

Preliminary User's Manual

μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

8-bit Single-Chip Microcontroller

Hardware

Document No. U14993EE1V0UM00 Date Published November 2000

MS-DOS and MS-Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. PC/AT and PC DOS are trademarks of IBM Corp.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The information in this document is current as of 24.11.2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features. NEC semiconductor products are classified into the following three guality grades: "Standard", "Special" and "Specific". The "Specific" guality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc.

If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- **Notes:** (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 - (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

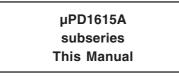
NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

Introduction

Readers

This manual has been prepared for user engineers who want to understand the functions of the μ PD1615A subseries and design and develop its application systems and programs.


μPD1615A Subseries: μPD1615A, μPD1615B, μPD1615F, μPD16F15A, μPD1616F.

Purpose

This manual is intended for users to understand the functions described in the Organization below.

Organization

The μ PD1615A subseries manual is separated into two parts: this manual and the instruction edition (common to the 78K/0 series).

- Pin functions
- Internal block functions
- Interrupt
- Other on-chip peripheral functions

- CPU functions
- Instruction set
- Explanation of each instruction

How to Read This Manual

Before reading this manual, you should have general knowledge of electric and logic circuits and microcontrollers.

- When you want to understand the function in general:
 - \rightarrow Read this manual in the order of the contents.
- How to interpret the register format:
 - → For the bit number enclosed in square, the bit name is defined as a reserved word in the assembler and the compiler.
- To make sure the details of the registers when you know the register name.
 - \rightarrow Refer to **Appendix C.**

Chapter Organization

This manual devides the descriptions for the subseries into different chapters as shown below. Read only the chapters related to the device you use.

	Chapter	μPD1615A	μPD1615B	μPD1615F	μPD16F15A	μPD1616F
Chapter 1	Outline	0	0	0	0	0
Chapter 2	Pin Function	0	0	0	0	0
Chapter 3	CPU Architecture	0	0	0	0	0
Chapter 4	Port Functions	0	0	0	0	0
Chapter 5	Clock Generator	0	0	0	0	0
Chapter 6	16-Bit Timer/Counter	0	0	0	0	0
Chapter 7	8-Bit Timer/Event Counters 50, 51	0	0	0	0	0
Chapter 8	Watch Timer	0	0	0	0	0
Chapter 9	Watchdog Timer	0	0	0	0	0
Chapter 10	Clock Output Control Circuit	0	0	0	0	0
Chapter 11	A/D-Converter	0	0	0	0	0
Chapter 12	Serial Interface Outline	0	0	0	0	0
Chapter 13	Serial Interface Channel 3	0	0	0	0	0
Chapter 14	Serial Interface UART	0	0	0	0	0
Chapter 15	VAN Controller	0	0	0	0	0
Chapter 16	LCD Controller/Driver	0	0	0	0	—
Chapter 17	Sound Generator	0	0	0	0	0
Chapter 18	Interrupt Functions	0	0	0	0	0
Chapter 19	Standby Function	0	0	0	0	0
Chapter 20	Reset Function	0	0	0	0	0
Chapter 21	μPD16F15A	0	0	0	0	0
Chapter 22	Instruction Set	0	0	0	0	0
Appendix A	Development Tools	0	0	0	0	0
Appendix B	Embedded Software	0	0	0	0	0
Appendix C	Register	0	0	0	0	0
Appendix D	Revision History	0	0	0	0	0

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

• Related documents for µPD1615 subseries

Desument name	Document No.	
Document name	Japanese	English
µPD1615A Preliminary Product Information	-	U13723E
µPD16F15A Preliminary Product Information	-	U13606E
μPD1615A Subseries User s Manual	-	This manual
78K/0 Series User s Manual-Instruction	IEU-849	IEU-1372
78K/0 Series Instruction Table	U10903J	-
78K/0 Series Instruction Set	U10904J	U12326E
µPD1615A Subseries Special Function Register Table	-	-

• Related documents for development tool (User's Manuals)

Document name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Prepro	cessor	EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler	Operation	U11517J	-
	Language	U11518J	-
CC78K/0 C Compiler Application Note	Programming Note	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	-
IE-78K0-NS-A		U10057J	U10057E
IE-78K0-NS-P04		-	U13359E
IE-1615-NS-EM4			
NP-80GC-TQ		-	-
SM78K0 System Simulator Windows Base	Reference	U10181J	U10092E
SM78K0 Series System Simulator	External part user open Interface	U10092J	-
IBM PC/AT (DC DOS) Base		-	U14379E

• Related documents for embedded software (User's Manual)

Document name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Basics	U11537J	-
	Installation	U11536J	-
	Technicals	U11538J	-
78K/0 Series OS MX78K0	Basics	EEU-5010	-
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU1438
78K/0, 78IK/II, 87AD Series Fuzzy Inference Development Suppport System-Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System- Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Suppport System- Fuzzy Inference Debugger		EEU-921	EEU-1458

• Other Documents

Designed	Document No.	
Document name	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grade on NEC Semiconductor Devices	C11531J	C11531E
Reliability Quality Control on NEC Semiconductor Devices	C10983J	C10983E
Electric Static Discharge (ESD) Test	MEM-539	-
Semiconductor Devices Quality Assurance Guide	MEI-603	MEI-1202
Microcontroller Related Product Guide - Third Party Manufacturers	U11416J	-

Caution: The above documents are subject to change without prior notice. Be sure to use the latest version document when starting design.

Table of Contents

Introduction	4
Chapter 1 Outline (µPD1615A Subseries)	. 26
1.1 Features	26
1.2 Application	26
1.3 Ordering Information	26
1.4 Pin Configuration (Top View)	27
1.5 78K/0 Series Development	30
1.6 Block Diagram	31
1.7 Overview of Functions	33
1.8 Mask Options	
1.9 Differences between Flash and Mask ROM version	34
Chapter 2 Pin Function (µPD1615A(A) Subseries)	. 36
2.1 Pin Function List	36
2.2 Non-Port Pins	38
2.3 Description of Pin Functions	40
2.3.1 P00 to P02, P06 and P07 (Port 0)	40
2.3.2 P10 to P13 (Port 1)	40
2.3.3 P40 to P47 (Port 4)	40
2.3.4 P80 to P87 (Port 8)	
2.3.5 P90 to P97 (Port 9)	41
2.3.6 P100 to P107 (Port 10)	
2.3.7 P110 to P117 (Port 11)	
2.3.8 P120 to P127 (Port 12)	
2.3.9 COM0 to COM3	42
2.3.10 VLC0 to VLC2	
2.3.11 AVDD/AVREF	
2.3.12 AVSS	
2.3.13 RESET	-
2.3.14 X1 and X2	
2.3.15 CL1 and CL2	
2.3.16 VDD0/VDD1	
2.3.17 VSS0/VSS1	-
2.3.18 VPP (μPD16F15A only)	
2.4 Pin I/O Circuits and Recommended Connection of Unused Pins	44

Chapter 3 CPU Architecture	
3.1 Memory Space	51
3.1.1 Internal program memory space	56
3.1.2 Internal data memory space	58
3.1.3 Special function register (SFR) area	58
3.1.4 Data memory addressing	59
3.2 Processor Registers	64
3.2.1 Control registers	64
3.2.2 General registers	67
3.2.3 Special function register (SFR)	68
3.3 Instruction Address Addressing	71
3.3.1 Relative addressing	
3.3.2 Immediate addressing	72
3.3.3 Table indirect addressing	73
3.3.4 Register addressing	74
3.4 Operand Address Addressing	75
3.4.1 Implied addressing	75
3.4.2 Register addressing	76
3.4.3 Direct addressing	77
3.4.4 Short direct addressing	78
3.4.5 Special function register (SFR) addressing	79
3.4.6 Register indirect addressing	80
3.4.7 Based addressing	81
3.4.8 Based indexed addressing	82
3.4.9 Stack addressing	82
Chapter 4 Port Functions	
4.1 Port Functions	
4.2 Port Configuration	
4.2.1 Port 0	
4.2.2 Port 1	
4.2.3 Port 4	
4.2.4 Port 8	
4.2.5 Port 9	
4.2.6 Port 10	
4.2.7 Port 11	
4.2.8 Port 12	
4.3 Port Function Control Registers	
4.4 Port Function Operations	
4.4.1 Writing to input/output port	
4.4.2 Reading from input/output port	
4.4.3 Operations on input/output port	99

Chapter 5 Clock Generator	101
5.1 Clock Generator Functions	. 101
5.2 Clock Generator Configuration	. 102
5.3 Clock Generator Control Register	. 103
5.4 System Clock Oscillator	. 104
5.4.1 Main system clock oscillator	. 104
5.4.2 Subsystem clock oscillator	. 105
5.4.3 When no subsystem clocks are used	. 107
5.5 Clock Generator Operations	. 108
5.5.1 Main system clock operations	. 109
5.5.2 Subsystem clock operations	. 110
5.6 Changing System Clock and CPU Clock Settings	. 111
5.6.1 Time required for switchover between system clock and CPU clock	. 111
5.6.2 System clock and CPU clock switching procedure	. 112
Chapter 6 16-Bit Timer/ Event Counter	
6.1 16-bit Timer/Event Counter Function	
6.2 16-bit Timer/Event Counter Configuration	
6.3 16-Bit Timer/Event Counter Control Register	
6.4 16-Bit Timer/Event Counter Operations	
6.4.1 Operation as interval timer (16 bits)	
6.4.2 PPG output operation	. 127
6.4.3 Pulse width measurement	. 128
6.4.4 Operation as external event counter	
6.4.5 Operation to output square wave	. 137
6.5 16-Bit Timer/Event Counter Operating Precautions	. 139
Chapter 7 8-Bit Timer/Event Counters 50 and 51	111
7.1 8-Bit Timer/Event Counters 50 and 51 Functions	
7.2 8-Bit Timer/Event Counters 50 and 51 Configurations	
7.3 8-Bit Timer/Event Counters 50 and 51 Control Registers	
7.4 8-Bit Timer/Event Counters 50 and 51 Operations	
7.4.1 Interval timer operations	
7.4.2 External event counter operation	
7.4.3 Square-wave output	
7.5 Cautions on 8-Bit Timer/Event Counters 50 and 51	. 165
Chapter 8 Watch Timer	168
8.1 Watch Timer Functions	
8.2 Watch Timer Configuration	
8.3 Watch Timer Mode Register (WTM)	
8.4 Watch Timer Operations	
8.4.1 Watch timer operation	
8.4.2 Interval timer operation	
·	

Chapter 9 Watchdog Timer	174
9.1 Watchdog Timer Functions	174
9.2 Watchdog Timer Configuration	175
9.3 Watchdog Timer Control Registers	176
9.4 Watchdog Timer Operations	178
9.4.1 Watchdog timer operation	178
9.4.2 Interval timer operation	179
Chapter 10 Clock Output Control Circuit	181
10.1 Clock Output Control Circuit Functions	181
10.2 Clock Output Control Circuit Configuration	182
10.3 Clock Output Function Control Registers	183
Chapter 11 A/D Converter	186
11.1 A/D Converter Functions	
11.2 A/D Converter Configuration	187
11.3 A/D Converter Control Registers	189
11.4 A/D Converter Operations	192
11.4.1 Basic operations of A/D converter	192
11.4.2 Input voltage and conversion results	194
11.4.3 A/D converter operation mode	195
11.5 A/D Converter Precautions	197
11.6 Cautions on Emulation	200
11.6.1 D/A converter mode register (DAM0)	200
Chapter 12 Serial Interface Outline	202
12.1 Serial Interface Outline	202
Chapter 13 Serial Interface SIO3	
13.1 Serial Interface Channel 3 Functions	
13.2 Serial Interface Channel 3 Configuration	
13.3 List of SFRs (Special Function Registers)	205
13.4 Serial Interface Control Registers	206
13.5 Serial Interface Operations	
13.5.1 Operation stop mode	207
13.5.2 Three-wire serial I/O mode	208
Chapter 14 Serial Interface UART	
14.1 Serial Interface UART Functions	
14.2 Serial Interface UART Configuration	
14.3 List of SFRS (Special Function Registers)	
14.4 Serial Interface Control Registers	
14.5 Serial Interface Operations	
14.5.1 Operation stop mode	
14.5.2 Asynchronous serial interface (UART) mode	
14.6 Standby Function	229

Chapter 15 VAN Controller	231
15.1 Features	
15.2 Overview of the VAN Bus	232
15.2.1 VAN UART Description	232
15.2.2 VAN UART Interface	232
15.3 Functional description	236
15.3.1 Overview of the VAN UART Registers	236
15.3.2 Autonomous mode functions	237
15.3.2.1 Autonomous mode features	237
15.3.2.2 Programming of the prescaler in Rank 0 transmission (SOF included)	237
15.3.2.3 Transmission features in autonomous mode	238
15.3.3 Synchronous mode functions	239
15.3.3.1 Synchronous mode features	239
15.3.3.2 Transmission features in synchronous mode	239
15.3.4 Handling of a collision	239
15.3.5 Executing the CRC	239
15.3.5.1 CRC transmission	
15.3.5.2 Reception of the CRC	
15.3.6 Control of the acknowledge bit	
15.3.7 Error control and Interrupt control	240
15.3.7.1 Error control	240
15.3.7.2 Interrupt control	
15.4 VAN UART Registers	244
15.4.1 Rank0 Transmission Register (RK0_REG)	245
15.4.2 In Frame Response Register (IFR_REG)	
15.4.3 Control Register (CTRL_REG)	
15.4.4 Configuration Register (CONF_REG)	
15.4.5 Diagnosis Control Register (DIAG_CTRL_REG)	
15.4.6 Mask1 registers (MSK1_MSB_REG, MSK1_LSB_REG)	
15.4.7 Acceptance Code 1 registers (AC1_MSB_REG, AC1_LSB_REG)	258
15.4.8 Mask2 registers (MSK2_MSB_REG, MSK2_LSB_REG)	
15.4.9 Acceptance Code 2, 3 and 4 Registers (AC2_MSB_REG, AC2_LSB_REG,	260
15.4.10 Status Register (STAT_REG)	
15.4.11 Receive register (REC_REG)	
15.4.12 Diagnosis Status Register (DIAG_STAT_REG)	
15.4.13 Interrupt enable register (INT_ENABLE_REG)	
15.4.14 VAN clock selection register (UDLCCL)	
15.5 VAN UART initialisation	268

	270
16.1 LCD Controller/Driver Functions	270
16.2 LCD Controller/Driver Configuration	271
16.3 LCD Controller/Driver Control Registers	273
16.4 LCD Controller/Driver Settings	274
16.5 LCD Display Data Memory	275
16.6 Common Signals and Segment Signals	276
16.7 Supply of LCD Drive Voltages VLC0, VLC1, VLC2	280
16.8 Display Modes	283
16.8.1 Static display example	283
16.8.2 2-time-division display example	286
16.8.3 3-time-division display example	289
16.8.4 4-time-division display example	293
Chapter 17 Sound Generator	297
17.1 Sound Generator Function	297
17.2 Sound Generator Configuration	298
17.3 Sound Generator Control Registers	299
17.4 Sound Generator Operations	304
17.4.1 To output basic cycle signal SGOF (without amplitude)	304
17.4.2 To output basic cycle signal SGO (with amplitude)	304
Chapter 18 Interrupt Functions	306
18.1 Interrupt Function Types	306
18.2 Interrupt Sources and Configuration	307
18.3 Interrupt Function Control Registers	310
18.4 Interrupt Servicing Operations	316
16.4 Interrupt Servicing Operations	
18.4.1 Non-maskable interrupt request acknowledge operation	316
18.4.1 Non-maskable interrupt request acknowledge operation	319
18.4.1 Non-maskable interrupt request acknowledge operation	319 321
18.4.1 Non-maskable interrupt request acknowledge operation18.4.2 Maskable interrupt request acknowledge operation18.4.3 Software interrupt request acknowledge operation	319 321 322
 18.4.1 Non-maskable interrupt request acknowledge operation	319 321 322 325
 18.4.1 Non-maskable interrupt request acknowledge operation	
 18.4.1 Non-maskable interrupt request acknowledge operation	
 18.4.1 Non-maskable interrupt request acknowledge operation	319 321 322 325 325 327 327 327 327
 18.4.1 Non-maskable interrupt request acknowledge operation	
 18.4.1 Non-maskable interrupt request acknowledge operation	319 321 322 325 325 327 327 327 328 328 329
 18.4.1 Non-maskable interrupt request acknowledge operation	319 321 322 325 325 327 327 327 327 328 329 329 329
 18.4.1 Non-maskable interrupt request acknowledge operation	319 321 322 325 325 327 327 327 328 329 329 329 329 332
 18.4.1 Non-maskable interrupt request acknowledge operation	319 321 322 325 325 327 327 327 327 328 329 329 329 329 332

Chapter 21 µPD16F15A	
21.1 Memory Size Switching Register (IMS)	
21.2 Internal Extension RAM Size Switching Register	
21.3 Flash memory programming	
21.3.1 Selection of transmission method	
21.3.2 Initialization of the programming mode	
21.3.3 Flash memory programming function	
21.3.4 Flash programmer connection	
21.3.5 Flash programming precautions	
Chapter 22 Instruction Set	348
22.1 Legends Used in Operation List	349
22.1.1 Operand identifiers and description methods	349
22.1.2 Description of "operation" column	350
22.1.3 Description of "flag operation" column	350
22.2 Operation List	351
22.3 Instructions Listed by Addressing Type	359
Appendix A Development Tools	365
A.1 Language Processing Software	367
A.2 Flash Memory Writing Tools	368
A.3 Debugging Tools	369
A.3.1 Hardware	369
A.3.2 Software	370
Appendix B Embedded Software	372
B.1 Real-Time OS	372
Appendix C Register Index	374
C.1 Register Index (In Alphabetical Order with Respect to Register Names)	374
C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)	
Appendix D Revision History	381

