line C	to: CRT.	
Vertical Non REG[0Ah]	-Display Perio	od Register					RW
Vertical Non- Display Period Status (RO)	n/a	Vertical Non- Display Period Bit 5	Vertical Non- Display Period Bit 4	Vertical Non- Display Period Bit 3	Vertical Non- Display Period Bit 2	Vertical Non- Display Period Bit 1	Vertical Non- Display Period Bit 0
bit 7	Vert This Who Who	tical Non-Displates is a read-only seen this bit = 1, a en this bit = 0, a	y Period Status status bit. vertical non-dis vertical display	splay period is i period is indica	ndicated. ated.		
bits 5-0	Vert The	ical Non-Displa se bits specify tl	y Period Bits [5 he vertical non-	5:0] display period.			
	Ver	tical non-displa	ay period (lines	s) = Vertical No	on-Display Per	iod Bits [5:0] +	1
	Note	e his register mus	t be programme	d such that			

 $REG[0Ah] \ge 1$ and $(REG[0Ah] bits [5:0] + 1) \ge (REG[0Bh] + 1) + (REG[0Ch] bits [2:0] + 1)$

VRTC/FPFRA REG[0Bh]	AME Start Pos	sition Registe	r				RW
n/a	n/a	VRTC/ FPFRAME Start Position Bit 5	VRTC/ FPFRAME Start Position Bit 4	VRTC/ FPFRAME Start Position Bit 3	VRTC/ FPFRAME Start Position Bit 2	VRTC/ FPFRAME Start Position Bit 1	VRTC/ FPFRAME Start Position Bit 0
bits 5-0	VRT For play LCT	TC/FPFRAME S CRT and TFT/D period to the le D, FPFRAME is	Start Position Bi D-TFD, these bits ading edge of the automatically c	ts [5:0] s specify the del ne VRTC pulse a rreated and these	ay in lines from and FPFRAME e bits have no ef	the start of the pulse respective fect.	vertical non-dis- ly. For passive

VRTC/FPFRAME start position (lines) = VRTC/FPFRAME Start Position Bits [5:0] + 1

The maximum start delay is 64 lines.

Note

This register must be programmed such that $(\text{REG}[0\text{Ah}] \text{ bits } [5:0] + 1) \ge (\text{REG}[0\text{Bh}] + 1) + (\text{REG}[0\text{Ch}] \text{ bits } [2:0] + 1)$ For exact timing please use the timing diagrams in section 7.5

VRTC/FPFRAME Pulse Width Register REG[0Ch] RW							
VRTC Polarity Select	FPFRAME Polarity Select	n/a	n/a	n/a	VRTC/ FPFRAME Pulse Width Bit 2	VRTC/ FPFRAME Pulse Width Bit 1	VRTC/ FPFRAME Pulse Width Bit 0

bit 7

VRTC Polarity Select

This bit selects the polarity of the VRTC pulse to the CRT. When this bit = 1, the VRTC pulse is active high.

When this bit = 0, the VRTC pulse is active low.

bit 6

FPFRAME Polarity Select This bit selects the polarity of the FPFRAME pulse to the TFT/D-TFD or passive LCD. When this bit = 1, the FPFRAME pulse is active high for TFT/D-TFD and active low for passive. When this bit = 0, the FPFRAME pulse is active low for TFT/D-TFD and active high for passive.

FPFRAME Polarity Select	Passive LCD FPFRAME Polarity	TFT/D-TFD FPFRAME Polarity
0	active high	active low
1	active low	active high

bits 2-0

VRTC/FPFRAME Pulse Width Bits [2:0]

For CRT and TFT/D-TFD, these bits specify the pulse width of VRTC and FPFRAME respectively. For passive LCD, FPFRAME is automatically created and these bits have no effect.

VRTC/FPFRAME pulse width (lines) = VRTC/FPFRAME Pulse Width Bits [2:0] + 1

Note

This register must be programmed such that $(\text{REG}[0\text{Ah}] \text{ bits } [5:0] + 1) \ge (\text{REG}[0\text{Bh}] + 1) + (\text{REG}[0\text{Ch}] \text{ bits } [2:0] + 1)$

8.2.4 Display Configuration Registers

Display Mo REG[0Dh]	de Register						RW
SwivelView Enable	Simultaneous Display Option Select Bit 1	Simultaneous Display Option Select Bit 0	Bit-per-pixel Select Bit 2	Bit-per-pixel Select Bit 1	Bit-per-pixel Select Bit 0	CRT Enable	LCD Enable
bit 7	Swi Wh harc tatio	velView Enable en this bit = 1, a lware rotation o ons.	ll CPU accesse f the display in	es to the display nage. Refer to ",	buffer are transl Section 13 Swive	ated to provide c elView" for appli	lockwise 90° cation and limi-
bits 6-5	Simultaneous Display Option Select Bits [1:0] These bits are used to select one of four different simultaneous display mode options: Norma Doubling, Interlace, or Even Scan Only. The purpose of these modes is to manipulate the ver- resolution of the image so that it fits on both the CRT_typically 640x480, and I CD. The fol						s: Normal, Line ate the vertical

olution of the image so that it fits on both the CRT, typically 640x480, and LCD. The following table describes the four modes using a 640x480 CRT as an example:

Simultaneous Display Option Select Bits [1:0]	Simultaneous Display Mode	Mode Description
00 Nor		The image is not manipulated. This mode is used when the CRT and LCD have the same resolution, e.g. 480 lines.
	Normal	It is necessary to suit the vertical retrace period to the CRT. This results in a lower LCD duty cycle (1/525 compared to the usual 1/481). This reduced duty cycle may result in lower contrast on the LCD.
01 Line Doubling		Each line is replicated on the CRT. This mode is used to display a 240-line image on a 240-line LCD and stretch it to a 480-line image on the CRT. The CRT has a heightened aspect ratio.
	Line Doubling	It is necessary to suit the vertical retrace period to the CRT. This results in a lower LCD duty cycle (2/525 compared to the usual 1/241). This reduced duty cycle is not extreme and the contrast of the LCD image should not be greatly reduced.
10	Interlace	The odd and even fields of a 480-line image are interlaced on the LCD. This mode is used to display a 480-line image on the CRT and squash it onto a 240-line LCD. The full image is viewed on the LCD but the interlacing may create flicker. The LCD has a shortened aspect ratio.
		It is necessary to suit the vertical retrace period to the CRT. This results in a lower LCD duty cycle (2/525 compared to the usual 1/241). This reduced duty cycle is not extreme and the contrast of the LCD image should not be greatly reduced.
11	Even Scan Only	Only the even field of a 480-line image is displayed on the LCD. This is an alternate method to display a 480-line image on the CRT and squash it onto a 240-line LCD. Only the even scans are viewed on the LCD. The LCD has a shortened aspect ratio.
		It is necessary to suit the vertical retrace period to the CRT. This results in a lower LCD duty cycle (2/525 compared to the usual 1/241). This reduced duty cycle is not extreme and the contrast of the LCD image should not be greatly reduced.

Table 8-6: Simultaneous	s Display	Option	Selection
-------------------------	-----------	--------	-----------

Note

- 1. Dual Panel Considerations: When configured for a dual LCD panel and using Simultaneous Display, the Half Frame Buffer Disable, REG[1Bh] bit 0, must be set to 1. This results in a lower contrast on the LCD panel, which may require adjustment.
- 2. The Line doubling option is not supported with dual panel.

Bit-per-pixel Select Bits [2:0]	Color Depth (bpp)		
000	1 bpp		
001	2 bpp		
010	4 bpp		
011	8 bpp		
100	15 bpp		
101	16 bpp		
110 - 111	Reserved		

Table 8-7: Bit-per-pixel Selection

hi+	1
DIL	г

bit 0

CRT Enable This bit enables the CRT monitor. When this bit = 1, the CRT is enabled. When this bit = 0, the CRT is disabled.

LCD Enable This bit enables the LCD panel. Programming this bit from a 0 to a 1 starts the LCD power-on sequence. Programming this bit from a 1 to a 0 starts the LCD power-off sequence.

Screen 1 Line Compare Register 0 REG[0Eh] RW							
Screen 1 Line	Screen 1 Line	Screen 1 Line	Screen 1 Line	Screen 1 Line	Screen 1 Line	Screen 1 Line	Screen 1 Line
Compare Bit 7	Compare Bit 6	Compare Bit 5	Compare Bit 4	Compare Bit 3	Compare Bit 2	Compare Bit 1	Compare Bit 0

Screen 1 Lin REG[0Fh]	r een 1 Line Compare Register 1 G[0Fh]							
n/a	n/a	n/a	n/a	n/a	n/a	Screen 1 Line Compare Bit 9	Screen 1 Line Compare Bit 8	
$\mathbf{PEC}[0\mathbf{E}] = 1 1 1 2 0 0 1 1 1 1 0 0 0$								

Screen 1 Line Compare Bits [9:0] REG[0Eh] bits 7-0 REG[0Fh] bits 1-0

These bits are set to 1 during power-on.

The display can be split into two images: Screen 1 and Screen 2, with Screen 1 above Screen 2. This 10-bit value specifies the height of Screen 1.