List of Figures

Figure 1-1: Pin Configuration μPD1615A, μPD1615B, μPD1615F, μPD16F15A	27
Figure 1-2: Pin Configuration µPD1616F	28
Figure 1-3: Block Diagram μPD1615A, μPD1615B, μPD1615F, μPD16F15A	31
Figure 1-4: Block Diagram µPD1616F	32
Figure 2-1: Connection of IC Pins	43
Figure 2-2: Pin Input/Output Circuits	48
Figure 3-1: Memory Map μPD1615A(A)	51
Figure 3-2: Memory Map µPD1615B(A)	52
Figure 3-3: Memory Map μPD1615F(A)	53
Figure 3-4: Memory Map µPD1616F(A)	54
Figure 3-5: Memory Map µPD16F15A	
Figure 3-6: Data Memory Addressing µPD1615A(A)	59
Figure 3-7: Data Memory Addressing µPD1615B(A)	60
Figure 3-8: Data Memory Addressing µPD1615F(A)	61
Figure 3-9: Data Memory Addressing µPD1616F(A)	62
Figure 3-10: Data Memory Addressing µPD16F15A	63
Figure 3-11: Program Counter Configuration	64
Figure 3-12: Program Status Word Configuration	64
Figure 3-13: Stack Pointer Configuration	66
Figure 3-14: Data to be Saved to Stack Memory	66
Figure 3-15: Data to be Reset to Stack Memory	66
Figure 3-16: General Register Configuration	67
Figure 3-17: Relative Addressing	71
Figure 3-18: Immediate Addressing	72
Figure 3-19: Table Indirect Addressing	73
Figure 3-20: Register Addressing	74
Figure 3-21: Register Addressing	76
Figure 3-22: Short Direct Addressing	78
Figure 3-23: Special-Function Register (SFR) Addressing	79
Figure 3-24: Special-Function Register (SFR) Addressing	80
Figure 4-1: Port Types	84
Figure 4-2: P00 to P02 and P06, P07 Configurations	88
Figure 4-3: P10 to P13 Configurations	89
Figure 4-4: P40 to P47 Configurations	90
Figure 4-5: P80 to P87 Configurations	91
Figure 4-6: P90 to P97 Configurations	92
Figure 4-7: P100 to P107 Configurations	93
Figure 4-8: P110 to P117 Configurations	94
Figure 4-9: P120 to P127 Configurations	95
Figure 4-10: Port Mode Register Format	97
Figure 4-11: Port Function Register (PF8 to PF12) Format	98

Figure 5-1:	Block Diagram of Clock Generator	102
Figure 5-2:	Processor Clock Control Register Format	103
Figure 5-3:	External Circuit of Main System Clock Oscillator	104
Figure 5-4:	External Circuit of Subsystem Clock Oscillator	105
Figure 5-5:	Examples of Oscillator with Bad Connection	106
Figure 5-6:	Main System Clock Stop Function	109
Figure 5-7:	System Clock and CPU Clock Switching	112
-	Block Diagram of 16-Bit Timer/Event Counter (TM0)	
-	Format of 16-Bit Timer Mode Control Register (TMC0)	
	Format of Capture/Compare Control Register 0 (CRC0)	
-	Format of 16-Bit Timer Output Control Register (TOC0)	
•	Format of Prescaler Mode Register 0 (PRM0)	
-	Port Mode Register 12 (PM12) Format	
-	Port Function Register 12 (PM12) Format	
•	Control Register Settings When Timer 0 Operates as Interval Timer	
•	Configuration of Interval Timer	
-	Timing of Interval Timer Operation	
	Control Register Settings in PPG Output Operation	127
Figure 6-12:	Control Register Settings for Pulse Width Measurement	
	with Free Running Counter and One Capture Register	
-	Configuration for Pulse Width Measurement with Free Running Counter	129
Figure 6-14:	Timing of Pulse Width Measurement with Free Running Counter	
	and One Capture Register (with both edges specified)	129
Figure 6-15:	Control Register Settings for Measurement of Two Pulse Widths	
	with Free Running Counter	
-	CR01 Capture Operation with Rising Edge Specified	131
Figure 6-17:	Timing of Pulse Width Measurement with Free Running Counter	
	(with both edges specified)	131
Figure 6-18:	Control Register Settings for Pulse Width Measurement	
	with Free Running Counter and Two Capture Registers	132
Figure 6-19:	Timing of Pulse Width Measurement with Free Running Counter	
	and Two Capture Registers (with rising edge specified)	
•	Control Register Settings for Pulse Width Measurement by Restarting	
Figure 6-21:	Timing of Pulse Width Measurement by Restarting (with rising edge specified)	135
Figure 6-22:	Control Register Settings in External Event Counter Mode	136
•	Configuration of External Event Counter	
-	Timing of External Event Counter Operation (with rising edge specified)	
-	Set Contents of Control Registers in Square Wave Output Mode	
•	Timing of Square Wave Output Operation	
-	Start Timing of 16-Bit Timer Register	
Figure 6-28:	Timing after Changing Compare Register during Timer Count Operation	139
-	Data Hold Timing of Capture Register	
Figure 6-30:	Operation Timing of OVF0 Flag	141

Figure 7-1: 8-Bit Timer/Event Counter 50 Block Diagram	147
Figure 7-2: 8-Bit Timer/Event Counter 51 Block Diagram	148
Figure 7-3: Block Diagram of 8-Bit Timer/Event Counters 50 and 51 Output Control Circuit	149
Figure 7-4: Timer Clock Select Register 50 Format	150
Figure 7-5: Timer Clock Select Register 51 Format	151
Figure 7-6: 8-Bit Timer Output Control Register 50 Format	152
Figure 7-7: 8-Bit Timer Output Control Register 51 Format	153
Figure 7-8: Port Mode Register 0 Format	154
Figure 7-9: 8-Bit Timer Mode Control Register Settings for Interval Timer Operation	155
Figure 7-10: Interval Timer Operation Timings	155
Figure 7-11: 8-Bit Timer Mode Control Register Setting for External Event Counter Operation	159
Figure 7-12: External Event Counter Operation Timings (with Rising Edge Specified)	159
Figure 7-13: 8-Bit Timer Mode Control Register Settings for Square-Wave Output Operation	160
Figure 7-14: Square-wave Output Operation Timing	160
Figure 7-15: 8-Bit Timer Control Register Settings for PWM Output Operation	162
Figure 7-16: PWM Output Operation Timing (Active high setting)	163
Figure 7-17: PWM Output Operation Timings (CRn0 = 00H, active high setting)	163
Figure 7-18: PWM Output Operation Timings (CRn = FFH, active high setting)	164
Figure 7-19: PWM Output Operation Timings (CRn changing, active high setting)	164
Figure 7-20: 8-bit Timer Registers 50 and 51 Start Timings	165
Figure 7-21: External Event Counter Operation Timings	165
Figure 7-22: Timings after Compare Register Change during Timer Count Operation	166
Figure 8-1: Block Diagram of Watch Timer	168
Figure 8-2: Watch Timer Mode Control Register (WTM) Format	170
Figure 8-3: Operation Timing of Watch Timer/Interval Timer	172
Figure 9-1: Watchdog Timer Block Diagram	175
Figure 9-2: Watchdog Timer Clock Select Register Format	176
Figure 9-3: Watchdog Timer Mode Register Format	177
Figure 10-1: Remote Controlled Output Application Example	181
Figure 10-2: Clock Output Control Circuit Block Diagram	
Figure 10-3: Clock Output Selection Register Format	
Figure 10-4: Port Mode Register 12 Format	
Figure 10-5: Port Function Register 12 (PF12) Format	184

Figure 11-1: A/D Converter Block Diagram	. 186
Figure 11-2: Power-Fail Detection Function Block Diagram	. 187
Figure 11-3: A/D Converter Mode Register (ADM1) Format	. 189
Figure 11-4: Analog Input Channel Specification Register (ADS1) Format	. 190
Figure 11-5: Power-Fail Compare Mode Register (PFM) Format	. 191
Figure 11-6: Power-fail compare threshold value register (PFT)	. 191
Figure 11-7: Basic Operation of 8-Bit A/D Converter	. 193
Figure 11-8: Relation between Analog Input Voltage and A/D Conversion Result	. 194
Figure 11-9: A/D Conversion	. 196
Figure 11-10: Example Method of Reducing Current Consumption in Standby Mode	. 197
Figure 11-11: Analog Input Pin Handling	. 198
Figure 11-12: A/D Conversion End Interrupt Request Generation Timing	. 199
Figure 11-13: D/A Converter Mode Register (DAM0) Format	. 200
Figure 13-1: Block Diagram of SIO3	. 204
Figure 13-2: Format of Serial Operation Mode Register 3 (CSIM3)	. 206
Figure 13-3: Format of Serial Operation Mode Register 3 (CSIM3)	. 207
Figure 13-4: Format of Serial Operation Mode Register 3 (CSIM3)	. 208
Figure 13-5: Timing of Three-wire Serial I/O Mode	. 209
Figure 14-1: Block Diagram of UART	. 211
Figure 14-2: Format of Asynchronous Serial Interface Mode Register (ASIM0)	. 214
Figure 14-3: Format of Asynchronous Serial Interface Status Register (ASIS0)	. 215
Figure 14-4: Format of Baud Rate Generator Control Register (BRGC0)	. 216
Figure 14-5: Register Settings	
Figure 14-6: Asynchronous serial interface mode register (ASIM0)	. 218
Figure 14-7: Asynchronous serial interface status register (ASIS0)	. 219
Figure 14-8: Baud rate generator control register (BRGC0)	. 220
Figure 14-9: Error Tolerance (when k = 0), including Sampling Errors	. 223
Figure 14-10: Format of Transmit/Receive Data in Asynchronous Serial Interface	. 224
Figure 14-11: Timing of Asynchronous Serial Interface Transmit Completion Interrupt	. 226
Figure 14-12: Timing of Asynchronous Serial Interface Receive Completion Interrupt	. 227
Figure 14-13: Receive Error Timing	. 228

Figure 15-1: VAN UART Interface	
Figure 15-2: VAN UART Block Diagram	233
Figure 15-3: Generation of the VAN Clock	
Figure 15-4: Overview of the VAN UART Registers	
Figure 15-5: Prescaler in Rank 0 transmission	237
Figure 15-6: Rank0 Transmission Register Format	245
Figure 15-7: Frame Responce Register Format	246
Figure 15-8: Frame Responce Register Function	247
Figure 15-9: Control Register Format	248
Figure 15-10: Control Register Block Diagram	249
Figure 15-11: Control Register Function	249
Figure 15-12: Last-Byte	
Figure 15-13: Configuration Register (CONF_REG) Format	251
Figure 15-14: Case where IT12 = 0	
Figure 15-15: Case where IT12 = 1	
Figure 15-16: Diagnosis Control Register (DIAG_CTRL_REG) Format	254
Figure 15-17: Prescaler Block Diagram	254
Figure 15-18-1: Mask1 register MSK1_MSB_REG Format	257
Figure 15-18-2: Mask1 register MSK1_LSB_REG Format	
Figure 15-19-1: Acceptance Code 1 register AC1_MSB_REG	258
Figure 15-19-2: Acceptance Code 1 register AC1_LSB_REG	258
Figure 15-20-1: Mask2 register MSK2_MSB_REG Format	259
Figure 15-20-2: Mask2 register MSK2_LSB_REG Format	259
Figure 15-21: Acceptance Code 2, 3 and 4 Registers Format	
Figure 15-22: Status Register (STAT_REG) Format	261
Figure 15-23: Receive register (REC_REG) Format	263
Figure 15-24: Diagnosis Status Register (DIAG_STAT_REG) Format	264
Figure 15-25: Interrupt enable register (INT_ENABLE_REG) Format	265
Figure 15-26: VAN clock selection register (UDLCCL) Format	267

Figure 16-1: LCD Controller/Driver Block Diagram	271
Figure 16-2: LCD Clock Select Circuit Block Diagram	272
Figure 16-3: LCD Display Mode Register Format	273
Figure 16-4: LCD Display Clock Control Register Format	274
Figure 16-5: Relationship between LCD Display Data Memory Contents	
and Segment/Common Outputs	275
Figure 16-6: Common Signal Waveform	278
Figure 16-7: Common Signal and Static Signal Voltages and Phases	279
Figure 16-8: LCD Drive Power Supply Connection Examples (with External Split Resistor)	281
Figure 16-9: Example of LCD Drive Voltage Supply from Off-Chip	282
Figure 16-10: Static LCD Display Pattern and Electrode Connections	283
Figure 16-11: Static LCD Panel Connection Example	284
Figure 16-12: Static LCD Drive Waveform Examples	285
Figure 16-13: 2-Time-Division LCD Display Pattern and Electrode Connections	286
Figure 16-14: 2-Time-Division LCD Panel Connection Example	287
Figure 16-15: 2-Time-Division LCD Drive Waveform Examples (1/2 Bias Method)	288
Figure 16-16: 3-Time-Division LCD Display Pattern and Electrode Connections	289
Figure 16-17: 3-Time-Division LCD Panel Connection Example	290
Figure 16-18: 3-Time-Division LCD Drive Waveform Examples (1/2 Bias Method)	291
Figure 16-19: 3-Time-Division LCD Drive Waveform Examples (1/3 Bias Method)	292
Figure 16-20: 4-Time-Division LCD Display Pattern and Electrode Connections	293
Figure 16-21: 4-Time-Division LCD Panel Connection Example	294
Figure 16-22: 4-Time-Division LCD Drive Waveform Examples (1/3 Bias Method)	295
Figure 17-1: Sound Generator Block Diagram	297
Figure 17-2: Concept of Each Signal	298
Figure 17-3: Sound Generator Control Register (SGCR) Format	300
Figure 17-4: Sound Generator Buzzer Control Register (SGBR) Format	301
Figure 17-5: Sound Generator Frequency Selection	302
Figure 17-6: Sound Generator Amplitude Register (SGAM) Format	303
Figure 17-7: Sound Generator Output Operation Timing without Amplitude	304
Figure 17-8: Sound Generator Output Operation Timing with Amplitude	304
Figure 18-1: Basic Configuration of Interrupt Function	308
Figure 18-2: Interrupt Request Flag Register Format	311
Figure 18-3: Interrupt Mask Flag Register Format	312
Figure 18-4: Priority Specify Flag Register Format	313
Figure 18-5: Formats of External Interrupt Rising Edge Enable Register	
and External Interrupt Falling Edge Enable Register	314
Figure 18-6: Program Status Word Format	315
Figure 18-7: Flowchart from Non-Maskable Interrupt Generation to Acknowledge	317
Figure 18-8: Non-Maskable Interrupt Request Acknowledge Timing	317
Figure 18-9: Non-Maskable Interrupt Request Acknowledge Operation	
Figure 18-10: Interrupt Request Acknowledge Processing Algorithm	
Figure 18-11: Interrupt Request Acknowledge Timing (Minimum Time)	
Figure 18-12: Interrupt Request Acknowledge Timing (Maximum Time)	
Figure 18-13: Multiple Interrupt Example (1/2)	
Figure 18-13: Multiple Interrupt Example (2/2)	
Figure 18-14: Interrupt Request Hold	

Figure 19-1:	Oscillation Stabilization Time Select Register Format	328
	HALT Mode Clear upon Interrupt Generation	
Figure 19-3:	HALT Mode Release by RESET Input	331
Figure 19-4:	STOP Mode Release by Interrupt Generation	333
Figure 19-5:	Release by STOP Mode RESET Input	334
Figure 20-1:	Block Diagram of Reset Function	336
Figure 20-2:	Timing of Reset Input by RESET Input	337
Figure 20-3:	Timing of Reset due to Watchdog Timer Overflow	337
Figure 20-4:	Timing of Reset Input in STOP Mode by RESET Input	337
Figure 21-1:	Memory Size Switching Register Format	342
Figure 21-2:	Internal Extension RAM Size Switching Register Format	343
Figure 21-3:	Transmission Method Selection Format	344
Figure 21-4:	Connection of Flash Programmer Using 3-Wire Serial I/O Method	345
Figure 21-5:	Flash Programmer Connection Using UART Method	346
Figure 21-6:	Flash Programmer Connection Using Pseudo 3-wire Serial I/O	346
Figure A-1:	Development Tool Configuration	366

List of Tables

Table 1-1: Internal ROM Capacity ROM and RAM	26
Table 1-2: Differences between Flash and Mask ROM version	34
Table 2-1-1: Pin Input/Output Types µPD1615A(A), µPD1615B(A), µPD1615F(A), µPD16F15A	36
Table 2-1-2: Pin Input/Output Types µPD1616F(A)	
Table 2-2-1: Non-Port Pins µPD1615A(A), µPD1615B(A), µPD1615F(A), µPD16F15A	
Table 2-2-2: Non-Port Pins µPD1616F(A)	
Table 2-3-1: Types of Pin Input/Output Circuits µPD1615A(A), µPD1615B(A),	
μPD1615F(A), μPD16F15A	44
Table 2-3-2: Types of Pin Input/Output Circuits µPD1616F(A)	46
Table 3-1: Internal ROM Capacities	56
Table 3-2: Vectored Interrupts	57
Table 3-3: Special Function Register List	69
Table 3-4: Implied Addressing	75
Table 3-5: Register Addressing	76
Table 3-6: Direct Addressing	77
Table 3-7: Short Direct Addressing	78
Table 3-8: Special-Function Register (SFR) Addressing	79
Table 3-9: Register Indirect Addressing	80
Table 3-10: Based Addressing	81
Table 3-11: Based Indexed Addressing	82
Table 4-1: Pin Input/Output Types µPD1615A(A), µPD1615B(A), µPD1615F(A), µPD16F15A	85
Table 4-2: Pin Input/Output Types µPD1616F(A)	86
Table 4-3: Port Configuration	87
Table 5-1: Clock Generator Configuration	102
Table 5-2: Maximum Time Required for CPU Clock Switchover	111
Table 6-1: Configuration of 16-bit Timer/Event Counter (TM0)	115
Table 6-2: Valid Edge of TI00 Pin and Valid Edge of Capture Trigger of Capture/Compare Register	
Table 6-3: Valid Edge of TI01 Pin and Valid Edge of Capture Trigger of Capture/Compare Register	117
Table 7-1: 8-Bit Timer/Event Counter 50 Interval Times	145
Table 7-2: 8-Bit Timer/Event Counter 51 Interval Times	145
Table 7-3: 8-Bit Timer/Event Counter 50 Square-Wave Output Ranges	146
Table 7-4: 8-Bit Timer/Event Counter 50 Square-Wave Output Ranges	
Table 7-5: 8-Bit Timer/Event Counters 50 and 51 Configurations	
Table 7-6: 8-Bit Timer/Event Counters 50 Interval Times	
Table 7-7: 8-Bit Timer/Event Counters 51 Interval Times	
Table 7-8: 8-Bit Timer/Event Counters 50 Square-Wave Output Ranges	
Table 7-9: 8-Bit Timer/Event Counters 51 Square-Wave Output Ranges	161