Height of Screen 1 (lines) = Screen 1 Line Compare Bits [9:0] + 1

If the height of Screen 1 is less than the display height then the remainder of the display is taken up by Screen 2. For normal operation (no split screen) this register must be set greater than the Vertical Display Height register (e.g. set to the reset value of 3FFh).

See "Display Configuration" for details.

Screen 1 Display Start Address Register 0									
REG[10h] R									
Start Address Bit 7	Start Address Bit 6	Start Address Bit 5	Start Address Bit 4	Start Address Bit 3	Start Address Bit 2	Start Address Bit 1	Start Address Bit 0		
Screen 1 Display Start Address Register 1 REG[11h] RW									
Start Address Bit 15	Start Address Bit 14	Start Address Bit 13	Start Address Bit 12	Start Address Bit 11	Start Address Bit 10	Start Address Bit 9	Start Address Bit 8		
Screen 1 Display Start Address Register 2 REG[12h] RW									
n/a	n/a	n/a	n/a	Start Address Bit 19	Start Address Bit 18	Start Address Bit 17	Start Address Bit 16		

REG[10h] bits 7-0Screen 1 Start Address Bits [19:0]REG[11h] bits 7-0These registers form the 20-bit address for the starting word of the Screen 1 image in
the display buffer.
Note that this is a word address.
A combination of this register and the Pixel Panning register (REG[18h]) can be used to uniquely

identify the start (top left) pixel within the Screen 1 image stored in the display buffer. See "*Display Configuration*" for details.

Screen 2 Display Start Address Register 0 REG[13h] RW									
Start Address Bit 7	Start Address Bit 6	Start Address Bit 5	Start Address Bit 4	Start Address Bit 3	Start Address Bit 2	Start Address Bit 1	Start Address Bit 0		
REG[14h] RW									
Start Address Bit 15	Start Address Bit 14	Start Address Bit 13	Start Address Bit 12	Start Address Bit 11	Start Address Bit 10	Start Address Bit 9	Start Address Bit 8		
Screen 2 Display Start Address Register 2 REG[15h] RW									
n/a	n/a	n/a	n/a	Start Address Bit 19	Start Address Bit 18	Start Address Bit 17	Start Address Bit 16		

REG[13h] bits 7-0 Screen 2 Start Address Bits [19:0]

These registers form the 20-bit address for the starting word of the Screen 2 image in the display buffer.

Note that this is a word address.

A combination of this register and the Pixel Panning register (REG[18h]) can be used to uniquely identify the start (top left) pixel within the Screen 2 image stored in the display buffer.

See "Display Configuration" for details.

REG[14h] bits 7-0

REG[15h] bits 3-0
REG[16h]							RW
Memory Address Offset Bit 7	Memory Address Offset Bit 6	Memory Address Offset Bit 5	Memory Address Offset Bit 4	Memory Address Offset Bit 3	Memory Address Offset Bit 2	Memory Address Offset Bit 1	Memory Address Offset Bit 0
Memory Ac REG[17h]	Idress Offset	Register 1					RW
n/a	n/a	n/a	n/a	n/a	Memory Address Offset Bit 10	Memory Address Offset Bit 9	Memory Address Offset Bit 8
n/a REG[16h] bit REG[17h] bit	n/a s 7-0 Me s 2-0 Th	emory Address (ese bits form the	Offset Bits [10:0 e 11-bit address applied to both	0] offset from the s	Address Offset Bit 10	Address Offset Bit 9	Offset Bit

A virtual image can be formed by setting this register to a value greater than the width of the display. The displayed image is a window into the larger virtual image.

See "Section 10 Display Configuration" for details.

Pixel Panning Register REG[18h] RW									
Screen 2	Screen 2	Screen 2	Screen 2	Screen 1	Screen 1	Screen 1	Screen 1		
Pixel Panning	Pixel Panning	Pixel Panning	Pixel Panning	Pixel Panning	Pixel Panning	Pixel Panning	Pixel Panning		
Bit 3	Bit 2	Bit 1	Bit 0	Bit 3	Bit 2	Bit 1	Bit 0		

This register is used to control the horizontal pixel panning of Screen 1 and Screen 2. Each screen can be independently panned to the left by programming its respective Pixel Panning Bits to a non-zero value. The value represents the number of pixels panned. The maximum pan value is dependent on the display mode.

Display Mode	Maximum Pan Value	Pixel Panning Bits active
1 bpp	16	Bits [3:0]
2 bpp	8	Bits [2:0]
4 bpp	4	Bits [1:0]
8 bpp	1	Bit 0
15/16 bpp	0	none

Table 8-8: Pixel Panning Selection

Smooth horizontal panning can be achieved by a combination of this register and the Display Start Address registers.

See "Section 10 Display Configuration" for details.

bits 7-4Screen 2 Pixel Panning Bits [3:0]Pixel panning bits for screen 2.

bits 3-0 Screen 1 Pixel Panning Bits [3:0] Pixel panning bits for screen 1.

8.2.5 Clock Configuration Register

Clock Config REG[19h]	guration Regis	ster					RW	
Reserved	n/a	n/a	n/a	n/a	MCLK Divide Select	PCLK Divide Select Bit 1	PCLK Divide Select Bit 0	
bit 7	Rese This Note Th	erved bit must be set 9 nere must alway	to 0. s be a source clo	ock at CLKI.				
bit 2	MCLK Divide Select When this bit = 1 the MCLK frequency is half of its source frequency. When this bit = 0 the MCLK frequency is equal to its source frequency. The MCLK frequency should always be set to the maximum frequency allowed by the DRAM; this provides maximum performance and minimum overall system power consumption							
bits 1-0	PCL The	K Divide Selectse bits select the	t Bits [1:0] MCLK: PCLK	frequency ratio				
			Table 8-9: PCLK	Divide Selection				

PCLK Divide Select Bits [1:0]	MCLK: PCLK Frequency Ratio
00	1: 1
01	2: 1
10	3: 1
11	4: 1

See section on "Maximum MCLK: PCLK Frequency Ratios" for selection of clock ratios.

8.2.6 Power Save Configuration Registers

Power Save Configuration Register REG[1Ah] RW									
Power Save Status RO	n/a	n/a	n/a	LCD Power Disable	Suspend Refresh Select Bit 1	Suspend Refresh Select Bit 0	Software Suspend Mode Enable		

bit 7

Power Save Status

This is a read-only status bit.

This bit indicates the power-save state of the chip.

When this bit = 1, the panel has been powered down and the memory controller is either in self refresh mode or is performing only CAS-before-RAS refresh cycles.

When this bit = 0, the chip is either powered up, in transition of powering up, or in transition of powering down. See Section 15 *Power Save Modes* for details.

bit 3	LCD Power Disable This bit is used to override the panel on/off sequencing logic. When this bit = 0 the LCDPWR output is controlled by the panel on/off sequencing logic. When this bit = 1 the LCDPWR output is directly forced to the off state.
	The LCDPWR "On/Off" polarity is configured by MD10 at the rising edge of RESET# (MD10 = 0 configures LCDPWR = 0 as the Off state; MD10 = 1 configures LCDPWR = 1 as the Off state).
bits 2-1	Suspend Refresh Select Bits [1:0] These bits specify the type of DRAM refresh to use in Suspend mode.

Table	8-10.	Susnend	Refresh	Selection
1 unic	0-10.	Suspena	nejresn	Selection

Suspend Refresh Select Bits [1:0]	DRAM Refresh Type
00	CAS-before-RAS (CBR) refresh
01	Self-Refresh
1X	No Refresh

Note

These bits should not be changed while suspend mode is active.

bit 0

Software Suspend Mode Enable When this bit = 1 software Suspend mode is enabled. When this bit = 0 software Suspend mode is disabled. See Section 15 Power Save Modes for details.

8.2.7 Miscellaneous Registers

Miscellaneou REG[1Bh]	us Register						RW			
Host Interface Disable	n/a	n/a	n/a	n/a	n/a	n/a	Half Frame Buffer Disable			
bit 7 Host Interface Disable This bit is set to 1 during power-on/reset . This bit must be programmed to 0 to enable the Host Interface. When this bit is high, all n and all registers except REG[1Ah] (read-only) and REG[1Bh] are inaccessible.						h, all memory				
bit 0 Half Frame Buffer Disable This bit is used to disable the Half Frame Buffer. When this bit = 1, the Half Frame Buffer is disabled. When this bit = 0, the Half Frame Buffer is enabled. When a single panel is selected, the Half Frame Buffer is automatically disabled and this effect						d this bit has no				
	The redu resu not dual usec latic	The half frame buffer is needed to fully support dual panels. Disabling the Half Frame Buffer reduces memory bandwidth requirements and increases the supportable pixel clock frequency, but results in reduced contrast on the LCD panel (the duty cycle of the LCD is halved). This mode is not normally used except under special circumstances such as simultaneous display on a CRT and dual panel LCD. When this mode is used the Alternate Frame Rate Modulation scheme should be used (see REG[31h]). For details on Frame Rate calculation see Section 14.2, "Frame Rate Calculation" on page 141.								

MD Configuration Readback Register 0 REG[1Ch]										
MD[7] Status	MD[6] Status	MD[5] Status	MD[4] Status	MD[3] Status	MD[2] Status	MD[1] Status	MD[0] Status			
MD Configuration Readback Register 1 REG[1Dh] RO										
MD[15] Status	MD[14] Status	MD[13] Status	MD[12] Status	MD[11] Status	MD[10] Status	MD[9] Status	MD[8] Status			
DEGLICITI										

REG[1Ch] bits 7-0 REG[1Dh] bits 7-0 MD[15:0] Configuration Status

These are read-only status bits for the MD[15:0] pins configuration status at the rising edge of RESET#. MD[15:0] are used to configure the chip at the rising edge of RESET# – see *Pin Descriptions* and *Summary of Configuration Options* for details.

General IO Pins Configuration Register 0 REG[1Eh]									
n/a	n/a	n/a	n/a	GPIO3 Pin IO Config.	GPIO2 Pin IO Config.	GPIO1 Pin IO Config.	n/a		

Pins MA9, MA10, MA11 are multi-functional – they can be DRAM address outputs or general purpose IO dependent on the DRAM type. MD[7:6] are used to identify the DRAM type and configure these pins as follows:

MD[7:6] at	Pin Function				
rising edge of RESET#	MA9	MA10	MA11		
00	GPIO3	GPIO1	GPIO2		
01	MA9	GPIO1	GPIO2		
10	MA9	GPIO1	GPIO2		
11	MA9	MA10	MA11		

These bits are used to control the direction of these pins when they are used as general purpose IO. These bits have no effect when the pins are used as DRAM address outputs.

bit 3	GPIO3 Pin IO Configuration When this bit = 1, the GPIO3 pin is configured as an output pin. When this bit = 0 (default), the GPIO3 pin is configured as an input pin.
bit 2	GPIO2 Pin IO Configuration When this bit = 1, the GPIO2 pin is configured as an output pin. When this bit = 0 (default), the GPIO2 pin is configured as an input pin.
bit 1	GPIO1 Pin IO Configuration When this bit = 1, the GPIO1 pin is configured as an output pin. When this bit = 0 (default), the GPIO1 pin is configured as an input pin.

General IO P REG[1Fh]	General IO Pins Configuration Register 1 REG[1Fh] RW							
n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	

This register position is reserved for future use.

General REG[20h	General IO Pins Control Register 0 REG[20h] F						RW
n/a	n/a	n/a	n/a	GPIO3 Pin IO Status	GPIO2 Pin IO Status	GPIO1 Pin IO Status	n/a
bit 3	3 GPIO3 Pin IO Status When GPIO3 is configured as an output (see REG[1Eh]), a "1" in this bit drives GPIO3 high and a "0" in this bit drives GPIO3 low. When GPIO3 is configured as an input, a read from this bit returns the status of GPIO3.						
bit 2	GPIO2 Pin IO Status When GPIO2 is configured as an output (see REG[1Eh]), a "1" in this bit drives GPIO2 high and "0" in this bit drives GPIO2 low. When GPIO2 is configured as an input, a read from this bit returns the status of GPIO2.					PIO2 high and a PIO2.	
bit 1	GPIO1 Pin IO Status When GPIO1 is configured as an output (see REG[1Eh]), a "1" in this bit drives GPIO1 high an "0" in this bit drives GPIO1 low. When GPIO1 is configured as an input, a read from this bit returns the status of GPIO1.					PIO1 high and a PIO1.	

General IO F REG[21h]	Pins Control F	Register 1					RW
GPO Control	n/a	n/a	n/a	n/a	n/a	n/a	n/a
bit 7	GP Thi Out	O Control s bit is used to co put (GPO). Whe	Sontrol the state of this bit = 0, the state of this bit = 0 , the state of the s	of the SUSPENE the GPO output is	D# pin when it is s set to the reset	configured as C state. When thi	General Purpose s bit = 1, the

GPO output is set to the inverse of the reset state. For information on the reset state of this pin see "Miscellaneous Interface Pin Descriptions" on page 32 and "Summary of Power On/Reset Options" on page 33.

Performance REG[22h]	Performance Enhancement Register 0 REG[22h] RW						
Reserved	RC Timing Value Bit 1	RC Timing Value Bit 0	RAS#-to- CAS# Delay Value	RAS# Precharge Timing Value Bit 1	RAS# Precharge Timing Value Bit 0	Reserved	Reserved

Note

Reserved

Changing this register to non-zero value, or to a different non-zero value, should be done only when there are no read/write DRAM cycles. This condition occurs when all of the following are true: the Display FIFO is disabled (REG[23h] bit 7 = 1), and the Half Frame Buffer is disabled (REG[1Bh] bit 0 = 1), and the Ink/Cursor is inactive (Reg[27h] bits 7-6 = 00). This condition also occurs when the CRT and LCD enable bits (Reg[0Dh] bits 1-0) have remained 0 since chip reset. For further programming information, see *S1D13505 Programming Notes and Examples*, document number X23A-G-003-xx.

bit 7

bits 6-5

RC Timing Value (N_{RC}) Bits [1:0]

These bits select the DRAM random-cycle timing parameter, t_{RC} . These bits specify the number (N_{RC}) of MCLK periods (T_M) used to create t_{RC} . N_{RC} should be chosen to meet t_{RC} as well as t_{RAS} , the RAS pulse width. Use the following two formulae to calculate N_{RC} then choose the larger value. Note, these formulae assume an MCLK duty cycle of 50 +/- 5%.

N _{RC}	= Round-Up (t_{RC}/T_M)	
N _{RC}	= Round-Up ($t_{RAS}/T_M + N_{RP}$) = Round-Up ($t_{RAS}/T_M + 1.55$)	if $N_{RP} = 1$ or 2 if $N_{RP} = 1.5$

The resulting t_{RC} is related to N_{RC} as follows:

 $t_{RC} = (N_{RC}) T_M$

Table 8-12: Minimum Memory Timing Selection

REG[22h] bits [6:5]	N _{RC}	Minimum Random Cycle Width ($t_{ m RC}$)
00	5	5
01	4	4
10	3	3
11	Reserved	Reserved

bit 4 RAS#-to-CAS# Delay Value (N_{RCD}) This bit selects the DRAM RAS#-to-CAS# delay parameter, t_{RCD} . This bit specifies the number (N_{RCD}) of MCLK periods (T_M) used to create t_{RCD} . N_{RCD} must be chosen to satisfy the RAS# access time, t_{RAC} . Note, these formulae assume an MCLK duty cycle of 50 +/- 5%.

N _{RCD}	= Round-Up((t _{RAC} + 5)/T _M - 1)	if EDO and $N_{RP} = 1$ or 2
Reb	=2	if EDO and $N_{RP} = 1.5$
	= Round-Up(t _{RAC} /T _M - 1)	if FPM and $N_{RP} = 1$ or 2
	= Round-Up(t _{RAC} /T _M - 0.45)	if FPM and $N_{RP} = 1.5$

Note that for EDO-DRAM and $N_{RP} = 1.5$, this bit is automatically forced to 0 to select 2 MCLK for N_{RCD} . This is done to satisfy the CAS# address setup time, t_{ASC} .

The resulting t_{RC} is related to N_{RCD} as follows:

	$= (N_{RCD}) T_{M}$ $= (1.5) T_{M}$	if EDO and $N_{RP} = 1$ or 2 if EDO and $N_{PP} = 1.5$
RCD	$= (N_{RCD} + 0.5) T_{M}$	if FPM and $N_{RP} = 1$ or 2
RCD	= (N _{RCD}) T _M	if FPM and $N_{RP} = 1.5$

Table 8-13: RAS#-to-CAS# Delay Timing Select

REG[22h] bit 4	N _{RCD}	RAS#-to-CAS# Delay (t _{RCD})
0	2	2
1	1	1

bits 3-2

RAS# Precharge Timing Value (N_{RP}) Bits [1:0]

Minimum Memory Timing for RAS# precharge

These bits select the DRAM RAS# Precharge timing parameter, t_{RP} These bits specify the number (N_{RP}) of MCLK periods (T_M) used to create t_{RP} – see the following formulae. Note, these formulae assume an MCLK duty cycle of 50 +/- 5%.

N _{RP}	= 1	if $(t_{RP}/T_M) < 1$
	= 1.5	if $1 \le (t_{RP}/T_M) < 1.45$
	=2	if $(t_{RP}/T_M) \ge 1.45$

The resulting t_{RC} is related to N_{RP} as follows:

t _{RP}	$= (N_{RP} + 0.5) T_{M}$	if FPM refresh cycle and $N_{RP} = 1$ or 2
t _{RP}	= (N _{RP}) T _M	for all other

bits 1-0 Reserved These bits must be set to 0.

Table 8-14:	RAS Precharge	e Timing Select
10010 0 1 11	1410 1 / 00//0// 8	

REG[22h] bits [3:2]	N _{RP}	RAS# Precharge Width (t _{RP})
00	2	2
01	1.5	1.5
10	1	1
11	Reserved	Reserved

Optimal DRAM Timing

The following table contains the optimally programmed values of N_{RC} , N_{RP} , and N_{RCD} for different DRAM types, at maximum MCLK frequencies.