Table 8-1: Interval Time Selection	169
Table 8-2: Watch Timer Configuration	169
Table 8-3: Interval Timer Operation	171
Table 9-1: Watchdog Timer Inadvertent Program Overrun Detection Times	174
Table 9-2: Interval Times	174
Table 9-3: Watchdog Timer Configuration	175
Table 9-4: Watchdog Timer Overrun Detection Time	178
Table 9-5: Interval Timer Interval Time	179
Table 10-1: Clock Output Control Circuit Configuration	182
Table 11-1: A/D Converter Configuration	187
Table 12-1: Differences between the Serial Interface Channels	202
	005
Table 13-1: Composition of SIO3	
Table 13-2: List of SFRs (Special Function Registers)	205
Table 14.1. Configuration of UADT	010
Table 14-1: Configuration of UART Table 14-2: List of SFRs (Special Function Registers)	
Table 14-2: List of SFRS (Special Function Registers) Table 14-3: Relation between 5-bit Counter's Source Clock and "n" Value	
Table 14-3: Relation between Main System Clock and Baud Rate	
Table 14-4: Relation between Main System Clock and Baud Rate Table 14-5: Causes of Receive Errors	
Table 14-5. Causes of neceive Effors	220
Table 15-1: Network Speeds as a Function of the Quartz Clock and the Chosen Division Batio	. 238
Table 15-1: Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-2: Error Table	
Table 15-2: Error Table	240
Table 15-2: Error Table Table 15-3: Frame Responce	240 242
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers	240 242 244
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit	240 242 244 248
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request	240 242 244 248 248
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit	240 242 244 248 248 249
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte	240 242 244 248 248 249 250
Table 15-2:Error TableTable 15-3:Frame ResponceTable 15-4:VAN UART RegistersTable 15-5:Stop TransmitTable 15-6:Acknowledge RequestTable 15-7:Last-ByteTable 15-8:Software Reset	240 242 244 248 248 249 250 251
Table 15-2:Error TableTable 15-3:Frame ResponceTable 15-4:VAN UART RegistersTable 15-5:Stop TransmitTable 15-6:Acknowledge RequestTable 15-7:Last-ByteTable 15-8:Software ResetTable 15-9:Enable / Disable interrupt on the 12th bit of the identifier fieldTable 15-10:Rank 1 mode	240 242 244 248 248 249 250 251 252
Table 15-2:Error TableTable 15-3:Frame ResponceTable 15-4:VAN UART RegistersTable 15-5:Stop TransmitTable 15-6:Acknowledge RequestTable 15-7:Last-ByteTable 15-8:Software ResetTable 15-9:Enable / Disable interrupt on the 12th bit of the identifier field	240 242 244 248 248 248 248 250 251 252 252
Table 15-2:Error TableTable 15-3:Frame ResponceTable 15-3:Frame ResponceTable 15-4:VAN UART RegistersTable 15-5:Stop TransmitTable 15-6:Acknowledge RequestTable 15-7:Last-ByteTable 15-8:Software ResetTable 15-9:Enable / Disable interrupt on the 12th bit of the identifier fieldTable 15-10:Rank 0 / Rank 1 modeTable 15-11:Enable / Disable In Frame Response	240 242 244 248 248 248 248 250 251 252 252
Table 15-2:Error TableTable 15-3:Frame ResponceTable 15-3:Frame ResponceTable 15-4:VAN UART RegistersTable 15-5:Stop TransmitTable 15-6:Acknowledge RequestTable 15-7:Last-ByteTable 15-7:Last-ByteTable 15-8:Software ResetTable 15-9:Enable / Disable interrupt on the 12th bit of the identifier fieldTable 15-10:Rank 0 / Rank 1 modeTable 15-11:Enable / Disable In Frame ResponseTable 15-12:Mask Enable / Disable	240 242 244 248 248 249 250 251 252 253
Table 15-2:Error TableTable 15-3:Frame ResponceTable 15-3:Frame ResponceTable 15-4:VAN UART RegistersTable 15-5:Stop TransmitTable 15-6:Acknowledge RequestTable 15-7:Last-ByteTable 15-7:Last-ByteTable 15-8:Software ResetTable 15-9:Enable / Disable interrupt on the 12th bit of the identifier fieldTable 15-10:Rank 0 / Rank 1 modeTable 15-11:Enable / Disable In Frame ResponseTable 15-12:Mask Enable / DisableTable 15-13:Prescaler - Network Speeds as a Function of the Quartz Clock	240 242 244 248 248 248 249 250 251 252 253 255
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-3: Stop Transmit Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio	240 242 244 248 248 249 250 251 252 253 255
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-14: Synchronous Diagnosis Clock	240 242 244 248 248 249 250 251 252 255 255 255
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-15: Enable the Transmit Diagnosis	240 242 244 248 248 248 250 251 252 255 255 255 255
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-14: Synchronous Diagnosis Clock Table 15-15: Enable the Transmit Diagnosis Table 15-16: Choice of Communication Mode	240 242 244 248 248 249 250 251 252 255 255 255 255 256 261
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-15: Enable the Transmit Diagnosis Table 15-16: Choice of Communication Mode Table 15-17: LA_RESP, LA Table 15-18: EOM Table 15-19: The bits SA and SB	240 242 244 248 248 248 250 251 252 255 255 255 255 255 255 261 261 264
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-15: Enable the Transmit Diagnosis Table 15-16: Choice of Communication Mode Table 15-17: LA_RESP, LA Table 15-18: EOM Table 15-19: The bits SA and SB Table 15-20: The bit SC	240 242 244 248 248 248 250 250 251 255 255 255 255 255 255 255 261 261 264 264
Table 15-2: Error Table Table 15-3: Frame Responce Table 15-4: VAN UART Registers Table 15-5: Stop Transmit Table 15-6: Acknowledge Request Table 15-7: Last-Byte Table 15-8: Software Reset Table 15-9: Enable / Disable interrupt on the 12th bit of the identifier field Table 15-10: Rank 0 / Rank 1 mode Table 15-11: Enable / Disable In Frame Response Table 15-12: Mask Enable / Disable Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio Table 15-15: Enable the Transmit Diagnosis Table 15-16: Choice of Communication Mode Table 15-17: LA_RESP, LA Table 15-18: EOM Table 15-19: The bits SA and SB	240 242 244 248 248 248 250 250 251 255 255 255 255 255 255 255 261 261 264 264

Table 16-1:	Maximum Number of Display Pixels	270
Table 16-2:	LCD Controller/Driver Configuration	271
Table 16-3:	Frame Frequencies (Hz)	274
Table 16-4:	COM Signals	276
Table 16-5:	LCD Drive Voltages	277
Table 16-6:	LCD Drive Voltages (with On-Chip Split Resistor)connected externally	280
Table 16-7:	Selection and Non-Selection Voltages (COM0)	283
Table 16-8:	Selection and Non-Selection Voltages (COM0, COM1)	286
Table 16-9:	Selection and Non-Selection Voltages (COM0 to COM2)	289
Table 16-10	: Selection and Non-Selection Voltages (COM0 to COM3)	293
Table 17-1:	Sound Generator Configuration	298
Table 18-1:	Interrupt Source List	307
Table 18-2:	Various Flags Corresponding to Interrupt Request Sources	310
Table 18-3:	Times from Maskable Interrupt Request Generation to Interrupt Service	319
Table 18-4:	Interrupt Request Enabled for Multiple Interrupt during Interrupt Servicing	322
Table 19-1:	HALT Mode Operating Status	329
Table 19-2:	Operation after HALT Mode Release	331
Table 19-3:	STOP Mode Operating Status	332
Table 19-4:	Operation after STOP Mode Release	334
	Hardware Status after Reset (1/2)	
Table 20-1:	Hardware Status after Reset (2/2)	339
Table 21-1:	Differences among µPD16F15A and Mask ROM Versions	341
Table 21-2:	Values of the Memory Size Switching Register for the Different Devices	342
Table 21-3:	Examples of internal Extension RAM Size Switching Register Settings	343
Table 21-4:	Transmission Method List	344
Table 21-5:	Main Functions of Flash Memory Programming	345
Table 22-1:	Operand Identifiers and Description Methods	349

[MEMO]

Chapter 1 Outline (µPD1615A Subseries)

1.1 Features

• Internal memory

Item	Program	Data Memory				
Part Number	Memory (ROM)	Internal High- Speed RAM	LCD Display RAM	Internal Expansion RAM	VAN	Package
μPD1615A(A)	60 K bytes	1024 bytes	40 bytes	1024 bytes	256 bytes	80-pin plastic QFP (fine pitch)
μPD1615B(A)	48 K bytes	1024 bytes	40 bytes	512 bytes	256 bytes	80-pin plastic QFP (fine pitch)
μPD1615F(A)	32 K bytes	768 bytes	40 bytes	512 bytes	256 bytes	80-pin plastic QFP (fine pitch)
μPD16F15A	60 K bytes	1024 bytes	40 bytes	1024 bytes	256 bytes	80-pin plastic QFP (fine pitch)
μPD1616F(A)	32 K bytes	768 bytes	-	512 bytes	256 bytes	80-pin plastic QFP (fine pitch)

Table 1-1: Internal high capacity ROM and RAM

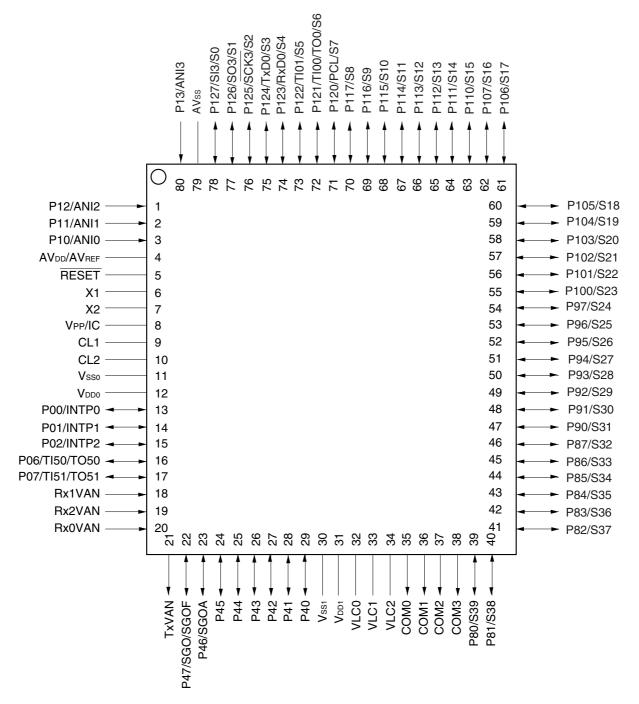
- Instruction execution time can be changed from high speed (0.25 $\mu s)$ to ultra low speed
- I/O ports: 57
- 8-bit resolution A/D converter : 4 channels
- Sound generator
- LCD-controller/driver

- VAN-Interface
- Serial interface : 2 channels
 - 3-wire mode : 1 channel
- UART mode : 1 channel
- Timer : 5 channels
- Supply voltage : VDD = 4.0 to 5.5 V

1.2 Application

Multifunction display, steering controller, climate controller etc.

1.3 Ordering Information


Part NumberPackageμPD1615AGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)μPD1615BGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)μPD1615FGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)μPD1616FGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)μPD1616FGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)μPD1616FGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)μPD1616FGC(A) - xxx - 8BT 80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)

1.4 Pin Configuration (Top View)

80-pin plastic QFP (14 x 14 mm)

μPD1615AGC(A) - xxx - 8BT μPD1615BGC(A) - xxx - 8BT μPD1615FGC(A) - xxx - 8BT μPD1616FGC(A) - xxx - 8BT μPD16F15AGC - 8BT

Cautions: 1. Connect IC (internally connected) pin directly to Vss.

2. AVDD pin should be connected to VDD.

3. AVss pin should be connected to Vss.

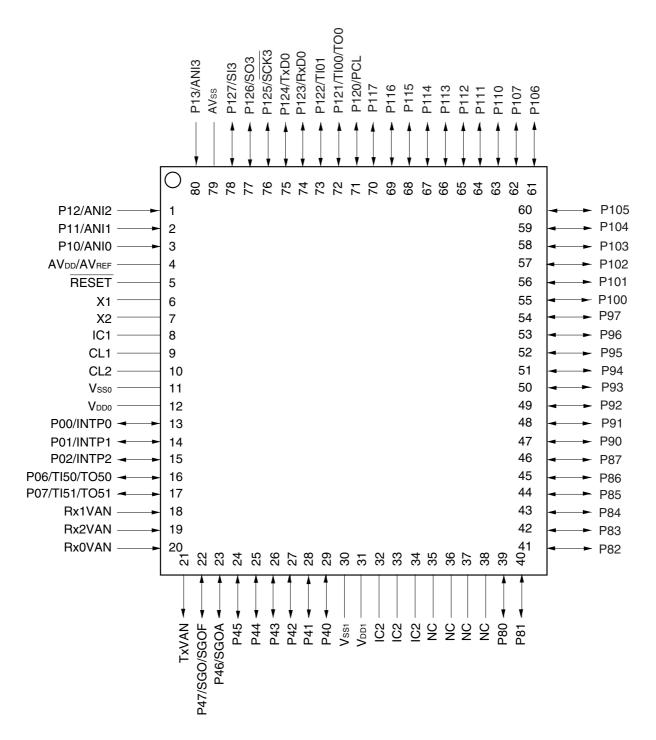
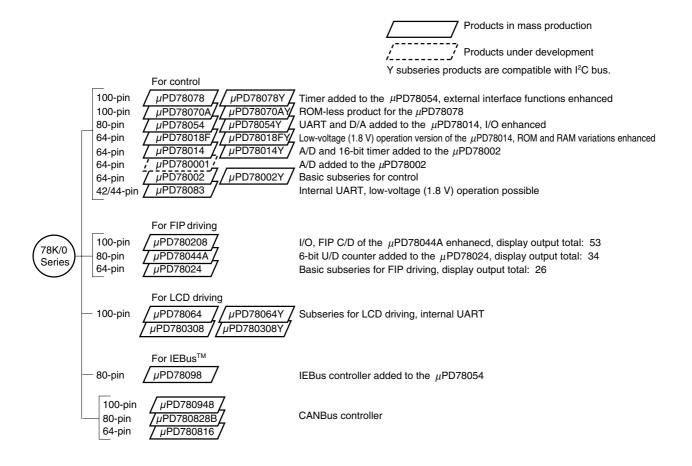
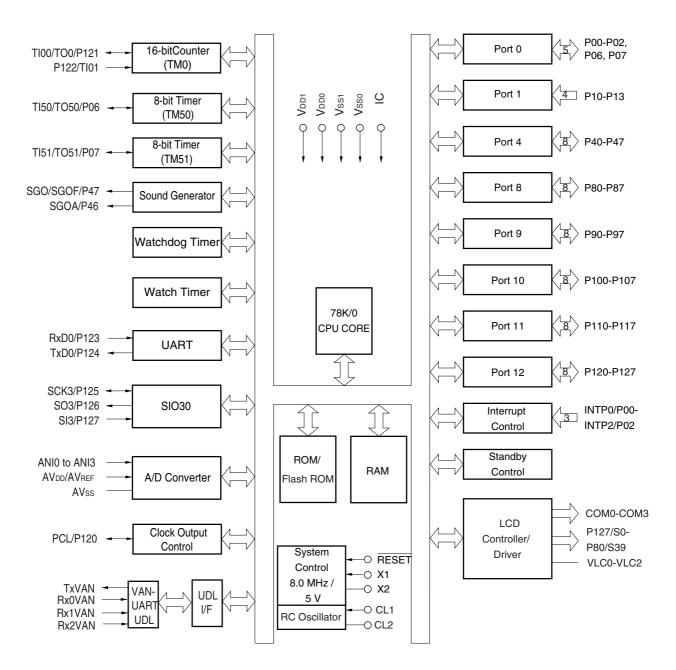


Figure 1-2: Pin Configuration µPD1616F


- 2. Connect IC2 (internally connected) pin directly to VDD.
- 3. AVDD pin should be connected to VDD.
- 4. AVss pin should be connected to Vss.
- 5. NC pins are not connected.