Table 8-15: Optimal N_{RC}, N_{RP}, and N_{RCD} values at maximum MCLK frequency

	DRAM Speed	т _м	N _{RC}	N _{RP}	N _{RCD}
DIAM Type	(ns)	(ns)	(#MCLK)	(#MCLK)	(#MCLK)
	50	25	4	1.5	2
EDO	60	30	4	1.5	2
	70	33	5	2	2
FPM	60	40	4	1.5	2
1 1 101	70	50	3	1.5	1

bit 0

Reserved

This reserved bit must be set to 0.

Performance Enhancement Register 1 REG[23h] RW							
Display FIFO Disable	CPU to Memory Wait State Bit 1	CPU to Memory Wait State Bit 0	Display FIFO Threshold Bit 4	Display FIFO Threshold Bit 3	Display FIFO Threshold Bit 2	Display FIFO Threshold Bit 1	Display FIFO Threshold Bit 0

bit 7

Display FIFO Disable

When this bit = 1 the display FIFO is disabled and all data outputs are forced to zero (i.e., the screen is blanked). This accelerates screen updates by allocating more memory bandwidth to CPU accesses.

When this bit = 0 the display FIFO is enabled.

Note

For further performance increase in dual panel mode disable the half frame buffer (see section 8.2.7) and disable the cursor (see section 8.2.9).

bit 6-5 CPU to Memory Wait State Bits [1:0] These bits are used to optimize the handshaking between the host interface and the memory controller. The bits should be set according to the relationship between BCLK and MCLK – see the table below where T_B and T_M are the BCLK and MCLK periods respectively.

Wait State Bits [1:0]	Condition
00	no restrictions (default)
01	2T _M - 4ns > T _B
10	undefined
11	undefined

Table 8-16:	Minimum	Memorv	Timing	Selection
10010 0 10.	111 010011000110	memory	I UNIUNS	Serection

bits 4-0

Display FIFO Threshold Bits [4:0]

written before the LUT is updated.

These bits specify the display FIFO depth required to sustain uninterrupted display fetches. When these bits are all "0", the display FIFO depth is calculated automatically.

These bits should always be set to 0, except in the following configurations:

Landscape mode at 15/16 bpp (with MCLK=PCLK),

Portrait mode at 8/16 bpp (with MCLK=PCLK).

When in the above configurations, a value of 1Bh should be used.

Note

The utility 13505CFG will, given the correct configuration values, automatically generate the correct values for the Performance Enhancement Registers.

8.2.8 Look-Up Table Registers

Look-Up Tal REG[24h]	ble Address R	egister					RW
LUT Address Bit 7	LUT Address Bit 6	LUT Address Bit 5	LUT Address Bit 4	LUT Address Bit 3	LUT Address Bit 2	LUT Address Bit 1	LUT Address Bit 0
bits 7-0	LU The tion for	Γ Address Bits [se 8 bits control , 4-bit wide LU ⁷ details.	7:0] a pointer into the Γs, one for each	he Look-Up Tab of red, green, ar	oles (LUT). The nd blue – refer to	S1D13505 has b "Look-Up Tabl	three 256-posi- le Architecture"
	This register selects which LUT entry is read/write accessible throu (REG[26h]). Writing the LUT Address Register automatically sets Accesses to the LUT Data Register automatically increment the point.						ta Register ne Red LUT.
	For que acce the	example, writin at access to the l esses to the LUT RGB data is inse	g a value 03h in LUT Data Regis Data Register n erted into the LV	to the LUT Add ster accesses R[3 nove the pointer UT after the Blu	lress Register se 3] and moves the onto B[3], R[4] e data is written	ets the pointer to e pointer onto G , G[4], B[4], R[5 , i.e. all three co	R[3]. A subse- [3]. Subsequent 5], etc. Note that plors must be

1 490 110

Look-Up Table Data Register REG[26h] F							RW
LUT Data Bit 3	LUT Data Bit 2	LUT Data Bit 1	LUT Data Bit 0	n/a	n/a	n/a	n/a

bits 7-4

LUT Data

This register is used to read/write the RGB Look-Up Tables. This register accesses the entry at the pointer controlled by the Look-Up Table Address Register (REG[24h]) – see above.

Accesses to the Look-Up Table Data Register automatically increment the pointer.Note that the RGB data is inserted into the LUT after the Blue data is written, i.e. all three colors must be written before the LUT is updated.

8.2.9 Ink/Cursor Registers

Ink/Cursor Control Register REG[27h] RW								
Ink/Cursor Mode Bit 1	Ink/Cursor Mode Bit 0	n/a	n/a	Cursor High Threshold Bit 3	Cursor High Threshold Bit 2	Cursor High Threshold Bit 1	Cursor High Threshold Bit 0	

bit 7-6

Ink/Cursor Control Bits [1:0]

These bits select the operating mode of the Ink/Cursor circuitry. See table below

Table 8-17: 1	Ink/Cursor Selection
---------------	----------------------

REG	[27h]	Operating Mode
Bit 7	Bit 6	
0	0	inactive
0	1	Cursor
1	0	Ink
1	1	reserved

bit 3-0

Ink/Cursor FIFO Threshold Bits [3:0]

These bits specify the Ink/Cursor FIFO depth required to sustain uninterrupted display fetches. When these bits are all 0, the Ink/Cursor FIFO depth is calculated automatically.

Cursor X Po REG[28h]	sition Registe	er O					RW
Cursor X Position Bit 7	Cursor X Position Bit 6	Cursor X Position Bit 5	Cursor X Position Bit 4	Cursor X Position Bit 3	Cursor X Position Bit 2	Cursor X Position Bit 1	Cursor X Position Bit 0
Cursor X Po REG[29h]	sition Registe	er 1					RW
Reserved	n/a	n/a	n/a	n/a	n/a	Cursor X Position Bit 9	Cursor X Position Bit 8
REG[29] bit 7	Res	erved					

This bit must be set to 0.

REG[2Bh] bit 7

This register must be set to 0 in Ink mode.

Note

The Cursor X Position register must be set during VNDP (vertical non-display period). Check the VNDP status bit (REG[0Ah] bit 7) to determine if you are in VNDP, then update the register.

Cursor Y Pos REG[2Ah]	sition Registe	er O					RW
Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y
Position Bit 7	Position Bit 6	Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0

Cursor Y Pos REG[2Bh]	sition Registe	r 1					RW
Reserved	n/a	n/a	n/a	n/a	n/a	Cursor Y Position Bit 9	Cursor Y Position Bit 8

This bit must be set to 0. REG[2Ah] bits 7-0 Cursor Y Position Bits [9:0] REG[2Bh] bits 1-0 In Cursor mode, this 10-bit register is used to program the vertical pixel position of the Cursor's top left pixel. This register must be set to 0 in Ink mode.

Note

Reserved

The Cursor Y Position register must be set during VNDP (vertical non-display period). Check the VNDP status bit (REG[0Ah] bit 7) to determine if you are in VNDP, then update the register.

Cursor Color 0 Bit 7Cursor Color 0 Bit 6Cursor Color 0 Bit 5Cursor Color 0 Bit 4Cursor Color 0 Bit 3Cursor Color 0 Bit 2Cursor Color 0 Bit 2Cursor Color 0 Bit 1Cursor Color 0 Bit 0	Ink/Cursor C REG[2Ch]	olor 0 Regist	er O					RW
	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color
	0 Bit 7	0 Bit 6	0 Bit 5	0 Bit 4	0 Bit 3	0 Bit 2	0 Bit 1	0 Bit 0

REG[2Dh]	olor 0 Regist	er 1					RW
Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color	Cursor Color
0 Bit 15	0 Bit 14	0 Bit 13	0 Bit 12	0 Bit 11	0 Bit 10	0 Bit 9	0 Bit 8

REG[2C] bits 7:0 Ink/Cursor Color 0 Bits [15:0]

REG[2D] bits 7:0 These bits define the 5-6-5 RGB Ink/Cursor color 0. Page 119

Ink/Cursor C REG[2Eh]	olor 1 Regist	er O					RW
Cursor Color 1 Bit 7	Cursor Color 1 Bit 6	Cursor Color 1 Bit 5	Cursor Color 1 Bit 4	Cursor Color 1 Bit 3	Cursor Color 1 Bit 2	Cursor Color 1 Bit 1	Cursor Color 1 Bit 0
Ink/Cursor C REG[2Fh]	olor 1 Regist	er 1					RW
Cursor Color 1 Bit 15	Cursor Color 1 Bit 14	Cursor Color 1 Bit 13	Cursor Color 1 Bit 12	Cursor Color 1 Bit 11	Cursor Color 1 Bit 10	Cursor Color 1 Bit 9	Cursor Color 1 Bit 8

REG[2E] bits 7:0Ink/Cursor Color 1 Bits [15:0]REG[2F] bits 7:0These bits define the 5-6-5 RGB Ink/Cursor color 1

Ink/Cursor S REG[30h]	Ink/Cursor Start Address Select Register REG[30h] RW						
Ink/Cursor Start Address Select	Ink/Cursor Start Address Select	Ink/Cursor Start Address Select	Ink/Cursor Start Address Select	Ink/Cursor Start Address Select	Ink/Cursor Start Address Select	Ink/Cursor Start Address Select	Ink/Cursor Start Address Select
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

bits 7-0

Ink/Cursor Start Address Select Bits [7:0]

These bits define the start address for the Ink/Cursor buffer. The Ink/Cursor buffer must be positioned where it does not conflict with the image buffer and half-frame buffer – see Memory Mapping for details.

The start address for the Ink/Cursor buffer is programmed as shown in the following table where Display Buffer Size represents the size in bytes of the attached DRAM device (see MD[7:6] in *Summary of Configuration Options*):

Table 8-18: Ink/Cursor Start Address Encoding

Ink/Cursor Start Address Bits [7:0]	Start Address (Bytes)
0	Display Buffer Size - 1024
n = 2551	Display Buffer Size - (n $ imes$ 8192)

The Ink/Cursor image is stored contiguously. The address offset from the starting word of line n to the starting word of line n+1 is calculated as follows: Ink Address Offset (words) = REG[04h] + 1 Cursor Address Offset (words) = 8

Alternate FR REG[31h]	M Register						RW
Alternate	Alternate	Alternate	Alternate	Alternate	Alternate	Alternate	Alternate
FRM	FRM	FRM	FRM	FRM	FRM	FRM	FRM
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

bits 7-0

Alternate Frame Rate Modulation Select

Register that controls the alternate FRM scheme. When all bits are set to zero, the default FRM is selected. For single passive, or dual passive with the half frame buffer enabled, either the original or the alternate FRM scheme may be used. The alternate FRM scheme may produce more visually appealing output. The following table shows the recommended alternate FRM scheme values.

Table 8-19:	Recommended	Alternate	FRM	Scheme
-------------	-------------	-----------	-----	--------

Panel Mode	Register Value
Single Passive	0000 0000 or 1111 1111
Dual Passive w/Half Frame Buffer Enabled	0000 0000 or 1111 1010
Dual Passive w/Half Frame Buffer Disabled	1111 1111

9 Display Buffer

The system addresses the display buffer through the CS#, M/R#, and AB[20:0] input pins. When CS# = 0 and M/R# = 1, the display buffer is addressed by bits AB[20:0]. See the table below:

14010 / 1. 51010000 11441 055110

CS#	M/R#	Access
0	0	 Register access: REG[00h] is addressed when AB[5:0] = 0 REG[01h] is addressed when AB[5:0] = 1 REG[n] is addressed when AB[5:0] = n
0	1	Memory access: the 2M byte display buffer is addressed by AB[20:0]
1	Х	S1D13505 not selected

The display buffer address space is always 2M bytes. However, the physical display buffer may be either 512K bytes or 2M bytes – see "*Summary of Configuration Options*".

The display buffer can contain an image buffer, one or more Ink/Cursor buffers, and a half-frame buffer.

A 512K byte display buffer is replicated in the 2M byte address space – see the figure below.

Figure 9-1: Display Buffer Addressing

9.1 Image Buffer

The image buffer contains the formatted display mode data - see "Display Mode Data Formats".

The displayed image(s) could take up only a portion of this space; the remaining area may be used for multiple images – possibly for animation or general storage. See "Display Configuration" on page 124 for the relationship between the image buffer and the display.

9.2 Ink/Cursor Buffers

The Ink/Cursor buffers contain formatted image data for the Ink or Cursor. There may be several Ink/Cursor images stored in the display buffer but only one may be active at any given time. See "Ink/Cursor Architecture" on page 133 for details.

9.3 Half Frame Buffer

In dual panel mode, with the half frame buffer enabled, the top of the display buffer is allocated to the half-frame buffer. The size of the half frame buffer is a function of the panel resolution and whether the panel is color or monochrome type:

Half Frame Buffer Size (in bytes) = (panel width x panel length) * factor / 16

where factor	= 4 for color panel
	= 1 for monochrome panel

For example, for a 640x480 8 bpp color panel the half frame buffer size is 75K bytes. In a 512K byte display buffer, the half-frame buffer resides from 6D400h to 7FFFFh. In a 2M byte display buffer, the half-frame buffer resides from 1ED400h to 1FFFFFh.

10 Display Configuration

10.1 Display Mode Data Format

The following diagrams show the display mode data formats for a little-endian system.

Figure 10-1: 1/2/4/8 Bit-per-pixel Format Memory Organization

Figure 10-2: 15/16 Bit-per-pixel Format Memory Organization

Note

- 1. The Host-to-Display mapping shown here is for a little-endian system.
- 2. For 15/16 bpp formats, R_n , G_n , B_n represent the red, green, and blue color components.

10.2 Image Manipulation

The figure below shows how Screen 1 and 2 images are stored in the image buffer and positioned on the display. Screen 1 and Screen 2 can be parts of a larger virtual image or images.

- (REG[17h],REG[16h]) defines the width of the virtual image(s)
- (REG[12h],REG[11h],REG[10]) defines the starting word of the Screen 1, (REG[15h],REG[14h],REG[13]) defines the starting word of the Screen 2
- REG[18h] bits [3:0] define the starting pixel within the starting word for Screen 1, REG[18h] bits [7:4] define the starting pixel within the starting word for Screen 2
- (REG[0Fh],REG[0Eh]) define the last line of Screen 1, the remainder of the display is taken up by Screen 2

Figure 10-3: Image Manipulation

11 Look-Up Table Architecture

The following figures are intended to show the display data output path only.

11.1 Monochrome Modes

The green Look-Up Table (LUT) is used for all monochrome modes.

1 Bit-per-pixel Monochrome mode

Figure 11-1: 1 Bit-per-pixel Monochrome Mode Data Output Path

2 Bit-per-pixel Monochrome Mode

Figure 11-2: 2 Bit-per-pixel Monochrome Mode Data Output Path

4 Bit-per-pixel Monochrome Mode

Figure 11-3: 4 Bit-per-pixel Monochrome Mode Data Output Path

11.2 Color Modes

1 Bit-per-pixel Color Mode

Figure 11-4: 1 Bit-per-pixel Color Mode Data Output Path

2 Bit-per-pixel Color Mode

Figure 11-5: 2 Bit-per-pixel Color Mode Data Output Path

4 Bit-per-pixel Color Mode

Figure 11-6: 4 Bit-per-pixel Color Mode Data Output Path

8 Bit-per-pixel Color Mode

Figure 11-7: 8 Bit-per-pixel Color Mode Data Output Path

15/16 Bit-per-pixel Color Modes

The LUT is bypassed and the color data is directly mapped for this color mode – See "Display Configuration" on page 124.

12 Ink/Cursor Architecture

12.1 Ink/Cursor Buffers

The Ink/Cursor buffers contain formatted image data for the Ink Layer or Hardware Cursor. There may be several Ink/Cursor images stored in the display buffer but only one may be active at any given time.

The active Ink/Cursor buffer is selected by the Ink/Cursor Start Address register (REG[30h]). This register defines the start address for the active Ink/Cursor buffer. The Ink/Cursor buffer must be positioned where it does not conflict with the image buffer and half-frame buffer. The start address for the Ink/Cursor buffer is programmed as shown in the following table:

Ink/Cursor Start Address Bits [7:0]	Start Address (Bytes)	Comments		
0	Display Buffer Size - 1024	This default value is suitable for a cursor when there is no half-frame buffer.		
n = 2551	Display Buffer Size - (n × 8192)	 These positions can be used to: position an Ink buffer at the top of the display buffer; position an Ink buffer between the image and half-frame buffers; position a Cursor buffer between the image and half-frame buffers; select from a multiple of Cursor buffers. 		

Table 12-1: Ink/Cursor Start Address Encoding

The Ink/Cursor image is stored contiguously. The address offset from the starting word of line n to the starting word of line n+1 is calculated as follows:

Ink Address Offset (words) = REG[04h] + 1 Cursor Address Offset (words) = 8

12.2 Ink/Cursor Data Format

The Ink/Cursor image is always 2 bit-per-pixel. The following diagram shows the Ink/Cursor data format for a little-endian system.

The image data for pixel n, (A_n, B_n) , selects the color for pixel n as follows:

(A _n ,B _n)	Color	Comments		
00	Color 0	Ink/Cursor Color 0 Register, (REG[2Dh],REG[2Ch])		
01	Color 1	Ink/Cursor Color 1 Register, (REG[2Fh],REG[2Eh])		
10	Background	Ink/Cursor is transparent – show background		
11	Inverted Background	Ink/Cursor is transparent – show inverted background		

Table 12-2: Ink/Cursor Color Select

12.3 Ink/Cursor Image Manipulation

12.3.1 Ink Image

The Ink image should always start at the top left pixel, i.e. Cursor X Position and Cursor Y Position registers should always be set to zero. The width and height of the ink image are automatically calculated to completely cover the display.

12.3.2 Cursor Image

The Cursor image size is always 64x64 pixels. The Cursor X Position and Cursor Y Position registers specify the position of the top left pixel. The following diagram shows how to position a cursor.

Figure 12-2: Cursor Positioning

where	x = (REG[29h] bits [1:0], REG[28h])	REG[29h] bit 7 = 0
	y = (REG[2Bh] bits [1:0], REG[2Ah])	REG[2Bh] bit $7 = 0$

Note

There is no means to set a negative cursor position. If a cursor must be set to a negative position, this must be dealt with through software.