Pin Identifications


P00 to P02, P06, P07 P10 to P13 P40 to P47 P80 to P87 P90 to P97 P100 to P107 P110 to P117 P120 to P127 INTP0 to INTP2 TI00, TI01, TI50, TI51 TO0 , TO51, TO52 Rx0VAN Rx1VAN Rx2VAN TxVAN SI3	 Port1 Port4 Port8 Port9 Port10 Port11 Port12 Interrupt External Timer Input Timer Output VAN Receive Data Serial Input 	RxD0 TxD0 SGO SGOA SGOF PCL S0 to S39 COM0 to COM3 X1, X2 CL1, CL2 RESET ANI0 to ANI3 AVss AVdd/AVREF	 Receive Data Transmit Data Sound Generator Output Sound Generator Amplitude Sound Generator Frequency Programmable Clock Output Segment Output Common Output Crystal (Main System Clock) RC (Subsystem Clock) Reset Analog Input Analog Ground Analog Power Supply and Reference Voltage Programming Power supply
) /	•
SO3	: Serial Output	Vpp Vss	: Programming Power supply : Ground
SCK3	: Serial Clock	IC, IC1, IC2 NC	: Internally Connected : Not Connected

1.5 78K/0 Series Development

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

1.6 Block Diagram

Figure 1-3: Block Diagram µPD1615A, µPD1615B, µPD1615F, µPD16F15A

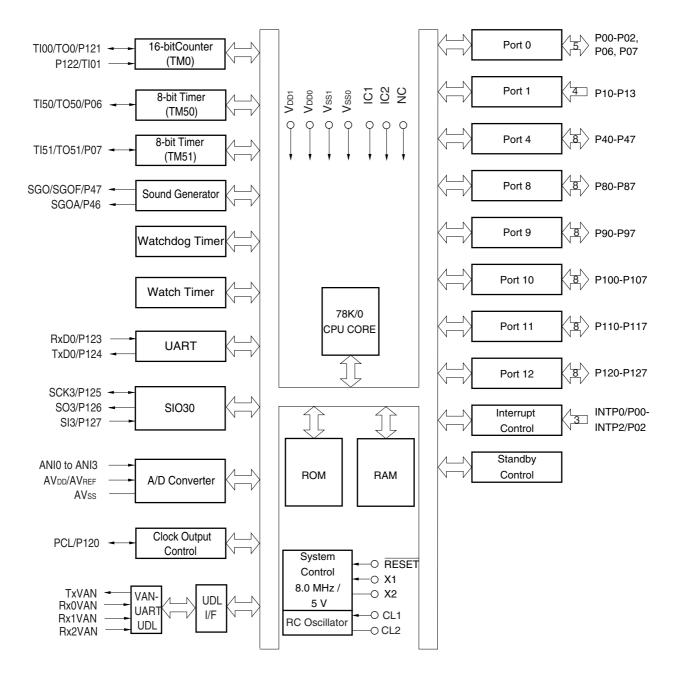


Figure 1-4: Block Diagram µPD1616F

1.7 Overview of Functions

Part Number Item		μPD1615A(A)	μPD1615B(A)	μPD1615F(A)	μPD1616F(A)	μPD16F15A		
Internal memory	ROM	60 Kbytes	48 Kbytes	32 Kbytes	32 Kbytes	60 Kbytes		
	Internal high-speed RAM	1024 bytes	1024 bytes	768 bytes	768 bytes	1024 bytes		
	LCD Display RAM	40 bytes	40 bytes	40 bytes	-	40 bytes		
	Internal Expansion RAM	1024 bytes	512 bytes	512 bytes	512 bytes	1024 bytes		
Memory space		64 Kbytes						
General registers		8 bits x 32 registers (8 bits x 8 registers x 4 banks)						
Instruction cycle When main system clock selected When subsystem clock selected		On-chip instruction execution time selective function						
		0.25 μs/0.5 μs/1 μs/2 μs/4 μs (at 8 MHz)						
		122 μs (at 32.768 KHz)						
Instruction set		 16-bit operation Multiplication/division (8 bits x 8 bits, 16 bits/8 bits) Bit manipulation (set, reset, test, boolean operation) BCD adjustment, etc. 						
I/O ports		Total : 57 • CMOS input : 4 • CMOS I/O : 53						
A/D converter		8 bit resolution x 4 channels						
Serial Interface		 3-wire mode : 1 channel UART mode : 1 channel 						
Timer		 16 bit timer / event counter : 1 channel 8 bit timer / event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel 						
Timer output		2 (8-bit PWM output x 2)						
Clock output		62.5 KHz, 125 KHz, 250 KHz, 500 KHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz (at main system clock of 8.0 MHz)						
Sound Generator		1 channel (as separate or composed output)						
LCD Controller/Driver		40 seg x 4 COM						
VAN		1 channel						
Vectored interrupts	Maskable interrupts	Internal : 15 External : 3						
	Non-maskable interrupts	Internal : 1						
	Software interrupts	Internal : 1						
Supply voltage		VDD = 4.0 V to 5.5 V						
Package		80-pin plastic QFP(14 mm x 14 mm)						

1.8 Mask Options

There are no mask options provided.

1.9 Differences between Flash and Mask ROM version

The differences between the two versions are shown in the table below. Differences of the electrical specification are given in the data sheet.

	Flash Version	Mask ROM Version
ROM	Flash EEPROM	Mask ROM
VPP Pin	Yes	None (IC pin)

Table 1-2: Differences between Flash and Mask ROM version

[Memo]

Chapter 2 Pin Function (µPD1615A(A) Subseries)

2.1 Pin Function List

Normal Operating Mode Pins / Pin Input/Output Types

Table 2-1-1: Pin Input/Output Types µPD1615A(A), µPD1615B(A), µPD1615F(A), µPD16F15A

Input / Output	Pin Name	Function	Alternate Function	After Reset
Input / Output	P00		INTP0	Input
	P01	Port 0	INTP1	Input
	P02	5 bit input / output port	INTP2	Input
	P06	Input / output mode can be specified bit-wise	TI50/TO50	Input
	P07		TI51/TO51	Input
Input	P10-P13	Port 1 4 bit input port Input mode can be specified bit-wise	ANIO-ANI3	Input
	P40		-	Input
	P41		-	Input
	P42		-	Input
Input / Output	P43	Port 4	-	Input
	P44	8 bit input/output port Input / output mode can be specified bit-wise	-	Input
	P45		-	Input
	P46		SG0A	Input
	P47		SG0/SG0F	Input
Input/ Output	P80-P87	Port 8 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S39 - S32	Input
Input/ Output	P90-P97	Port 9 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S31 - S24	Input
Input/ Output	P100- P107	Port 10 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S23 - S16	Input
Input/ Output	P110- P117	Port 11 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S15 - S8	Input
	P120		PCL/S7	Input
	P121		TI00/TO0/S6	
	P122	Port 12	TI01/S5	
Input/ Output	P123	8 bit input / output port Input / output mode can be specified bit-wise	RxD0/S4	
	P124	This port can be used as segment signal output port	TxD0/S3	
	P125	or an I/O port in 1-bit units by setting port function register	SCK3/S2	
	P126		SO3/S1	
	P127	1	SI3/S0	

Input / Output	Pin Name	Function	Alternate Function	After Reset
	P00		INTP0	Input
	P01	Port 0	INTP1	Input
Input / Output	P02	5 bit input / output port	INTP2	Input
-	P06	Input / output mode can be specified bit-wise	TI50/TO50	Input
	P07		TI51/TO51	Input
Input	P10-P13	Port 1 4 bit input port Input mode can be specified bit-wise	ANIO-ANI3	Input
	P40		-	Input
	P41		-	Input
	P42		-	Input
Input /	P43	Port 4	-	Input
Output	P44	8 bit input/output port Input / output mode can be specified bit-wise	-	Input
	P45		-	Input
	P46		SG0A	Input
	P47		SG0/SG0F	Input
Input/ Output	P80-P87	Port 8 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input
Input/ Output	P90-P97	Port 9 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input
Input/ Output	P100- P107	Port 10 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input
Input/ Output	P110- P117	Port 11 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input
	P120		PCL	
	P121		TI00/TO0	1
	P122	Port 12	TI01	
Input/ Output	P123	8 bit input / output port Input / output mode can be specified bit-wise	RxD0	1.
		This port can be used as segment signal output port	TxD0	- Input
Output	P124		TXDU	
	P124 P125	or an I/O port in 1-bit units by setting port function	SCK3	

Table 2-1-2: Pin Input/Output Types µPD1616F(A)

2.2 Non-Port Pins

Table 2-2-1: Non-Port Pins μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD16F15A

Pin Name	I/O	Function	After Reset	Alternate Function Pin
INTP0		External interrupts with specifiable valid edges		P00
INTP1	Input	(rising edge, falling edge, both rising and falling	Input	P01
INTP2	· ·	edges)		P02
SI3	Input	Serial interface serial data input	Input	P127/S0
SO3	Output	Serial interface serial data output	Input	P126/S1
SCK3	Input/ Output	Serial interface serial clock input / output	Input	P125/S2
RxD0	Input	Asynchronous serial interface data input	Input	P123/S4
TxD0	Output	Asynchronous serial interface data output	Input	P124/S3
Rx0VAN, Rx1VAN, Rx2VAN	Input	VAN serial data input	Input	-
TxVAN	Output	VAN serial data output	Output	-
TI00		External count clock input to 16-bit timer (TM0)		P121/TO0/S6
TI01	Input		Input	P122/S5
TI50	input	External count clock input to 8-bit timer (TM50)	input	P06/TO50
TI51		External count clock input to 8-bit timer (TM51)		P07/TO51
TO0		16-bit timer output		P121/TI00/S6
TO50	Output	8-bit timer output (also used for PWM output)	Input	P06/TI50
TO51		8-bit timer output (also used for PWM output)		P07/TI51
PCL	Output	Clock output Input P12		P120/S7
S0 to S7				P127 to P120
S8 to S15				P117 to P110
S16 to S23	Output	Segment signal output of LCD controller / driver	Input	P107 to P100
S24 to S31				P97 to P90
S32 to S39				P87 to P80
COM0-COM3	Output	Common signal output of LCD controller/driver	Output	-
VLc0 to V Lc2	-	LCD drive voltage	-	-
SGO	Output	Sound generator output	Input	P47/SGOF
SGOA	Output	Sound generator amplitude output	Input	P46
SGOF	Output	Sound generator frequency output	Input	P47/SGO
ANI0 to ANI3	Input	A/D Converter analog input	Input	P10 P13
AVDD/ AVREF	-	A/D Converter reference voltage input and power supply	-	-
AVss	-	A/D Converter ground potential. Connect to Vss.	-	-
RESET	Input	System reset input	-	-
X1	-	Connection for main system clock	-	-
X2	-	Connection for main system clock	-	-
CL1	Input	RC connection for subsystem clock	-	-
CL2	-	RC connection for subsystem clock	-	-
Vdd1, Vdd2	-	Positive power supply	-	-
Vss1, Vss2	-	Ground potential	-	-
IC	-	Internal connection. Connect directly to Vss	-	-
Vpp	-	Programming voltage. Connect directly to Vss except flash programming.	-	-

NEC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

Pin Name	I/O	Function	After Reset	Alternate Function Pin
INTP0		External interrupts with specifiable valid edges		P00
INTP1	Input	(rising edge, falling edge, both rising and falling	Input	P01
INTP2		edges)		P02
SI3	Input	Serial interface serial data input	Input	P127
SO3	Output	Serial interface serial data output	Input	P126
SCK3	Input/ Output	Serial interface serial clock input / output	Input	P125
RxD0	Input	Asynchronous serial interface data input	Input	P123
TxD0	Output	Asynchronous serial interface data output	Input	P124
Rx0VAN, Rx1VAN, Rx2VAN	Input	VAN serial data input	Input	-
TxVAN	Output	VAN serial data output	Output	-
T100		External count clock input to 16-bit timer (TM0)		P121/TO0
TI01	Input		Input	P122
TI50	Input	External count clock input to 8-bit timer (TM50)	Input	P06/TO50
TI51		External count clock input to 8-bit timer (TM51)		P07/TO51
TO0		16-bit timer output		P121/TI00
TO50	Output	8-bit timer output (also used for PWM output)	Input	P06/TI50
TO51		8-bit timer output (also used for PWM output)	1	P07/TI51
PCL	Output	Clock output	Input	P120
SGO	Output	Sound generator output	Input	P47/SGOF
SGOA	Output	Sound generator amplitude output	Input	P46
SGOF	Output	Sound generator frequency output	Input	P47/SGO
ANI0 to ANI3	Input	A/D Converter analog input	Input	P10 P13
AVDD/ AVREF	-	A/D Converter reference voltage input and power supply	-	-
AVss	-	A/D Converter ground potential. Connect to Vss.	-	-
RESET	Input	System reset input	-	-
X1	-	Connection for main system clock	-	-
X2	-	Connection for main system clock	-	-
CL1	Input	RC connection for subsystem clock	-	-
CL2	-	RC connection for subsystem clock	-	-
Vdd1, Vdd2	-	Positive power supply	-	-
Vss1, Vss2	-	Ground potential	-	-
IC1	-	Internal connection. Connect directly to Vss	-	-
IC2	-	Internal connection. Connect directly to VDD	-	-
NC	-	Not connected	-	-

Table 2-2-2: Non-Port Pins µPD1616F(A)

2.3 Description of Pin Functions

2.3.1 P00 to P02, P06 and P07 (Port 0)

This is a 5-bit input/output port. Beside serving as input/output port, it supports functions as an external interrupt input, an external count clock input to the timer and a timer signal output. The following operating modes can be specified bit-wise.

(1) Port mode

P00 to P02, P06 and P07 function as input/output ports. P00 to P02, P06 and P07 can be specified for input or output ports bitwise with a port mode register 0.

(2) Control mode

In this mode, this port supports the function like external interrupt input, an external count clock input to the timer and a timer signal output.

(a) INTP0 to INTP2

INTP0 to INTP2 are external interrupt input pins which can specify valid edges (rising edge, falling edge, and both rising and falling edges).

(b) TI50

Pin for external count clock input to 8-bit timer/event counter.

(c) TI51

Pin for external count clock input to 8-bit timer/event counter.

(d) TO50

Pin for output of the 8-bit timer/event counter.

(e) TO51

Pin for output of the 8-bit timer/event counter.

2.3.2 P10 to P13 (Port 1)

This is a 4-bit input port. Beside serving as input port, it functions as an A/D converter analog input. The following operating modes can be specified bit-wise.

(1) Port mode

Thisport functions as 4-bit input ports.

(2) Control mode

This port functions as A/D converter analog input pins (ANI0 to ANI3).

2.3.3 P40 to P47 (Port 4)

This is an 8-bit input/output port. Beside serving as input/output port, this port functions as sound generator output.

The following operating modes can be specified bit-wise.

(1) Port mode

This port functions as an 8-bit input/output port. It can be specified bit-wise as input or output ports with the port mode register 4.

(2) Control mode

This port functions as timer input, clock output, and sound generator output.

(a) SGO, SGOA and SGOF

Pins for separate or composed signal ouput of the sound generator.

2.3.4 P80 to P87 (Port 8)

This is an 8-bit input/output port. Beside serving as input/output port, this port supports an LCD controller/driver.

The following operating modes can be specified bit-wise.

(1) Port mode

This port functions as an 8-bit input/output port. It can be specified bit-wise as input/ output ports with the port mode register 8.

(2) Control mode

In this mode it functions as segment signal output pins (S32 to S39) of the LCD controller/ driver.

2.3.5 P90 to P97 (Port 9)

This is an 8-bit input/output port. In addition to its use as an input/output port, it supports also segment signal output function of the LCD controller/driver.

The following operating modes can be specified bit-wise.

(1) Port mode

Port 9 functions as an 8-bit input/output port. Bit-wise specification as an input port or output port is possible by meaning of port mode register 9.

(2) Control mode

Port 9 supports the segment signal output pins (S24 to S31) of the LCD controller/driver.

2.3.6 P100 to P107 (Port 10)

This is an 8-bit input/output port. In addition to its use as an input/output port, it supports also segment signal output functions of the LCD controller/driver.

The following operating modes can be specified bit-wise.

(1) Port mode

Port 10 functions as an 8-bit input/output port. Bit-wise specification as an input port or output port is possible by meaning of port mode register 10.

(2) Control mode

Port 10 supports the segment signal output pins (S16 to S23) of the LCD controller/driver.

2.3.7 P110 to P117 (Port 11)

This is an 8-bit input/output port. In addition to its use as an input/output port, it supports also segment signal output functions of the LCD controller/driver.

The following operating modes can be specified bit-wise.

(1) Port mode

Port 11 functions as an 8-bit input/output port. Bit-wise specification as an input port or output port is possible by meaning of port mode register 11.

(2) Control mode

Port 11 supports the segment signal output pins (S15 to S8) of the LCD controller/driver.

2.3.8 P120 to P127 (Port 12)

These are 8-bit input/output ports. Besides serving as input/output ports, they function as data input/output to/from the serial interface, serial interface clock input/output, as segment signal output pins of LCD controller/driver and as processor clock output.

The following operating modes can be specified bit-wise.

(1) Port mode

These ports function as 8-bit input/output ports. They can be specified bit-wise as input or output ports with port mode register 12.

(2) Control mode

These ports function as serial interface data input/output, clock input/output.

(a) SI3, SO3

Serial interface serial data input/output pins

(b) SCK3

Serial interface serial clock input/output pins

(c) RxD0, TxD0

Asynchronous serial interface data input/output pins

(d) PCL

Clock output pin.

(e) LCD controller/driver

These ports function as segment output signal pins (S0 to S7) of LCD controller/driver.

Caution: When this port is used as a serial interface, the I/O and output latches must be set according to the function the user requires.

2.3.9 COM0 to COM3

These are LCD controller/driver common signal output pins. They output common signals under the following condition:

- static mode
- 1/2 duty cycle is performed in 1/2 bias mode
- 1/3 duty cycle is performed in 1/2 bias mode
- 1/3 duty cycle is performed in 1/3 bias mode
- 1/4 duty cycle is performed in 1/3 bias mode

2.3.10 VLC0 to VLC2

These are LCD drive voltage pins. In the Flash EEPROM and the MaskROM product an external split resistors are necessary.

2.3.11 AVDD/AVREF

A/D converter reference voltage input pin and the power supply for the A/D-converter. When A/D converter is not used, connect this pin to V_{DD} .

2.3.12 AVss

This is a ground voltage pin of A/D converter. Always use the same voltage as that of the VSS pin even when A/D converter is not used.

2.3.13 RESET

This is a low-level active system reset input pin.

2.3.14 X1 and X2

Crystal resonator connect pins for main system clock oscillation. For external clock supply, input it to X1.

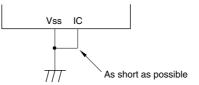
2.3.15 CL1 and CL2

Crystal resonator connect pins for subsystem clock oscillation. For external clock supply, input it to CL1 and let CL2 open.

2.3.16 VDD0/VDD1

Positive power supply pins.