13 SwivelView[™]

13.1 Concept

Computer displays are refreshed in landscape – from left to right and top to bottom; computer images are stored in the same manner. When a display is used in SwivelView it becomes necessary to rotate the display buffer image by 90°. SwivelView rotates the image 90° clockwise as it is written to the display buffer. This rotation is done in hardware and is transparent to the programmer for all display buffer reads and writes.

SwivelView uses a 1024×1024 pixel virtual image. The following figures show how the programmer sees the image and how the image is actually stored in the display buffer. The display is refreshed in the following sense: C–A–D–B. The application image is written to the S1D13505 in the following sense: A–B–C–D. The S1D13505 rotates and stores the application image in the following sense: C–A–D–B, the same sense as display refresh.

Figure 13-1: Relationship Between The Screen Image and the Image Residing in the Display Buffer

Note

The image must be written with a 1024 pixel offset between adjacent lines (e.g. 1024 bytes for 8 bpp mode or 2048 bytes for 16 bpp mode) and a display start address that is non-zero.

13.2 Image Manipulation in SwivelView

Display Start Address

It can be seen from Figure 13-1 that the top left pixel of the display is not at the top left corner of the						
virtual image, i.e. it is non-zero. The Dis	splay Start Address re	gister must be set accordingly:				
Display Start Address (words)	=(1024 - W)	for 16 bpp mode				
	=(1024 - W) / 2	for 8 bpp mode				

Memory Address Offset

The Memory Address Offset register must be set for a 1024 pixel offset:					
Memory Address Offset (words)	=1024	for 16 bpp mode			
	=512	for 8 bpp mode			

Horizontal Panning

Horizontal panning is achieved by changing the start address. Panning of the portrait window to the right by 1 pixel is achieved by adding 1024 pixels to the Display Start Address register (or subtracting if panning to the left).

- Panning to right by 1 pixel: add current start address by 1024 (16 bpp mode) or 512 (8 bpp mode).
- Panning to left by 1 pixel: subtract current start address by 1024 (16 bpp mode) or 512 (8 bpp mode).

How far the portrait window can be panned to the right is limited not only by 1024 pixels but also by the amount of physical memory installed.

Vertical Scrolling

Vertical scrolling is achieved by changing the Display Start Address register and/or changing the Pixel Panning register.

- Increment/decrement Display Start Address register in 8 bpp mode: scroll down/up by 2 lines.
- Increment/decrement Display Start Address register in 16 bpp mode: scroll down/up by 1 line.
- Increment/decrement Pixel Panning register in 8 bpp or 16 bpp mode: scroll down/up by 1 line.

13.3 Physical Memory Requirement

Because the programmer must now deal with a virtual display, the amount of image buffer required for a particular display mode has increased. The minimum amount of image buffer required is:

Minimum Required Image Buffer (bytes)

$=(1024 \times H) \times 2$	for 16 bpp mode
$=(1024 \times H)$	for 8 bpp mode

For single panel, the required display buffer size is the same as the image buffer required. For dual panel, the display buffer required is the sum of the image buffer required and the half-frame buffer memory required. The half-frame buffer memory requirement is:

Half-Frame Buffer Memory (bytes)

$=(W \times H) / 4$	for color mode
$=(W \times H) / 16$	for monochrome mode

The half-frame buffer memory is always located at the top of the physical memory.

For simplicity the hardware cursor and ink layer memory requirement is ignored. The hardware cursor and ink layer memory must be located at 16K byte boundaries and it must not overlap the image buffer and half-frame buffer memory areas.

Even though the virtual display is 1024×1024 pixels, the actual panel window is always smaller. Thus it is possible for the display buffer size to be smaller than the virtual display but large enough to fit both the required image buffer and the half-frame buffer memory. This poses a maximum "accessible" horizontal virtual size limit.

Maximum Accessible Horizontal Virtual Size (pixels)

- = (Physical Memory Half-Frame Buffer Memory) / 2048 for 16 bpp mode
- = (Physical Memory Half-Frame Buffer Memory) / 1024 for 8 bpp mode

For example, a 640×480 single panel running 8 bpp mode requires 480K byte of image buffer and 0K byte of half-frame buffer memory. The virtual display size is $1024\times1024 = 1$ M byte. The programmer may use a 512K byte DRAM which is smaller than the 1M byte virtual display but greater than the 480K byte minimum required image buffer. The maximum accessible horizontal virtual size is = (512K byte - 0K byte) / 1024 = 512. The programmer therefore has room to pan the portrait window to the right by 512 - 480 = 32 pixels. The programmer also should not read/write to the memory beyond the maximum accessible horizontal virtual size because that memory is either reserved for the half-frame buffer or not associated with any real memory at all.

The following table summarizes the DRAM size requirement for SwivelView using different panel sizes and display modes. Note that DRAM size for the S1D13505 is limited to either 512K byte or 2M byte. The calculation is based on the minimum required image buffer size. The calculated minimum display buffer size is based on the image buffer and the half-frame buffer only; it does not take into account the hardware cursor/ink layer and so it may or may not be sufficient to support it – this is noted in the table. The hardware cursor requires 1K byte of memory and the 2-bit ink layer requires (W × H) / 4 bytes of memory; both must reside at 16K byte boundaries but only one is supported at a time. The table shows only one possible sprite/ink layer location – at the highest possible 16K byte boundary below the half-frame buffer which is always at the top.

Panel Size	Panel	Туре	Display Mode	Display Buffer Size	Half-Frame Buffer Size	Minimum DRAM Size	Sprite/Ink Layer Buffer Size	Ink/Cursor Layer Location					
		Color	8 bpp	240KB									
	Single	Color	16 bpp	480KB	0KB			496KB/480KB					
	Single	Mono	8 bpp	240KB	OKD			4901XD/ 4001XD					
320×240		WIONO	16 bpp	480KB			1KB/18 75KB						
520 × 240		Color	8 bpp	240KB	18 75KB	512KB	1110/10.75110	480KB/464KB					
	Dual	COIOI	16 bpp	480KB	10.75KD			480KB/					
	Duai	Mono	8 bpp	240KB	1 69KB			106KB/180KB					
		WIOHO	16 bpp	480KB	4.09KD			490KD/400KD					
640 × 480	Single				Color	8 bpp	480KB				496KB/		
		Color	16 bpp	960KB	0KB	2MB	1 <i>V</i> P/75 <i>V</i> P	2032KB/1968KB					
		Mono	8 bpp	480KB		512KB		496KB/					
		WIOHO	16 bpp	960KB									
	Dual					Color	8 bpp	480KB	75VD	2MB	IKD//JKD	2032K/1968K	
		COIOI	16 bpp	960KB	/JND								
		Duai -	Duai	Duai	Mono	8 bpp	480KB	19 75VD	512KB		496KB/		
				MOIIO	16 bpp	960KB	18./3KB			2032KB/1968KB			
	Single		Color	8 bpp	600KB								
800 × 600		COIOI	16 bpp	1.2MB	OKD	OVD							
		Mono	8 bpp	600KB	0KB	2MB	1KB/						
		MOIIO	16 bpp	1.2MB				2022VD/1020VD					
	Dual				Calar	8 bpp	600KB	117.19KB	117.19KB	117.10//0		117.19KB	2052KD/1920KD
		Color	16 bpp	1.2MB	11/.19KB	- 117.19KB	11/.19KB						
		Dual	8 bpp	600KB	20 20KD								
		NIONO	16 bpp	1.2MB	29.30KB								

Table 13-2 Minimum DRAM Size Required for SwivelView

Where KB = K bytes and MB = 1024K bytes

13.4 Limitations

The following limitations apply to SwivelView:

- Only 8 bpp and 16 bpp modes are supported -1/2/4 bpp modes are not supported.
- Hardware cursor and ink layer images are not rotated software rotation must be used. Swivel-View must be turned off when the programmer is accessing the sprite or the ink layer.
- Split screen images appear side-by-side, i.e. the portrait display is split vertically.
- Pixel panning works vertically.