2.3.17 Vsso/Vss1


Ground potential pins.

2.3.18 VPP (µPD16F15A only)

High-voltage apply pin for FLASH programming mode setting. Connect it directly to VSS with the shortest possible wire in the normal operating mode. When a voltage difference is produced between the IC pin and Vss pin because the wiring between those two pins is too long or an external noise is input to the IC pin, the user's program may not run normally.

• Connect IC pins to Vss pins directly.

2.4 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in the following table.

For the input/output circuit configuration of each type, see table.

Table 2-3-1: Types of Pin Input/Output Circuits μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD16F15A (1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins		
P00/INTP0					
P01/INTP1					
P02/INTP2	8	I/O	Connect to Vss via a resistor individually		
P06/TI50/TO50					
P07/TI51/TO51					
P10/ANI0					
P11/ANI1		.			
P12/ANI2	9		Connect directly to VDD or Vss		
P13/ANI3					
P40					
P41					
P42		1			
P43	- 5	I/O	Connect to VDD or VSS via a resistor individually		
P44					
P45					
P46/SGOA					
P47/SGO/SGOF					
P80/S39					
P81/S38					
P82/S37					
P83/S36	17	1/0			
P84/S35		1/0	Connect to VDD or VSS via a resistor individually		
P85/S34					
P86/S33					
P87/S32					
P90/S31					
P91/S30					
P92/S29					
P93/S28	17		Connect to Vop or Vop vip a register individually		
P94/S27		I/O	Connect to VDD or VSS via a resistor individually		
P95/S26					
P96/S25					
P97/S24					

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins		
P100/S23					
P101/S22					
P102/S21					
P103/S20	47				
P104/S19	17	I/O	Connect to VDD or VSS via a resistor individually		
P105/S18					
P106/S17					
P107/S16					
P110/S15					
P111/S14					
P112/S13					
P113/S12	17				
P114/S11	17	I/O	Connect to VDD or VSS via a resistor individually		
P115/S10					
P116/S9					
P117/S8					
P120/S7/PCL	17				
P121/S6/TI00/TO0	17-C				
P122/S5/TI01	17-C				
P123/S4/RxD0	17-C				
P124/S3/TxD0	17	I/O	Connect to VDD or Vss via a resistor individually		
P125/S2/SCK3	17-C				
P126/S1/SO3	17				
P127/S0/SI3	17-C				
COM0 to COM3	18	0	Leave open		
VLC0 to VLC2	-	-	Connect to VDD		
Rx0VAN, Rx1VAN, Rx2VAN	2	I	-		
TxVAN	19	0	-		
CL1	-	I	Connect to VDD or Vss		
CL2	-	-	Leave open		
RESET	2		-		
AVDD/AVREF	-	I	Connect to VDD		
AVss	-	-	Connect to Vss		
IC	-	-	Connect directly to Vss		
Vpp	1	-	Connect directly to Vss (except for flash programming)		


Table 2-3-1: Types of Pin Input/Output Circuits μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD16F15A (2/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins			
P00/INTP0						
P01/INTP1						
P02/INTP2	8	I/O	Connect to VDD or Vss via a resistor individually			
P06/TI50/TO50						
P07/TI51/TO51						
P10/ANI0						
P11/ANI1	9		Connact directly to Van ar Van			
P12/ANI2	9		Connect directly to VDD or Vss			
P13/ANI3						
P40						
P41						
P42						
P43] _					
P44	- 5	5 1/0	I/O	Connect to VDD or VSS via a resistor individually		
P45						
P46/SGOA						
P47/SGO/SGOF						
P80						
P81						
P82						
P83	5	1/0	Connect to VDD or Vss via a resistor individually			
P84	5	"0				
P85						
P86						
P87						
P90						
P91						
P92						
P93	5	1/0	Connect to VDD or Vss via a resistor individually			
P94		"				
P95						
P96						
P97						

Table 2-3-2: Types of Pin Input/Output Circuits µPD1616F(A) (1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P100			
P101			
P102			
P103		1/0	
P104	8	I/O	Connect to VDD or VSS via a resistor individually
P105			
P106			
P107			
P110			
P111			
P112			
P113			
P114	5	I/O	Connect to VDD or VSS via a resistor individually
P115			
P116			
P117			
P120/ PCL	5		
P121/TI00/TO0	8		
P122/TI01	8		
P123/RxD0	8	1/0	Connect to Vez or Vez via a register individually
P124/ TxD0	5	I/O	Connect to VDD or VSS via a resistor individually
P125/ SCK3	8		
P126/SO3	5		
P127/SI3	8		
Rx0VAN, Rx1VAN, Rx2VAN	2	I	-
TxVAN	19	0	-
CL1	-	I	Connect to VDD or Vss
CL2	-	-	Leave open
RESET	2	I	-
AVDD/AVREF	-	I	Connect to VDD
AVss	-	-	Connect to Vss
IC1	-	-	Connect directly to Vss
IC2	-	-	Connect directly to VDD
NC	-	-	Leave open

Table 2-3-2: Types of Pin Input/Output Circuits µPD1616F(A) (2/2)

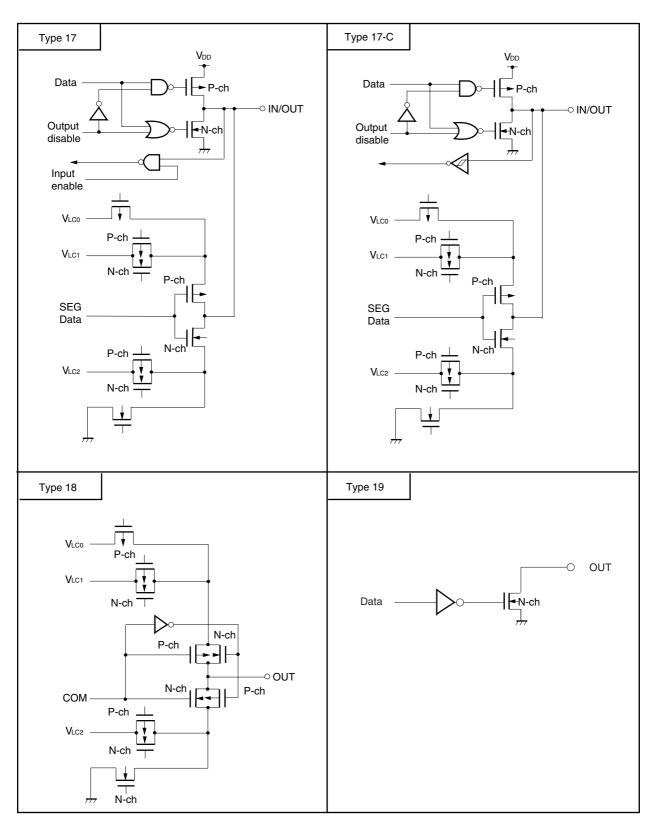


Figure 2-2: Pin Input/Output Circuits (2/2)

[Memo]

Chapter 3 CPU Architecture

3.1 Memory Space

The memory map of the μ PD1615A(A) is shown in Figure 3-1.

FFFFH				
FF20H	Special Function Registers (SFRs) 256 x 8 bits			
FF1FH				
FF00H FEFFH	General Registers			
FEE0H	32 x 8 bits			
FEDFH	Internal High-speed RAM			
FFOOL	1024 x 8 bits			
FE20H FB00H				
FAFFH				
FA28H	Not usable			
FA27H	LCD Display RAM			
	40 x 4 bits			
FA00H F9FFH				
F900H	Not usable		EFFFH	
F8FFH	VAN UDL RAM		1000H	Program Area 🛛 🍣
F800H	256 x 8 bits		0FFFH	
F7FFH				CALLF Entry Area
	Internal Expansion RAM		0800H	
	1024 x 8 bits		07FFH	
F400H F3FFH			≱	Program Area $\qquad lpha$
_	Not usable		0080H	
F000H			007FH	
EFFFH				CALLT Table Area
	Internal ROM		0040H	
Ĵ	61440 x 8 bits	5	003FH	
				Vector Table Area
_{0000H} [0000H	

The memory map of the μ PD1615B(A) is shown in Figure 3-2.

FFFFH [I			
	Special Function Registers				
FF20H	(SFRs) 256 x 8 bits				
FF1FH					
FF00H					
FEFFH	General Registers				
FEE0H FEDFH	32 x 8 bits				
FEDFH	Internal High-speed RAM				
FE20H	1024 x 8 bits				
FB00H					
FAFFH					
FA28H	Not usable				
FA20H					
	LCD Display RAM				
FA00H	40 x 4 bits				
F9FFH	Not usable		BFFFH		
F900H				Program Area	≵
F8FFH	VAN UDL RAM		1000H	-	
F800H	256 x 8 bits	/	0FFFH		
F7FFH		/		CALLF Entry Area	≵
	Internal Expansion RAM 512 x 8 bits		0800H		
F600H	512 X 8 DIIS	/	07FFH		
F5FFH			Ļ	Program Area	Ļ
	Not usable	/	0080Н		
С000Н			007FH		
BFFFH		/		CALLT Table Area	
	Internal DOM		0040H		
	internal ROM 49152 x 8 bits ີ	Ş	003FH		
	49102 X 0 DIIS			Vector Table Area	
			0000Н		
_{0000H} l					

Figure 3-2: Memory Map µPD1615B(A)

ΝΕC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

The memory map of the μ PD1615F(A) is shown in Figure 3-3.

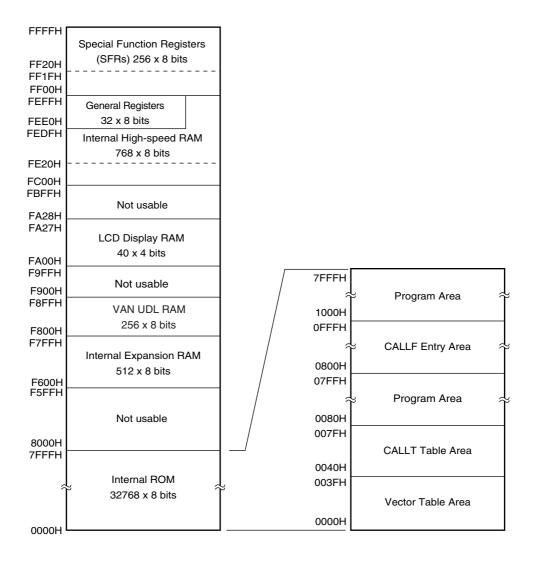


Figure 3-3: Memory Map µPD1615F(A)

The memory map of the μ PD1616F(A) is shown in Figure 3-4.

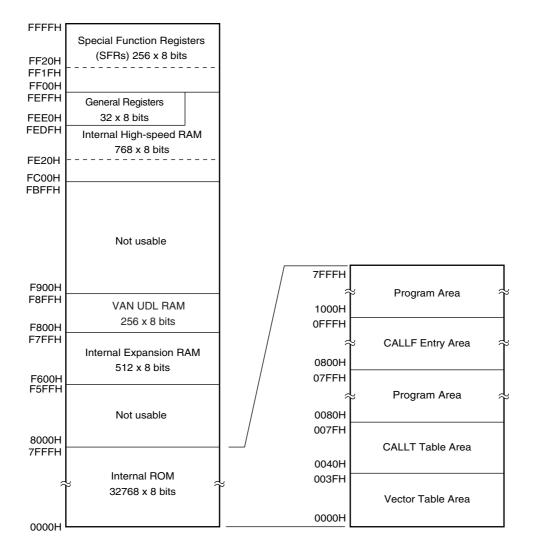


Figure 3-4: Memory Map µPD1616F(A)

NEC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

The memory map of the μ PD16F15A is shown in Figure 3-5.

FFFFH [1			
	Special Function Registers (SFRs) 256 x 8 bits				
FF20H FF1FH FF00H					
FEFFH	General Registers				
FEE0H	32 x 8 bits				
FEDFH	Internal High-speed RAM				
FE20H	1024 x 8 bits				
FB00H FAFFH					
	Not usable				
FA28H FA27H					
	LCD Display RAM 40 x 4 bits				
FA00H F9FFH					
F900H	Not usable		EFFFH	Program Area	
F8FFH	VAN UDL RAM	/	1000H	Flogram Area	Ĩ
F800H	256 x 8 bits] /	0FFFH		
F7FFH		/	☆	CALLF Entry Area	∻
	Internal Expansion RAM 1024 x 8 bits		0800H		
F400H			07FFH	Program Area	
F3ÉÉH	N		0080Н	i iografii Area	Ĩ
F000H	Not usable		007FH		
EFFFH		/		CALLT Table Area	
	Internal ROM		0040H		
ີ່	61440 x 8 bits		003FH		
				Vector Table Area	
_{0000H} [l	0000H		

Figure 3-5: Memory Map µPD16F15A

3.1.1 Internal program memory space

The internal program memory space stores programs and table data. This is generally accessed by the program counter (PC). The μ PD1615A subseries have various size of internal ROMs or Flash EPROM as shown below.

Dort Number	Internal ROM			
Part Number	Туре	Capacity		
μPD1615A(A)	Mask ROM	61440 x 8-bits		
μPD1615B(A)	Mask ROM	49152 x 8-bits		
μPD1615F(A)	Mask ROM	32768 x 8-bits		
μPD1616F(A)	Mask ROM	32768 x 8-bits		
μPD16F15A	Flash ROM	61440 x 8-bits		

Table 3-1: Internal ROM Capacities

The internal program memory is divided into three areas: vector table area, CALLT instruction table area, and CALLF instruction table area. These areas are described on the next page.

(1) Vector table area

The 64-byte area 0000H to 003FH is reserved as a vector table area. The RESET input and program start addresses for branch upon generation of each interrupt request are stored in the vector table area. Of the 16-bit address, low-order 8 bits are stored at even addresses and high-order 8 bits are stored at odd addresses.

Vector Table Address	Interrupt Request
0004H	INWDT
0006H	INTVE
0008H	INTVT
000AH	INTTVR
000CH	INTP0
000EH	INTP1
0010H	INTP2
0012H	INTTM00
0014H	INTTM01
0016H	INTTM50
0018H	INTTM51
001AH	INTWTI
001CH	INTWT
001EH	INTCSI3
0020H	INTSER
0022H	INTSR
0024H	INTST
0026H	INTAD

Table 3-2: Vectored Interrupts

(2) CALLT instruction table area

The 64-byte area 0040H to 007FH can store the subroutine entry address of a 1-byte call instruction (CALLT).

(3) CALLF instruction entry area

The area 0800H to 0FFFH can perform a direct subroutine call with a 2-byte call instruction (CALLF).

3.1.2 Internal data memory space

The μ PD1615A subseries units incorporate the following RAMs.

(1) Internal high-speed RAM

This is a 1024 x 8-bit configuration in the area FB00H to FEFFH or a 768 x 8 bits configuration in the area FC00H to FEFFH. The 4 banks of general registers, each bank consisting of eight 8-bit registers, are allocated in the 32-byte area FEE0H to FEFFH. The internal high-speed RAM can also be used as a stack memory.

(2) LCD-Display RAM

Buffer RAM is allocated to the 40 x 4 bits area from FA00H to FA27H. LCD-Display RAM can also be used as normal RAM. The LCD Display RAM is not available in the μ PD1616F(A).

(3) Internal expansion RAM

Internal expansion RAM is allocated to the 1024-byte area from F400H to F7FFH for the μ PD1615A(A) and the μ PD16F15A. For the μ PD1615B(A), μ PD1615F(A), and μ PD1616F(A) is the 512-byte area located between F600H and F7FFH.

(4) VAN UDL RAM

The VAN UDL RAM is located in a 256-byte area from F800H to F8FFH.

3.1.3 Special function register (SFR) area

An on-chip peripheral hardware special function register (SFR) is allocated in the area FF00H to FFFFH. (Refer to **Table 3-3**).

Caution: Do not access addresses where the SFR is not assigned.

3.1.4 Data memory addressing

The µPD1615A subseries is provided with a varity of addressing modes which take account of memory manipulability, etc. Special addressing methods are possible to meet the functions of the special function registers (SFRs) and general registers. The data memory space is the entire 64K-byte space (0000H to FFFFH). Figures 3-6 to 3-10 show the data memory addressing modes.

For details of addressing, refer to 3.4 Operand Address Addressing.

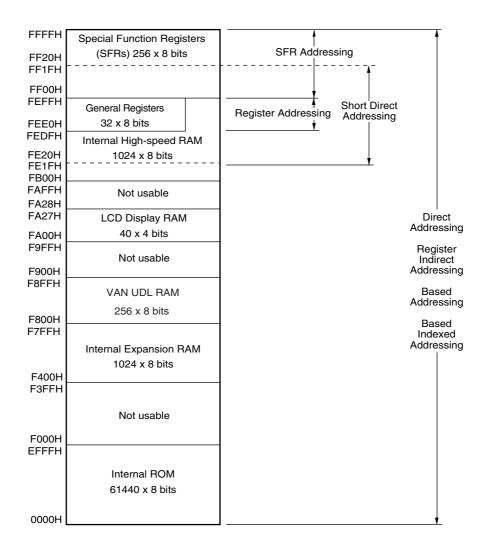


Figure 3-6: Data Memory Addressing µPD1615A(A)

Figure 3-7: Data Memory Addressing µPD1615B(A)

FFFFH	Special Function Registers	1 <u>+ </u>
FF20H FF1FH	(SFRs) 256 x 8 bits	SFR Addressing
FF00H FEFFH	General Registers	Short Direct Addressing
FEE0H	32 x 8 bits	Register Addressing Addressing
FEDFH	Internal High-speed RAM	
FE20H FE1FH FC00H	768 x 8 bits	¥
FBFFH FA28H	Not usable	
FA27H	LCD Display RAM	Direct Addressing
FA00H	40 x 4 bits	5
F9FFH	Not usable	Register Indirect
F900H F8FFH		Addressing
гоггп	VAN UDL RAM	Based
F800H	256 x 8 bits	Addressing
F7FFH		Based Indexed
	Internal Expansion RAM	Addressing
FOODU	512 x 8 bits	
F600H F5FFH		
	Not usable	
8000H		
7FFFH		
	Internal ROM	
	32768 x 8 bits	
0000Н		

Figure 3-8: Data Memory Addressing µPD1615F(A)

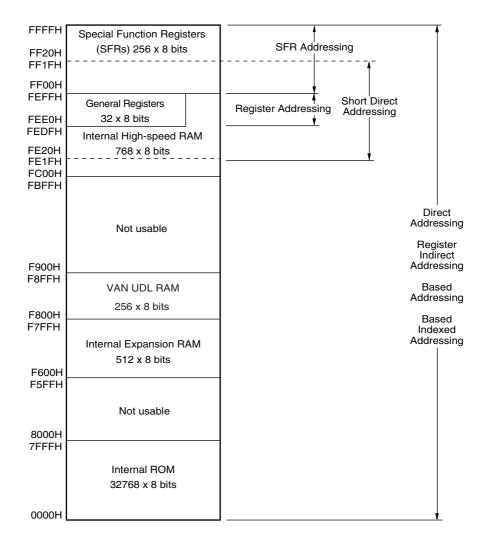


Figure 3-9: Data Memory Addressing µPD1616F(A)

FFFFH	Special Function Registers	+ +
FF20H FF1FH	(SFRs) 256 x 8 bits	SFR Addressing
FF00H FEFFH	General Registers	Short Direct
FEE0H	32 x 8 bits	Register Addressing Addressing
FEDFH	Internal High-speed RAM	
FE20H FE1FH FB00H	1024 x 8 bits	¥
FAFFH FA28H	Not usable	
FA27H	LCD Display RAM	Direct Addressing
FA00H	40 x 4 bits	
F9FFH F900H	Not usable	Register Indirect Addressing
F8FFH	VAN UDL RAM	Based Addressing
F800H	256 x 8 bits	Based
F7FFH		Indexed
F400H	Internal Expansion RAM 1024 x 8 bits	Addressing
F3FFH		
	Not usable	
F000H		
EFFFH		
	Internal Flash ROM	
	61440 x 8 bits	
0000H		¥

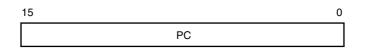
Figure 3-10: Data Memory Addressing µPD16F15A

3.2 Processor Registers

The µPD1615A subseries units incorporate the following processor registers.

3.2.1 Control registers

The control registers control the program sequence, statuses, and stack memory. The control registers consist of a program counter, a program status word and a stack pointer.

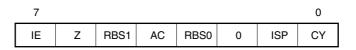

(1) Program counter (PC)

The program counter is a 16-bit register which holds the address information of the next program to be executed.

In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set.

RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.

Figure 3-11: Program Counter Configuration


(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags to be set/reset by instruction execution.

Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW instruction execution and are automatically reset upon execution of the RETB, RETI and POP PSW instructions.

RESET input sets the PSW to 02H.

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE is set to interrupt disabled (DI) status. All interrupts except non-maskable interrupt are disabled.

When 1, the IE is set to interrupt enabled (EI) status and interrupt request acknowledge is controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources, and a priority specification flag.

The IE is reset to (0) upon DI instruction execution or interrupt request acknowledgement and is set to (1) upon EI instruction execution.

(b) Zero flag (Z)

When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0 and RBS1)

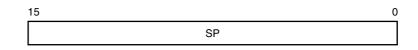
These are 2-bit flags to select one of the four register banks. In these flags, the 2-bit information which indicates the register bank selected by SEL RBn instruction execution is stored.

(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flag (ISP)

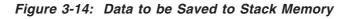
This flag manages the priority of acknowledgeable maskable vectored interrupts. When 0, acknowledgment of the vectored interrupt request specified to low-order priority with the priority specify flag registers (PR0L, PR0H, and PR1L) is disabled. Whether an actual interrupt request is acknowledged or not is controlled with the interrupt enable flag (IE).


(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shiftout value upon rotate instruction execution and functions as a bit accumulator during bit manipulation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal high-speed RAM area can be set as the stack area.


Figure 3-13: Stack Pointer Configuration

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (reset) from the stack memory.

Each stack operation saves/resets data as shown in Figures 3-8 and 3-9.

Caution: Since **RESET** input makes SP contents indeterminate, be sure to initialize the SP before instruction execution.

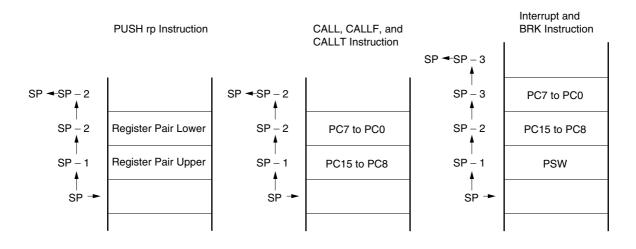
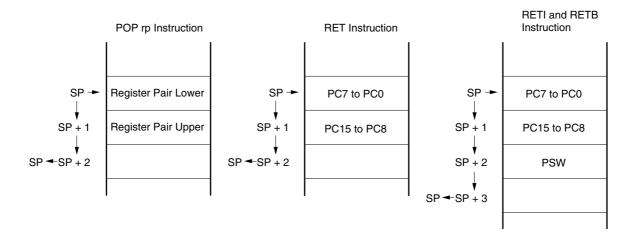
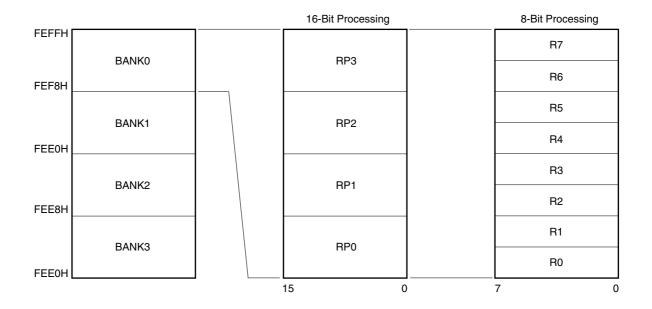
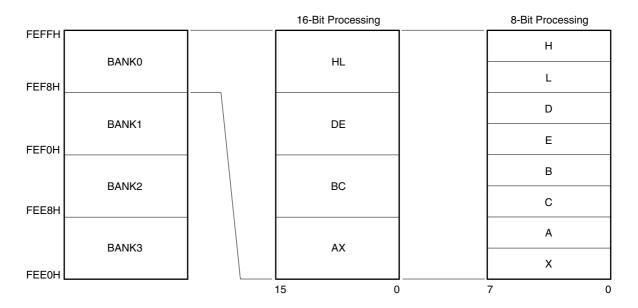



Figure 3-15: Data to be Reset to Stack Memory


3.2.2 General registers

A general register is mapped at particular addresses (FEE0H to FEFFH) of the data memory. It consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).

Each register can also be used as an 8-bit register. Two 8-bit registers can be used in pairs as a 16-bit register (AX, BC, DE, and HL).


They can be described in terms of function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute names (R0 to R7 and RP0 to RP3).

Register banks to be used for instruction execution are set with the CPU control instruction (SEL RBn). Because of the 4-register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interruption for each bank.

Figure 3-16: General Register Configuration (a) Absolute Name

(b) Function Name

3.2.3 Special function register (SFR)

Unlike a general register, each special function register has special functions.

It is allocated in the FF00H to FFFFH area.

The special function registers can be manipulated in a similar way as the general registers, by using operation, transfer, or bit-manipulate instructions. The special function registers are read from and written to in specified manipulation bit units (1, 8, and/or 16) depending on the register type. Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe the symbol reserved with assembler for the 1-bit manipulation instruction operand (sfr.bit).

This manipulation can also be specified with an address.

• 8-bit manipulation

Describe the symbol reserved with assembler for the 8-bit manipulation instruction operand (sfr).

This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol reserved with assembler for the 16-bit manipulation instruction operand (sfrp).

When addressing an address, describe an even address.

Table 3-3 gives a list of special function registers. The meaning of items in the table is as follows.

• Symbol

The assembler software translates these symbols into corresponding addresses where the special function registers are allocated. These symbols should be used as instruction operands in the case of programming.

• R/W

This column shows whether the corresponding special function register can be read or written.

R/W : Both reading and writing are enabled.

R : The value in the register can read out. A write to this register is ignored.

W : A value can be written to the register. Reading values from the register is impossible. • Manipulation

The register can be manipulated in bit units.

After reset

The register is set to the value immediately after the RESET signal is input.

Address	SFR Name	Symbol	R/W	Mani	After		
				1 bit	8 bits	16 bits	Reset
FF00H	Port 0	P0	R/W	0	0	-	00H
FF01H	Port 1	P1	R	0	0	-	00H
FF04H	Port 4	P4	R/W	0	0	-	00H
FF08H	Port 8	P8	R/W	0	0	-	00H
FF09H	Port 9	P9	R/W	0	0	-	00H
FF0AH	Port 10	P10	R/W	0	0	-	00H
FF0BH	Port 11	P11	R/W	0	0	-	00H
FF0CH	Port 12	P12	R/W	0	0	-	00H
FF10H	8-bit compare register 50	CR50	R/W	-	0	-	00H
FF11H	8-bit compare register 51	CR51	R/W	-	0	-	00H
FF12H	8-bit timer/counter 50	TM50	R	-	0	-	00H
FF13H	8-bit timer/counter 51	TM51	R	-	0	-	00H
FF14H		0500	5.44		_	0	0000H
FF15H	16-bit capture/compare register 00	CR00	R/W	-			
FF16H			5 44				0000H
FF17H	16-bit capture/compare register 01	CR01	R/W	-	-	0	
FF18H	Serial shift register	SIO3	R/W	-	0	-	00H
	Transmission shift register	TXS0	W	-	0	-	FFH
FF1AH	Reception shift register	RXB0	R	-	0	-	FFH
FF1BH	A/D conversion result register	ADCR1	R	-	0	-	00H
FF20H	Port mode register 0	PM0	R/W	0	0	-	FFH
FF24H	Port mode register 4	PM4	R/W	0	0	-	FFH
FF28H	Port mode register 8	PM8	R/W	0	0	-	FFH
FF29H	Port mode register 9	PM9	R/W	0	0	-	FFH
FF2AH	Port mode register 10	PM10	R/W	0	0	-	FFH
FF2BH	Port mode register 11	PM11	R/W	0	0	-	FFH
FF2CH	Port mode register 12	PM12	R/W	0	0	-	FFH
FF40H	Clock output select register	CKS	R/W	0	0	-	00H
FF41H	Watch timer operation mode register	WTM	R/W	0	0	-	00H
FF42H	Watchdog timer clock select register	WDCS	R/W	-	0	-	00H
FF48H	External interrupt rising edge enable register	EGP	R/W	0	0	-	00H
FF49H	External interrupt falling edge enable register	EGN	R/W	0	0	-	00H
FF58H	Port function register 8	PF8	R/W	0	0	-	00H
FF59H	Port function register 9	PF9	R/W	0	0	-	00H
FF5AH	Port function register 10	PF10	R/W	0	0	-	00H
FF5BH	Port function register 11	PF11	R/W	0	0	-	00H
FF5CH	Port function register 12	PF12	R/W	0	0	-	00H

Table 3-3: Special Function Register List (1/2)

	SFR Name	Symbol		R/W	Manipulatable Bit Unit			After
Address					1 bit	8 bits	16 bits	Reset
FF60H	16-bit timer mode control register 0	TMC0		R/W	0	0	-	00H
FF61H	Prescaler mode register 0	PRM0		R/W	-	0	-	00H
FF62H	Capture compare control register 0	CRC0		R/W	0	0	-	00H
FF63H	Timer output control register 0	TOC0		R/W	0	0	-	00H
FF64H				D			\sim	0011
FF65H	16-bit timer/counter 0	TM0		R	-	-	0	00H
FF66H	Sound generator control register	SGCR		R/W	0	0	-	00H
FF67H	Sound generator 7-bit amplitude register	SGAM		R/W	0	0	-	00H
FF68H	Sound generator buzzer control register	SGBR		R/W	0	0	-	00H
FF6FH	Serial I/F mode register	CS	SIM3	R/W	0	0	-	00H
FF70H	8-bit timer mode control register 50		1C50	R/W	0	0	-	04H
FF71H	Timer clock select register 50		CL50	R/W	-	0	-	00H
FF74H	8-bit timer mode control register 51	ΤN	IC51	R/W	0	0	-	04H
FF75H	Timer clock select register 51		CL51	R/W	-	0	-	00H
FF78H	VAN-UDL clock control register		LCCL	R/W	0	-	-	00H
FF80H	A/D converter mode register 1	A	DM1	R/W	0	0	-	00H
FF81H	Analog input channel specification register 1	ADS1		R/W	-	0	-	00H
FF82H	Power fail detector value comparison mode register	PFM		R/W	-	0	-	00H
FF83H	Power fail detector threshold value setting register	PFT		R/W	-	0	-	00H
FF84H	On Emulator for power-fail detection	DAM0		R/W	0	0	-	00H
FFA0H	Asynchronous serial interface mode register	ASIM0		R/W	0	0	-	00H
FFA1H	Asynchronous serial interface status register	ASIS0		R/W	-	0	-	00H
FFA2H	Baud rate generator control register	BR	GC0	R/W	-	0	-	00H
FFB0H	LCD display mode register	LC	DM	R/W	0	0	-	00H
FFB2H	LCD clock control register	LC	CDC	R/W	0	0	-	00H
FFE0H	Interrupt request flag register	IF0	IFOL	R/W	0	0	0	00H
FFE1H	Interrupt request flag register		IF0H	R/W	0	0		00H
FFE2H	Interrupt request flag register	IF	=1L	R/W	0	0	0	00H
FFE4H	Interrupt mask flag register	MK0	MK0L	R/W	0	0	0	FFH
FFE5H	Interrupt mask flag register		MK0H	R/W	0	0	-	FFH
FFE6H	Interrupt mask flag register	MK1L		R/W	0	0	-	FFH
FFE8H	Priority flag specification register	PR0	PROL	R/W	0	0	0	FFH
FFE9H	Priority flag specification register		PR0H	R/W	0	0		FFH
FFEAH	Priority flag specification register	P	R1L	R/W	0	0	-	00H
FFF0H	Internal memory size switching register	IMS		R/W	-	0	-	CFH
FFF4H	Internal extended RAM size switching register	IXS		R/W	-	0	-	0CH
FFF9H	Watchdog timer mode register	WDTM		R/W	0	0	-	00H
FFFAH	Oscillation stabilisation time select register	OSTS		R/W	-	0	-	04H
FFFBH	Processor clock control register	PCC		R/W	0	0	-	04H

Table 3-3: Special Function Register List (2/2)

3.3 Instruction Address Addressing

An instruction address is determined by program counter (PC) contents. The PC contents are normally incremented (+1 for each byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is executed. However, when a branch instruction is executed, the branch destination information is set to the PC and branched by the following addressing. (For details of instructions, refer to **78K/0 User's Manual - Instructions (U12326E)**.

3.3.1 Relative addressing

The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the start address of the following instruction is transferred to the program counter (PC) and branched.

The displacement value is treated as signed two's complement data (-128 to +127) and bit 7 becomes a sign bit.

In other words, the range of branch in relative addressing is between -128 and +127 of the start address of the following instruction. This function is carried out when the BR \$addr16 instruction or a conditional branch instruction is executed.

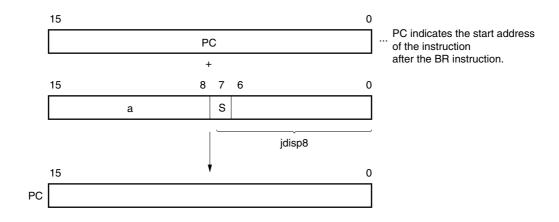


Figure 3-17: Relative Addressing

When S = 0, all bits of a are 0. When S = 1, all bits of a are 1.

3.3.2 Immediate addressing

Immediate data in the instruction word is transferred to the program counter (PC) and branched. This function is carried out when the CALL !addr16 or BR !addr16 or CALLF !addr11 instruction is executed.

CALL !addr16 and BR !addr16 instructions can branch to all the memory space. CALLF !addr11 instruction branches to the area from 0800H to 0FFFH.

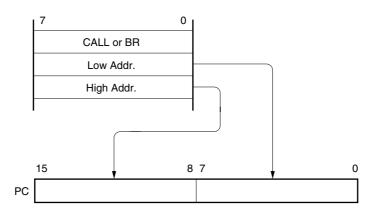
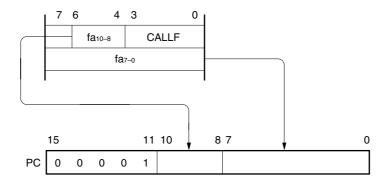



Figure 3-18: Immediate Addressing

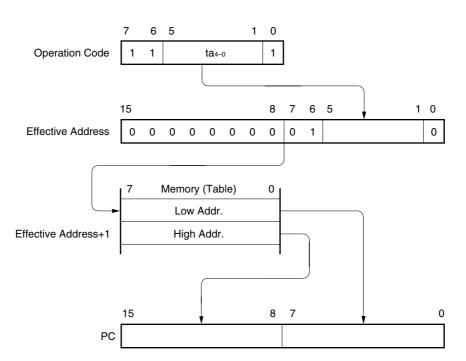
In the case of CALL !addr16 and BR !addr16 instructions

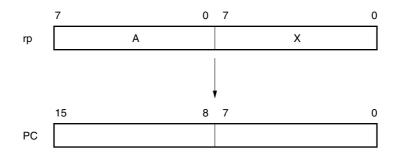
In the case of CALLF !addr11 instruction

3.3.3 Table indirect addressing

Table contents (branch destination address) of the particular location to be addressed by bits 1 to 5 of the immediate data of an operation code are transferred to the program counter (PC) and branched.

Table indirect addressing is carried out when the CALLT [addr5] instruction is executed. This instruction can refer to the address stored in the memory table 40H to 7FH and branch to all the memory space.