14 Clocking

14.1 Maximum MCLK: PCLK Ratios

Ink	Display type		Maximum PCLK Allowed					
IIIK	Display type	¹ RC	1 bpp	2 bpp	4 bpp	8 bpp	16 bpp	
	 Single Panel. CRT. Dual Monochrome/Color Panel with Half Frame Buffer Disabled. Simultaneous CRT + Single Panel. 	5, 4, 3			MCLK			
	 Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 							
off	Dual Monochrome Panel with Half Frame Buffer	5	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Enabled.	4	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Half Frame Buffer Enable.		MCLK	MCLK	MCLK/2	MCLK/2	MCLK/2	
	 Dual Color Panel with Half Frame Buffer Enabled. Simultaneous CRT + Dual Color Panel with Half Frame Buffer Enable. 		MCLK/2	MCLK/2	MCLK/2	MCLK/3	MCLK/3	
			MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
			MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Single Panel.	5	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	• CRT.	4	MCLK	MCLK	MCLK/2	MCLK/2	MCLK/2	
	 Dual Monochrome/Color Panel with Half Frame Buffer Disabled. Simultaneous CRT + Single Panel. Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 	3	MCLK	MCLK	MCLK	MCLK/2	MCLK/2	
on	Dual Monochrome Panel with Half Frame Buffer	5	MCLK/2	MCLK/3	MCLK/3	MCLK/3	MCLK/3	
	Enabled.	4	MCLK/2	MCLK/2	MCLK/2	MCLK/3	MCLK/3	
	Half Frame Buffer Enable.	3	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	 Dual Color Panel with Half Frame Buffer Enabled. 	5	MCLK/3	MCLK/3	MCLK/3	MCLK/3	MCLK/4	
	Simultaneous CRT + Dual Color Panel with Half Simultaneous CRT + Dual Color Panel with Half Simultaneous CRT + Dual Color Panel with Half	4	MCLK/2	MCLK/2	MCLK/3	MCLK/3	MCLK/3	
	Frame Buffer Enable.		MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	

Table 14-1: Maximum PCLK Frequency with EDO-DRAM

Ink	Display type		Maximum PCLK allowed					
IIIK	Display type	¹ RC	1 bpp	2 bpp	4 bpp	8 bpp	16 bpp	
	 Single Panel. CRT. Dual Monochrome/Color Panel with Half Frame Buffer Disabled. Simultaneous CRT + Single Panel. Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 	5, 4, 3			MCLK			
OII	Dual Monochrome with Half Frame Buffer Enabled.	5	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Simultaneous CRT + Dual Monochrome Panel with	4	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/2	
			MCLK	MCLK	MCLK	MCLK/2	MCLK/2	
	Dual Color with Half Frame Buffer Enabled.	5	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Simultaneous CRT + Dual Color Panel with Half Frame Buffer Enable	4	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
			MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/2	
	Single Panel.	5	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	• CRT.	4	MCLK	MCLK	MCLK/2	MCLK/2	MCLK/2	
	 Dual Monochrome/Color Panel with Half Frame Buffer Disabled. Simultaneous CRT + Single Panel. Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 	3	MCLK	MCLK	MCLK	MCLK/2	MCLK/2	
on	Dual Monochrome with Half Frame Buffer Enabled.	5	MCLK/2	MCLK/2	MCLK/3	MCLK/3	MCLK/3	
	Simultaneous CRT + Dual Monochrome Panel with	4	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Half Frame Buffer Enable.	3	MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	
	Dual Color with Half Frame Buffer Enabled.	5	MCLK/3	MCLK/3	MCLK/3	MCLK/3	MCLK/4	
	Simultaneous CRT + Dual Color Panel with Half	4	MCLK/2	MCLK/2	MCLK/2	MCLK/3	MCLK/3	
	Frame Buffer Enable.		MCLK/2	MCLK/2	MCLK/2	MCLK/2	MCLK/3	

Table 14-2: Maximum PCLK Frequency with FPM-DRAM

14.2 Frame Rate Calculation

The frame rate is calculated using the following formula:

 $FrameRate = \frac{PCLK_{max}}{(HDP + HNDP) \times (VDP + VNDP)}$

Where:

T	U .		
	VDP	= Vertical Display Period	= REG[09h] bits [1:0], REG[08h] bits [7:0] + 1
	VNDP	= Vertical Non-Display Period	= REG[0Ah] bits [5:0] + 1
			= in table below
	HDP	= Horizontal Display Period	= ((REG[04h] bits [6:0]) + 1) * 8Ts
	HNDP	= Horizontal Non-Display Period	= ((REG[05h] bits [4:0]) + 1) * 8Ts
			= given in table below
	Ts	= Pixel Clock	= PCLK

Table	14-3:	Example	Frame	Rates	with	Ink	Disable	2d
rubic .	115.	Блатріс	1 rume	nuico	wiini	Inn	Discon	~u

DRAM Type ¹	Display	Resolution	Color Depth	Maximum Pixel	Minimum Panel	Maximum Frame Rate (Hz)	
(Speed Grade)			(bpp)	Clock (MHz)	HNDP(T _s)	Panel ⁴	CRT
	Single Panel.	800v600 2	1/2/4/8		32	80	60
	 CRT. Dual Monochrome/Color Panel with Half Frame Buffer Disabled.⁵ Simultaneous CRT + Single Panel. Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled.⁵ 	000x000-	15/16 ⁶		56	78	60
		640x480	1/2/4/8	40	32	123	85
			15/16		56	119	85
50ns		640x240	1/2/4/8		32	247	-
EDO-DRAM			15/16		56	242	-
		480x320	1/2/4/8		32	243	-
$N_{RC} = 4$			15/16		56	232	-
$N_{RP} = 1.5$		320x240	1/2/4/8		32	471	-
$N_{RCD} = 2$			15/16		56	441	-
	Dual Color with Half Frame Buffer	000vc002.3	1/2/4/8	20	32	80	-
	Enabled.	000000-,-	15/16 ⁶	13.3	32	53	-
	Dual Mono with Half Frame Buffer Enabled.	640×480	1/2/4/8	20	32	123	-
		640X480	15/16	13.3	32	82	-

DRAM Type ¹	Display	Resolution	Color Depth	Maximum Pixel	Minimum Panel	Maximum Frame Rate (Hz)	
(Speed Grade)			(bpp)	Clock (MHz)	HNDP(T _s)	Panel ⁴	CRT
	 Single Panel. 	800v600 ²	1/2/4/8		32	66	55
	• CRT.	0000000	15/16 ⁶		56	65	55
	 Dual Mono/Color Panel with Half Frame Buffer Disabled ⁵ 	640×480	1/2/4/8		32	101	78
	 Simultaneous CRT + Single Panel. 	040,400	15/16		56	98	78
60ns	• Simultaneous CRT + Dual	640v240	1/2/4/8	22	32	203	-
EDO-DRAM	Mono/Color Panel with Half Frame	0407240	15/16		56	200	-
	Duiler Disableu.	480v220	1/2/4/8		32	200	-
$N_{PC} = 4$		400X320	15/16		56	196	-
N _{RP} = 1.5		220,2240	1/2/4/8		32	388	-
N _{RCD} = 2		320x240	15/16		56	380	-
	Dual Color with Half Frame Buffer	800x600 ^{2,3}	1/2/4/8	16.5	32	66	-
	Enabled.		15/16 ⁶	11	32	43	-
	 Dual Mono with Hair Frame Buffer Enabled. 	640x480	1/2/4/8	16.5	32	103	-
			15/16	11	32	68	-
	• Single Panel. • CRT.	800x600 ²	1/2/4/8		32	50	-
			15/16 ⁶		56	48	-
	 Dual Mono/Color Panel with Half Frame Buffer Disabled ⁵ 	640x480	1/2/4/8		32	77	60
	Simultaneous CRT + Single Panel.		15/16		56	75	60
	Simultaneous CRT + Dual	0.400.40	1/2/4/8		32	142	-
	Mono/Color Panel with Half Frame	040XZ40	15/16	20	56	136	-
60ns	Builer Disabled.	490,220	1/2/4/8		32	152	-
FPIVI-DRAIVI		400x320	15/16		56	145	-
MClk = 25MHz		220,2240	1/2/4/8		32	294	-
$N_{RC} = 4$		320x240	15/16		56	280	-
$N_{RP} = 1.5$ $N_{RCD} = 2$	Dual Mono with Half Frame Buffer	800x600 ²	1/2/4/8/15/16 ⁶	12.5	32	50	-
ROD	Enabled.	640x480	1/2/4/8/15/16	12.5	32	77	-
		640x400	1/2/4/8/15/16	12.5	32	92	-
	Dual Color with Half Frame Buffer	00000023	1/2/4/8	12.5	32	50	-
	Enabled.	000x000-;°	15/16 ⁶	8.33	32	33	-
		640×490	1/2/4/8	12.5	32	77	-
		04UX48U	15/16	8.33	32	51	-

Table	14-3:	Example	Frame	Rates	with	Ink	Disabl	led (Contin	ued)
		···· 1 ···						(

- 1. Must set $N_{RC} = 4MCLK$. See REG[22h], Performance Enhancement Register.
- 2. 800x600 @ 16 bpp requires 2M bytes of display buffer for all display types.
- 3. 800x600 @ 8 bpp on a dual color panel requires 2M bytes of display buffer if the half frame buffer is enabled.

- 4. Optimum frame rates for panels range from 60Hz to 150Hz. If the maximum refresh rate is too high for a panel, MCLK should be reduced or PCLK should be divided down.
- 5. Half Frame Buffer disabled by REG[1Bh] bit 0.
- 6. When setting a horizontal resolution greater than 767 pixels, with a color depth of 15/16 bpp, the Memory Offset Registers (REG[16h], REG[17h]) must be set to a virtual horizontal pixel resolution of 1024.

14.3 Bandwidth Calculation

When calculating the average bandwidth, there are two periods that must be calculated separately.

The first period is the time when the CPU is in competition with the display refresh fetches. The CPU can only access the memory when the display refresh releases the memory controller. The CPU bandwidth during this period is called the "bandwidth during display period".