Figure 3-19: Table Indirect Addressing

3.3.4 Register addressing

Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC) and branched.

This function is carried out when the BR AX instruction is executed.

3.4 Operand Address Addressing

The following methods are available to specify the register and memory (addressing) which undergo manipulation during instruction execution.

3.4.1 Implied addressing

The register which functions as an accumulator (A and AX) in the general register is automatically (implicitly) addressed.

Instruction	Register to be Specified by Implied Addressing
MULU	A register for multiplicant and AX register for product storage
DIVUW	AX register for dividend and quotient storage
ADJBA/ADJBS	A register for storage of numeric values which become decimal correction targets
ROR4/ROL4	A register for storage of digit data which undergoes digit rotation

Table 3-4:	Implied	Addressing
------------	---------	------------

Operand format

Because implied addressing can be automatically employed with an instruction, no particular operand format is necessary.

Description example

In the case of MULU X

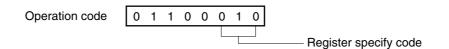
With an 8-bit x 8-bit multiply instruction, the product of A register and X register is stored in AX. In this example, the A and AX registers are specified by implied addressing.

3.4.2 Register addressing

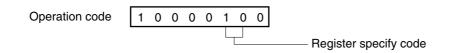
The general register is accessed as an operand. The general register to be accessed is specified with register bank select flags (RBS0 and RBS1) and register specify code (Rn, RPn) in the instruction code.

Register addressing is carried out when an instruction with the following operand format is executed. When an 8-bit register is specified, one of the eight registers is specified with 3 bits in the operation code.

Table 3-5: Register Addressing


Operand format

Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL


'r' and 'rp' can be described with function names (X, A, C, B, E, D, L, H, AX, BC, DE and HL) as well as absolute names (R0 to R7 and RP0 to RP3).

Description example

MOV A, C; when selecting C register as r

INCW DE; when selecting DE register pair as rp

3.4.3 Direct addressing

The memory indicated by immediate data in an instruction word is directly addressed.

Operand format

Table 3-6: Direct Addressing

Identifier	Description
addr16	Label or 16-bit immediate data

Description example

MOV A, !0FE00H; when setting !addr16 to FE00H

Operation code	1	0	0	0	1	1	1	0	OP code
	0	0	0	0	0	0	0	0	00H
	1	1	1	1	1	1	1	0	FEH

3.4.4 Short direct addressing

The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.

The fixed space to which this addressing is applied to is the 256-byte space, from FE20H to FF1FH. An internal high-speed RAM and a special function register (SFR) are mapped at FE20H to FEFFH and FF00H to FF1FH, respectively.

The SFR area where short direct addressing is applied (FF00H to FF1FH) is a part of the SFR area. In this area, ports which are frequently accessed in a program, a compare register of the timer/event counter, and a capture register of the timer/event counter are mapped and these SFRs can be manipulated with a small number of bytes and clocks.

When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is set to 0. When it is at 00H to 1FH, bit 8 is set to 1. Refer to Figure 3-16 below.

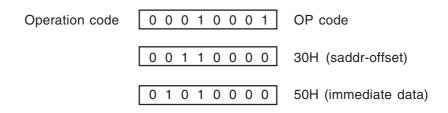
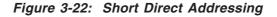
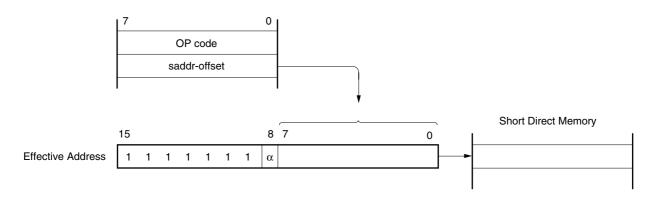

Operand format

Table 3-7:	Short	Direct	Addressing
------------	-------	--------	------------


Identifier	Description
saddr	Label of FE20H to FF1FH immediate data
saddrp	Label of FE20H to FF1FH immediate data (even address only)


Description example

MOV 0FE30H, #50H; when setting saddr to FE30H and immediate data to 50H.

Illustration

When 8-bit immediate data is 20H to FFH, α = 0 When 8-bit immediate data is 00H to 1FH, α = 1

3.4.5 Special function register (SFR) addressing

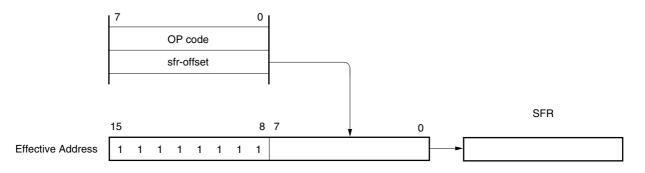
The memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word.

This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, the SFR mapped at FF00H to FF1FH can be accessed with short direct addressing.

Operand format

Table 3-8: Special-Function Register (SFR) Addressing

Identifier	Description				
sfr	Special-function register name				
sfrp	16-bit manipulatable special-function register name (even address only)				


Description example

MOV PM0, A; when selecting PM0 (FE20H) as sfr

Operation code	1	1	1	1	0	1	1	0	OP code
	0	0	1	0	0	0	0	0	20H (sfr-offset)

Illustration

3.4.6 Register indirect addressing

The memory is addressed with the contents of the register pair specified as an operand. The register pair to be accessed is specified with the register bank select flag (RBS0 and RBS1) and the register pair specify code in the instruction code. This addressing can be carried out for all the memory spaces.

Operand format

Table 3-9: Register Indirect Addressing

Identifier	Description
-	[DE], [HL]

Description example

MOV A, [DE]; when selecting [DE] as register pair

Operation code

10000101

Illustration

3.4.7 Based addressing

8-bit immediate data is added to the contents of the base register, that is, the HL register pair, and the sum is used to address the memory. The HL register pair to be accessed is in the register bank specified with the register bank select flags (RBS0 and RBS1). Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.

Operand format

Table 3-10: Based Addressing

Identifier	Description
-	[HL + byte]

Description example

MOV A, [HL + 10H]; when setting byte to 10H

Operation code

0 0 0 1 0 0 0 0	
-----------------	--

3.4.8 Based indexed addressing

The B or C register contents specified in an instruction are added to the contents of the base register, that is, the HL register pair, and the sum is used to address the memory. The HL, B, and C registers to be accessed are registers in the register bank specified with the register bank select flag (RBS0 and RBS1).

Addition is performed by expanding the contents of the B or C register as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.

Operand format

Table 3-11: Based Indexed Addressing

Identifier	Description					
-	[HL + B], [HL + C]					

Description example

In the case of MOV A, [HL + B]

V A, [HL + B]

3.4.9 Stack addressing

The stack area is indirectly addressed with the stack pointer (SP) contents.

This addressing method is automatically employed when the PUSH, POP, subroutine call and RETURN instructions are executed or the register is saved/reset upon generation of an interrupt request.

Stack addressing enables to address the internal high-speed RAM area only.

Description example

In the case of PUSH DE

Operation code 1 0 1 1 0 1 0 1

[Memo]

Chapter 4 Port Functions

4.1 Port Functions

The µPD1615A subseries units incorporate four input ports and fifty-three input/output ports. Figure 4-1 shows the port configuration. Every port is capable of 1-bit and 8-bit manipulations and can carry out considerably varied control operations. Besides port functions, the ports can also serve as on-chip hardware input/output pins.

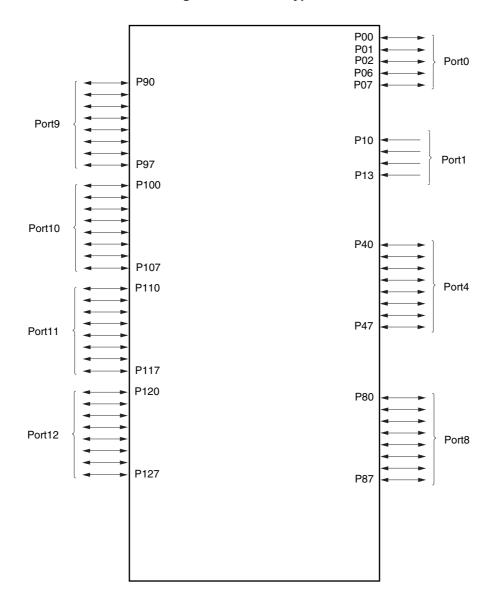


Figure 4-1: Port Types

Input / Output	Pin Name	Function	Alternate Function	After Reset			
	P00		INTP0	Input			
	P01	Port 0	INTP1	Input			
Input / Output	P02	5 bit input / output port	INTP2	Input			
Output	P06	Input / output mode can be specified bit-wise	TI50/TO50	Input			
	P07		TI51/TO51	Input			
Input	P10-P13	Port 1 4 bit input port Input mode can be specified bit-wise	ANIO-ANI3	Input			
	P40		-	Input			
1	P41		-	Input			
	P42		-	Input			
Input /	P43	Port 4	-	Input			
Output	P44	8 bit input/output port Input / output mode can be specified bit-wise	-	Input			
	P45	· · · · · · · · · · · · · · · · · · ·	-	Input			
	P46		SG0A	Input			
	P47		SG0/SG0F	Input			
Input/ Output	P80-P87	Port 8 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S39 - S32	Input			
Input/ Output	P90-P97	Port 9 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S31 - S24	Input			
Input/ Output	P100- P107	Port 10 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S23 - S16	Input			
Input/ Output	P110- P117	Port 11 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S15 - S8	Input			
	P120		PCL/S7				
	P121	1	TI00/TO0/S6	1			
1	P122	Port 12	TI01/S5	1			
Input/	P123	8 bit input / output port Input / output mode can be specified bit-wise	RxD0/S4	1.			
Output	P124	This port can be used as segment signal output port	TxD0/S3	Input			
1	P125	or an I/O port in 1-bit units by setting port function register	SCK3/S2	1			
	P126		SO3/S1				
	P127	1	SI3/S0				

Table 4-1: Pin Input/Output Types µPD1615A(A), µPD1615B(A), µPD1615F(A), µPD16F15A

Input / Output	Pin Name	Function	Alternate Function	After Reset			
•	P00		INTP0	Input			
	P01	Port 0	INTP1	Input			
Input /	P02	5 bit input / output port	INTP2	Input			
Output	P06	Input / output mode can be specified bit-wise	TI50/TO50	Input			
	P07		TI51/TO51	Input			
Input	P10-P13	Port 1 4 bit input port Input mode can be specified bit-wise	ANIO-ANI3	Input			
	P40		-	Input			
	P41		-	Input			
	P42		-	Input			
Input /	P43	Port 4	-	Input			
Output	P44	8 bit input/output port Input / output mode can be specified bit-wise	-	Input			
	P45		-	Input			
	P46		SG0A	Input			
	P47		SG0/SG0F	Input			
Input/ Output	P80-P87	Port 8 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input			
Input/ Output	P90-P97	Port 9 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input			
Input/ Output	P100- P107	Port 10 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input			
Input/ Output	P110- P117	Port 11 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	-	Input			
	P120		PCL				
	P121	1	TI00/TO0	7			
	P122	Port 12	TI01	1			
Input/	P123	8 bit input / output port Input / output mode can be specified bit-wise	RxD0	٦			
Output	P124	This port can be used as segment signal output port	TxD0	Input			
	P125	or an I/O port in 1-bit units by setting port function register	SCK3				
	P126		SO3				
	P127		SI3				

Table 4-2: Pin Input/Output Types µPD1616F(A)

4.2 Port Configuration

A port consists of the following hardware:

Table	4-3:	Port	Configuration
-------	-------------	------	---------------

Item	Configuration
Control register	Port mode register (PMm: $m = 0, 4, 8$ to 12) Port function register (PFm: $m = 8$ to 12)
Port	Total: 57 ports

4.2.1 Port 0

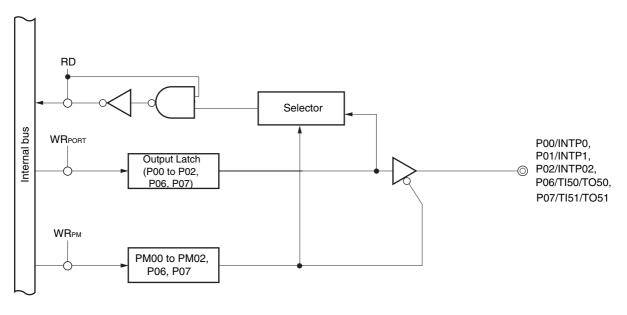
Port 0 is an 5-bit input/output port with output latch. P00 to P02 and P06, P07 pins can be specified as input mode/output mode in 1-bit units with the port mode register 0 (PM0).

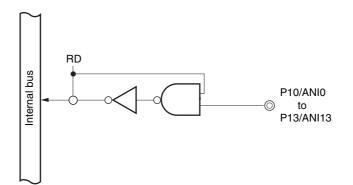
<u>Dual-functions</u> include external interrupt request input.

RESET input sets port 0 to input mode.

Figure 4-2 shows block diagram of port 0.

Caution: Because port 0 also supports the external interrupt request input, when the port function output mode is specified and the output level is changed, the interrupt request flag is set. Thus, when the output mode is used, set the interrupt mask flag to 1.




Figure 4-2: P00 to P02 and P06, P07 Configurations

- PM : Port mode register
- RD : Port 0 read signal
- WR : Port 0 write signal

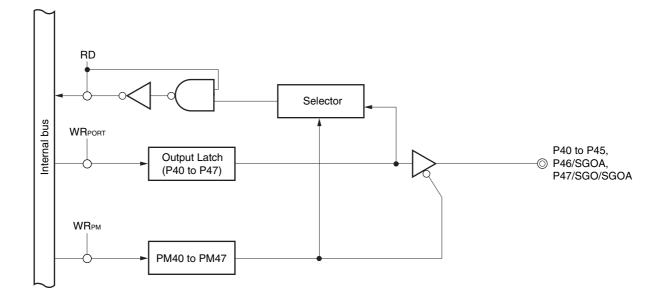
4.2.2 Port 1

Port 1 is a 4-bit input only port. Dual-functions include an A/D converter analog input. Figure 4-3 shows a block diagram of port 1.

Figure 4-3: P10 to P13 Configurations

RD : Port 1 read signal

4.2.3 Port 4


Port 4 is an 8-bit input/output port with output latch. P40 to P47 pins can specify the input mode/output mode in 1-bit units.

Dual-function includes the sound generator output.

RESET input sets port 4 to input mode.

Figure 4- 4 shows a block diagram of port 4.

- PM : Port mode register
- RD : Port 4 read signal

WR : Port 4 write signal

4.2.4 Port 8

Port 8 is an 8-bit input/output port with output latch. P80 to P87 pins can be specified as input mode/ output mode in 1-bit units with the port mode register 8 (PM8).

Dual-function includes the segment signal outputs of LCD controller driver. The dual-function can be selected with the port function register 8 (PF8).

RESET input sets port 8 to input mode.

Figure 4-5 shows a block diagram of port 8.

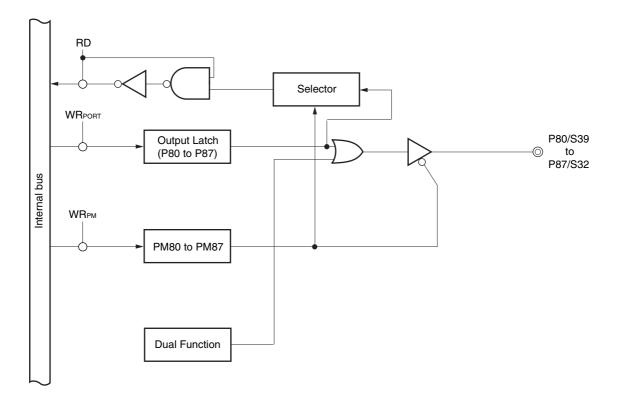


Figure 4-5: P80 to P87 Configurations

- PM : Port mode register
- RD : Port 8 read signal
- WR : Port 8 write signal

Note: The LCD controller/driver segment signal output is only valid on the μ PD1615 and the μ PD16F15.

4.2.5 Port 9

This is an 8-bit input/output port with output latches. Input mode/output mode can be specified in 1-bit units with a port mode register 9.

Dual-function includes the segment signal outputs of LCD controller driver. The dual-function can be specified with the port function register 9 (PF9).

RESET input sets port 9 to input mode.

Figure 4-6 shows a block diagram of port 9.

Caution: When used as segment lines, set the port function PF9 according to its functions.

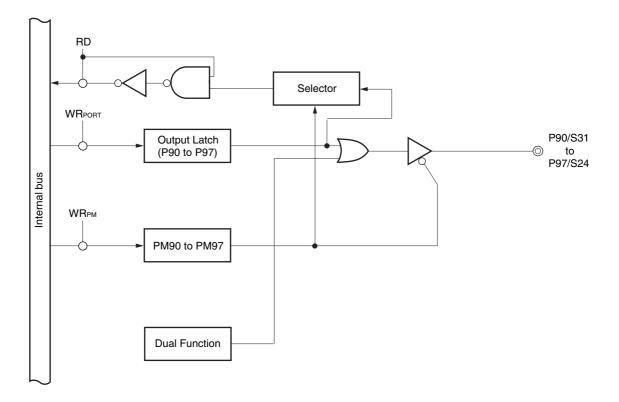


Figure 4-6: P90 to P97 Configurations

PM : Port mode register

RD : Port 9 read signal

WR : Port 9 write signal

Note: The LCD controller/driver segment signal output is only valid on the μ PD1615A(A), μ PD1615B(A), μ PD1615F(A), and the μ PD16F15A.

4.2.6 Port 10

This is an 8-bit input/output port with output latches. Input mode/output mode can be specified in 1-bit units with a port mode register 10.

These pins are dual function pins and serve as segment signal output of LCD controller driver. The dual-function can be specified with the port function register 10 (PF10).

RESET input sets port 10 to input mode.

Figure 4-7 shows a block diagram of port 10.

Caution: When used as segment lines, set the port function PF9 according to its functions.