The second period is the time when the CPU has full access to the memory, with no competition from the display refresh. The CPU bandwidth during this period is called the "bandwidth during non display period."

To calculate the average bandwidth, calculate the percentage of time between display period and non display period. The percentage of display period is multiplied with the bandwidth during display period. The percentage of non display period is multiplied with the bandwidth during non display period. The two products are summed to provide the average bandwidth.

Bandwidth during non display period

Based on simulation, it requires a minimum of 12 MCLKs to service one, two byte, CPU access to memory. This includes all the internal handshaking and assumes that N_{RC} is set to 4MCLKs and the wait state bits are set to 10b.

Bandwidth during non display period = f(MCLK) / 6 Mb/s

Bandwidth during display period

The amount of time taken up by display refresh fetches is a function of the color depth, and the display type. Below is a table of the number of MCLKs required for various memory fetches to display 16 pixels. Assuming $N_{RC} = 4MCLKs$.

Memory access	Number of MCLKs
Half Frame Buffer, monochrome	7
Half Frame Buffer, color	11
Display @ 1 bpp	4
Display @ 2 bpp	5
Display @ 4 bpp	7
Display @ 8 bpp	11
Display @ 16 bpp	19
CPU	4

Table 14-4: Number of MCLKs required for various memory access

Display	MCLKs for Display Refresh						
Display		2 bpp	4 bpp	8 bpp	16 bpp		
Single Panel.							
• CRT.							
• Dual Monochrome/Color Panel with Half Frame Buffer Disabled.	4	5	7	11	19		
Simultaneous CRT + Single Panel.	-	Ŭ	,		10		
• Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled.							
Dual Monochrome Panel with Half Frame Buffer Enabled.							
 Simultaneous CRT + Dual Monochrome Panel with Half Frame Buffer Enable. 	11	12	14	18	26		
Dual Color Panel with Half Frame Buffer Enabled.	15	16	18	22	30		

Table 14-5: Total # MCLKs taken for Display refresh

Bandwidth during display period = MIN (bandwidth during non display period, B/C/D) where B = number of MCLKs left available for CPU access after every 16 pixels drawn = (f(MCLK)/f(PCLK) * 16 - Total MCLK for Display refresh), units in MCLKs 16 pixels where C = number of MCLKs required to service 1 CPU access (2 bytes of data)

= 4, units in MCLKs/2 bytes

where D = time to draw 16 pixels

= 16 / f(PCLK), units in 16 pixels

The minimum function limits the bandwidth to the bandwidth available during non display period should the display fetches constitute a small percentage of the overall memory activity.

For 16 bpp single panel/CRT/dual panel with half frame buffer disable, the number of MCLKs required to fetch 16 pixels when PCLK = MCLK exceeds 16. In this case, the display fetch does not allow any CPU access during the display period. CPU access can only be achieved during non display periods.

Average Bandwidth

All displays have a horizontal non display period, and a vertical non display period. The formula for calculating the percentage of non display period is as follows

Percentage of non display period = (HTOT * VTOT - WIDTH * HEIGHT)/(HTOT * VTOT) Percentage of non display period for CRT = (800*525 - 640*480)/(800*525) = 26.6% Percentage of non display period for single panel = (680*482 - 640*480)/680*482) = 6.2% Percentage of non display period for dual panel = (680*242 - 640*240)/680*242) = 6.6% Average Bandwidth =

Percentage of non display period * Bandwidth during non display period + (1- Percentage of non display period) * Bandwidth during display period
Page	145
------	-----

DRAM Type ¹		Max. Pixel	Maximum Bandwidth (M byte/sec)				
(Speed Grade)	640x480 Display	Clock (MHz)	1 bpp	2 bpp	4 bpp	8 bpp	16 bpp
	 CRT. Simultaneous CRT + Single Panel. Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 	40	6.67	6.67	6.67	6.36	1.79
	Single Panel.	40	6.67	6.67	6.60	6.27	0.41
50ns	Dual Monochrome/Color Panel with Half Frame Buffer Disabled.	20	6.67	6.67	6.67	6.67	6.67
MCLK = 40MHz	Dual Monochrome Panel with Half Frame	40	6.27	5.11	-	-	-
	Buffer Enabled.	20	6.67	6.67	6.67	6.67	3.94
		13.3	6.67	6.67	6.67	6.67	6.67
	 Simultaneous CRT + Dual Mono Panel with Half Frame Buffer Enable. 	40	6.36	5.44	-	-	-
	Dual Color Panel with Half Frame Buffer	20	6.67	6.67	6.27	6.27	-
	Enabled.	13.3	6.67	6.67	6.67	6.67	6.67
	 CRT. Simultaneous CRT + Single Panel. Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 	33	5.5	5.5	5.5	5.24	1.47
	• Single Panel.	33	5.5	5.5	5.5	5.17	0.34
60ns	Dual Monochrome/Color Panel with Half Frame Buffer Disabled.	16.5	5.5	5.5	5.5	5.5	5.5
MCLK = 33MHz	Dual Monochrome Panel with Half Frame	33	5.17	4.21	-	-	-
	Buffer Enabled.	16.5	5.5	5.5	5.5	5.5	3.25
		11	5.5	5.5	5.5	5.5	5.5
	 Simultaneous CRT + Dual Monochrome Panel with Half Frame Buffer Enable. 	33	5.24	4.49	-	-	-
	Dual Color Panel with Half Frame Buffer	16.5	5.5	5.5	5.5	5.17	-
	Enabled.		5.5	5.5	5.5	5.5	5.5

Table	116.	Theoretical	Marinan	Dan dwidth M	1 but a lana	Cumon/Ink	disablad
Tuble	14-0.	meorencui	Maximum	Dunuwiun W	i Dyie/sec,	Cursonnik	uisubieu

		Max. Pixel	Maximum Bandwidth (M byte/sec)				
(Speed Grade)	640x480 Display	Clock (MHz)	1 bpp	2 bpp	4 bpp	8 bpp	16 bpp
	• CRT.						
	 Simultaneous CRT + Single Panel. 	25	4.16	4.16	4.16	3.97	1.11
60ns FPM-DRAM MCLK = 25MHz	 Simultaneous CRT + Dual Monochrome/Color Panel with Half Frame Buffer Disabled. 						
	Single Panel.	25	4.16	4.16	4.16	3.92	0.26
	Dual Monochrome/Color Panel with Half Frame Buffer Disabled.	12.5	4.16	4.16	4.16	4.16	4.16
	Dual Monochrome with Half Frame Buffer Enabled.	25	3.92	3.19	-	-	-
		12.5	4.16	4.16	4.16	4.16	2.46
		8.3	4.16	4.16	4.16	4.16	4.16
	Simultaneous CRT + Dual Monochrome Panel with Half Frame Buffer Enable.	25	3.97	3.40	-	-	-
	Dual Color Panel with Half Frame Buffer	12.5	4.16	4.16	4.16	3.92	-
Enabled.		8.33	4.16	4.16	4.16	4.16	4.16

Table 14-6: Theoretical Maximum Bandwidth M byte/sec, Cursor/Ink disabled (Continued)

15 Power Save Modes

Three power save modes are incorporated into the S1D13505 to meet the important need for power reduction in the hand-held device market.

	Power Save Mode (PSM)					
Function	Normal (Active)	No Display LCDEnable = 0 CRTEnable = 0	Software Suspend	Hardware Suspend		
Display Active?	Yes	No	No	No		
Register Access Possible?	Yes	Yes	Yes	No		
Memory Access Possible?	Yes	Yes	No	No		
LUT Access Possible?	Yes	Yes	Yes	No		

Table 15-1: Power Save Mode Function Summary

Table 15-2:	Pin States	in Power-save	Modes
-------------	------------	---------------	-------

	Pin State					
Pins	Normal (Active)	No Display LCDEnable = 0 CRTEnable = 0	Software Suspend	Hardware Suspend		
LCD outputs	Active (LCDEnable = 1)	Forced Low ²	Forced Low ²	Forced Low ²		
LCDPWR	On (LCDEnable = 1)	Off	Off	Off		
DRAM outputs	Active	CBR Refresh only	Refresh Only ¹	Refresh Only ¹		
CRT/DAC outputs	Active (CRTEnable = 1)	Disabled	Disabled	Disabled		
Host Interface outputs	Active	Active	Active	Disabled		

- 1. Refresh method is selectable by REG[1Ah]. Supported methods are CBR refresh, self-refresh or no refresh at all.
- 2. The FPFRAME and FPLINE signals are set to their inactive states during power-down. The inactive states are determined by REG[07h] bit 6 and REG[0Ch] bit 6. A problem may occur if the inactive state is high (typical TFT/D-TFD configuration) and power is removed from the LCD panel.

For software suspend the problem can be solved in the following manner. At power-down, first enable software suspend, then wait ~120 VNDP, and lastly reverse the polarity bits. At power-up, first disable software suspend, then revert the polarity bits back to the configuration state.

For hardware suspend an external hardware solution would be to use an AND gate on the sync signal. One input of the AND gate is connected to a sync signal, the other input would be tied to the panel's logic power supply. When the panel's logic power supply is removed, the sync signal is forced low.

16 Mechanical Data

Figure 16-1: Mechanical Drawing QFP15