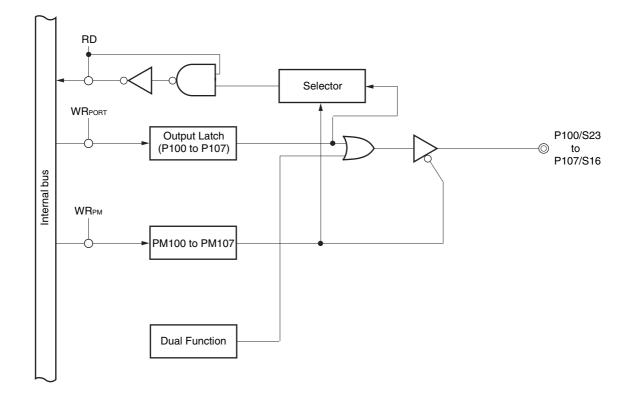


Figure 4-7: P100 to P107 Configurations

- PM : Port mode register
- RD : Port 10 read signal
- WR : Port 10 write signal
- Note: The LCD controller/driver segment signal output is only valid on the μ PD1615A(A), μ PD1615B(A), μ PD1615F(A), and the μ PD16F15A.

4.2.7 Port 11

This is an 8-bit input/output port with output latches. Input mode/output mode can be specified in 1-bit units with a port mode register 11.

These pins are dual function pins and serve as segment signal output of LCD controller driver. The dual-function can be specified with the port function register 11 (PF11).

RESET input sets port 11 to input mode.

Figure 4-8 shows a block diagram of port 11.

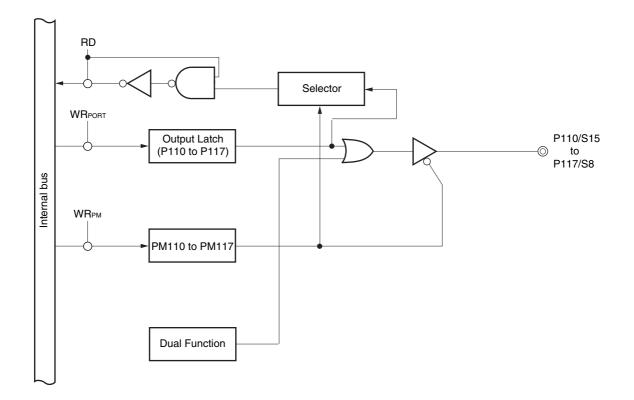


Figure 4-8: P110 to P117 Configurations

PM : Port mode register

RD : Port 11 read signal

WR : Port 11 write signal

Note: The LCD controller/driver segment signal output is only valid on the μ PD1615A(A), μ PD1615B(A), μ PD1615F(A), and the μ PD16F15A.

4.2.8 Port 12

This is an 8-bit input/output port with output latches. Input mode/output mode can be specified in 1-bit units with a port mode register 12.

These pins are dual function pins and serve as segment signal output of LCD controller driver. The dual-function can be specified with the port function register 12 (PF12).

RESET input sets port 12 to input mode.

Figure 4-9 shows a block diagram of port 12.

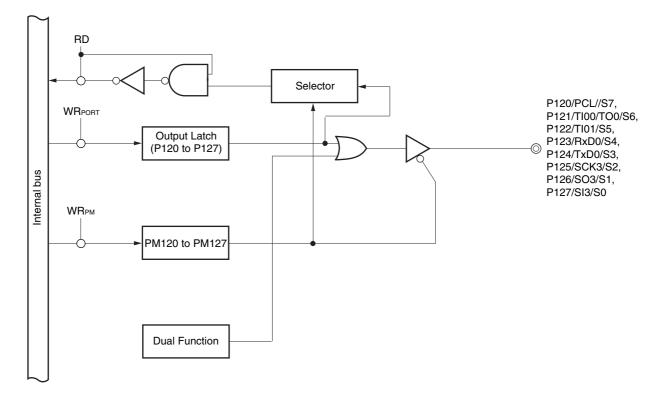


Figure 4-9: P120 to P127 Configurations

- PM : Port mode register
- RD : Port 12 read signal
- WR : Port 12 write signal
- Note: The LCD controller/driver segment signal output is only valid on the μ PD1615A(A), μ PD1615B(A), μ PD1615F(A), and the μ PD16F15A.

4.3 Port Function Control Registers

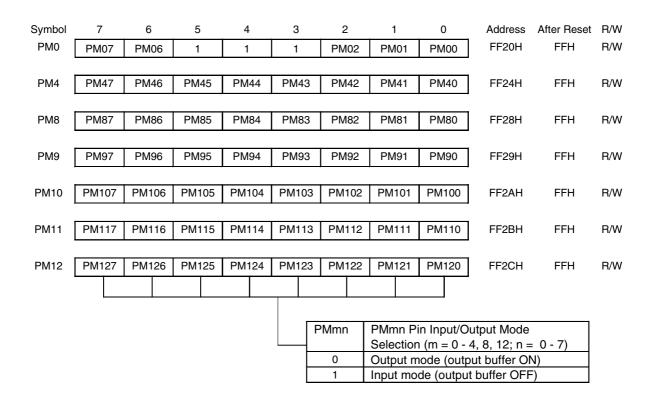
The following four types of registers control the ports.

- Port mode registers (PM0, PM4, PM8 to PM12)
- Port function registers (PFm : m = 8 to 12)

(1) Port mode registers (PM0, PM4, PM8 to PM12)

These registers are used to set port input/output in 1-bit units.

PM0, PM4, PM7, PM10 and PM12 are independently set with a 1-bit or 8-bit memory manipulation instruction.


RESET input sets registers to FFH.

When port pins are used as alternate-function pins, set the port mode register and output latch according to the function.

Cautions: 1. Pins P10 to P13 are input-only pins.

2. As port 0 has an alternate function as external interrupt request input, when the port function output mode is specified and the output level is changed, the interrupt request flag is set. When the output mode is used, therefore, the interrupt mask flag should be set to 1 beforehand.

ΝΕC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

Figure 4-10: Port Mode Register Format

3) Port function register (PF8 to PF12)

This register is used to set LCD segment function of ports 8 to 12. PF8 to PF12 are set with an 1-bit or 8-bit manipulation instruction. RESET input set this registors to 00H.

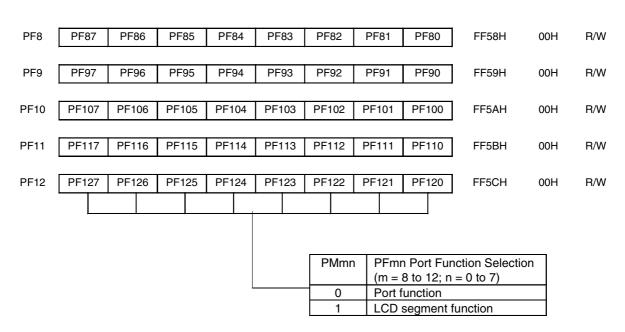


Figure 4-11: Port Function Register (PF8 to PF12) Format

Caution: For μ PD1616F(A) it is only allowed to set 00h to the port function register.

4.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

4.4.1 Writing to input/output port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.

Once data is written to the output latch, it is retained until data is written to the output latch again.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is OFF, the pin status does not change.

Once data is written to the output latch, it is retained until data is written to the output latch again.

Caution: In the case of 1-bit memory manipulation instruction, although a single bit is manipulated the port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined except for the manipulated bit.

4.4.2 Reading from input/output port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

4.4.3 Operations on input/output port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again.

(2) Input mode

The output latch contents are undefined, but since the output buffer is OFF, the pin status does not change.

Caution: In the case of 1-bit memory manipulation instruction, although a single bit is manipulated the port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined, even for bits other than the manipulated bit.

[Memo]

Chapter 5 Clock Generator

5.1 Clock Generator Functions

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following two types of system clock oscillators are available.

(1) Main system clock oscillator

This circuit oscillates at frequencies of 3.9 to 8.38 MHz. Oscillation can be stopped by executing the STOP instruction or setting the processor clock control register.

(2) Subsystem clock oscillator

The circuit oscillates at a typical frequency of 40 KHz. Oscillation cannot be stopped.

5.2 Clock Generator Configuration

The clock generator consists of the following hardware.

Table 5-1: Clock Generator Configuration

Item	Configuration
Control register	Processor clock control register (PCC)
Oscillator	Main system clock oscillator Subsystem clock oscillator

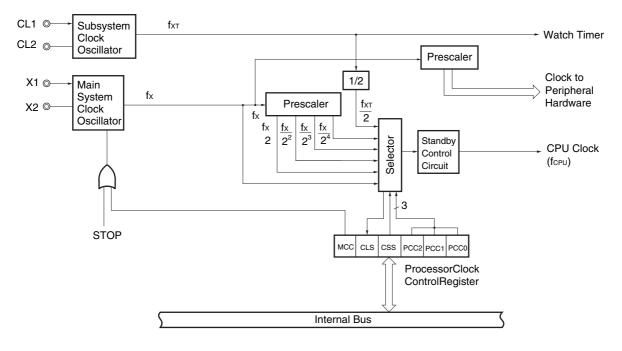


Figure 5-1: Block Diagram of Clock Generator

5.3 Clock Generator Control Register

The clock generator is controlled by the processor clock control register (PCC).

(1) Processor clock control register (PCC)

The PCC selects a CPU clock and the division ratio, determines whether to make the main system clock oscillator operate or stop.

The PCC is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets the PCC to 04H.

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PCC	MCC	0	CLS	CSS	0	PCC2	PCC1	PCC0	FFFBH	04H	$R/W^{Note 1}$
		1	-								
R/W	CSS	PCC2	PCC1	PCC0	C	PU Clock	Selectior	n (fCPU)			
		0	0	0	fx (0.25	μs)					
		0	0	1	fx/2 (0.5	μs)					
	0	0	1	0	fx/2 ² (1 µ	us)					
		0	1	1	fx/2 ³ (2 µ	us)					
		1	0	0	fx/2 ⁴ (4 µ	us)					
		0	0	0							
		0	0	1							
	1	0	1	0	fxT/2 (12	22 μs)					
		0	1	1							
		1	0	0							
		Other that	an above			Settin	g prohibite	ed			
		ň									
R	CLS			C	PU Clock	Status					
	0	Main system clock									
	1	Subsystem clock									
1		i									
R/W	MCC	Main System Clock Oscillation Control									
	0	Oscillation enable									
	1	Oscillation stopped									
otes:	1. Bit	5 is a r	ead-onl	v bit.							
					a on the	subsvs	stem clo	ck MCC	should be	e used to st	op the mai
				•	-			hould not			op
	Gyt			lation.							

Figure 5-2: Processor Clock Control Register Format

- Not
 - lin

Cautions: 1. Bit 3 must be set to 0.

- 2. When external clock input is used MCC should not be set, because the X2 pin is connected to VDD via a resistor.
- **1.** fx : Main system clock oscillation frequency Remarks:
 - **2.** fxt : Subsystem clock oscillation frequency
 - 3. Figures in parentheses indicate minimum instruction execution time: 2fcpu when operating at fx = 8.0 MHz or fxT = 32.768 kHz.

5.4 System Clock Oscillator

5.4.1 Main system clock oscillator

The main system clock oscillator oscillates with a crystal resonator or a ceramic resonator (standard: 8.0 MHz) connected to the X1 and X2 pins.

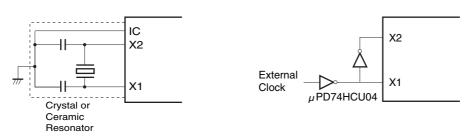

External clocks can be input to the main system clock oscillator. In this case, the clock signal to the X1 pin and an inversed phase clock signal to the X2 pin.

Figure 5-3 shows an external circuit of the main system clock oscillator.

Figure 5-3: External Circuit of Main System Clock Oscillator

(a) Crystal and ceramic oscillation

(b) External clock

Caution: Do not execute the STOP instruction and do not set MCC [bit 7 of processor clock control register (PCC)] to 1 if an external clock is input. This is because when the STOP instruction or MCC is set to 1, the main system clock operation stops and the X2 pin is connected to VDD1 via a pull-up resistor.

5.4.2 Subsystem clock oscillator

The subsystem clock oscillator oscillates with a RC-resonator (standard: 40kHz) connected to the CL1 and CL2 pins.

External clocks can be input to the subsystem clock oscillator. In this case, input a clock signal to the CL1 pin and open the CL2 pin.

Figure 5-4 shows an external circuit of the subsystem clock oscillator.

Figure 5-4: External Circuit of Subsystem Clock Oscillator

- (a) RC oscillation (b) External clock R CL2 CL1 CL1 External CL2 CL1 CL1
- Caution: When using a main system clock oscillator and a subsystem clock oscillator, carry out wiring in the broken-line area in Figures 6-3 and 6-4 as follows to prevent any effects from wiring capacities.
 - Minimize the wiring length.
 - Do not allow wiring to intersect with other signal conductors. Do not allow wiring to come near abruptly changing high current.
 - Set the potential of the grounding position of the oscillator capacitor to that of Vss. Do not ground to any ground pattern where high current is present.
 - Do not fetch signals from the oscillator.

Take special note of the fact that the subsystem clock oscillator is a circuit with low-level amplification so that current consumption is maintained at low levels.

Figure 5-5 shows examples of oscillator having bad connection.

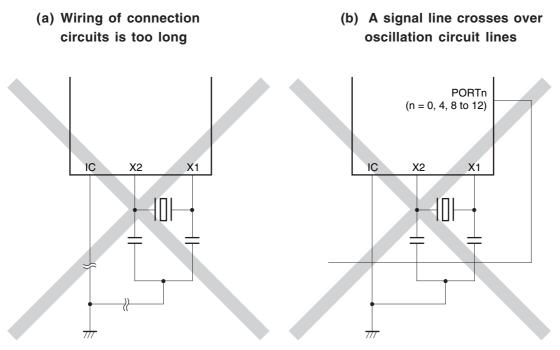
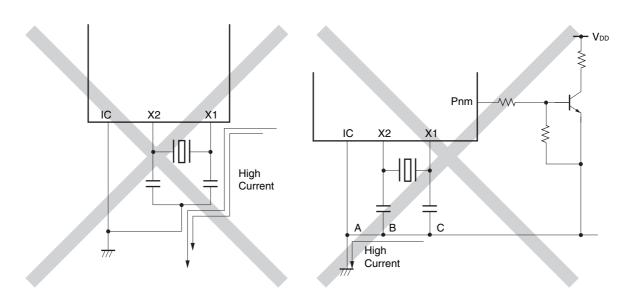
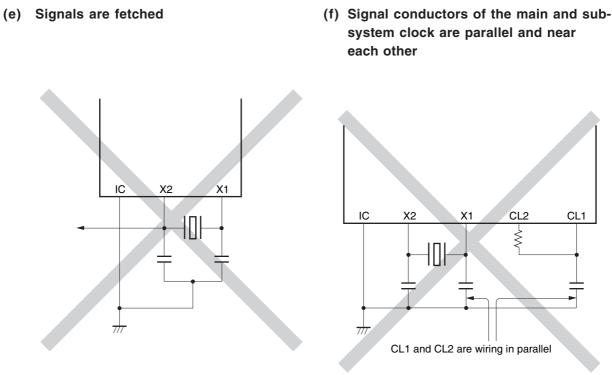




Figure 5-5: Examples of Oscillator with Bad Connection (1/3)

Figure 5-5: Examples of Oscillator with Bad Connection (2/3)

- (c) Changing high current is too near a signal conductor
- (d) Current flows through the grounding line of the oscillator (potential at points A, B, and C fluctuate)

- Figure 5-5: Examples of Oscillator with Bad Connection (3/3)

(f) Signal conductors of the main and sub-

Caution: In Figure 5-5 (f), CL1 and X1 are wired in parallel. Thus, the cross-talk noise of X1 may increase with CL1, resulting in malfunctioning. To prevent that from occurring, it is recommended to wire CL1 and X1 so that they are not in parallel, and to connect the IC pin between CL1 and X1 directly to Vss.

5.4.3 When no subsystem clocks are used

If it is not necessary to use subsystem clocks for low power consumption operations and clock operations, connect the CL1 and CL2 pins as follows.

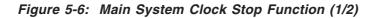
CL1: Connect to VDD or GND

CL2: Open

5.5 Clock Generator Operations

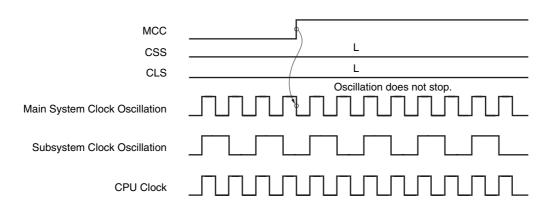
The clock generator generates the following various types of clocks and controls the CPU operating mode including the standby mode.

- Main system clock fx
- Subsystem clock fxT
- CPU clock fcpu
- Clock to peripheral hardware

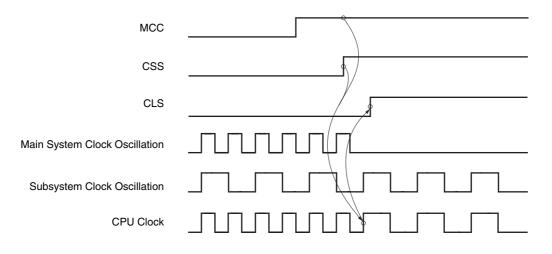

The following clock generator functions and operations are determined with the processor clock control register (PCC).

- (a) Upon generation of RESET signal, the lowest speed mode of the main system clock (4 μ s when operated at 8.0 MHz) is selected (PCC = 04H). Main system clock oscillation stops while low level is applied to RESET pin.
- (b) With the main system clock selected, one of the five CPU clock stages (fx, fx/2, fx/2², fx/2³ or $fx/2^4$) can be selected by setting the PCC.
- (c) With the main system clock selected, two standby modes, the STOP and HALT modes, are available.
- (d) The PCC can be used to select the subsystem clock and to operate the system with low current consumption (122 μ s when operated at 32.768 kHz).
- (e) With the subsystem clock selected, main system clock oscillation can be stopped with the PCC. The HALT mode can be used. However, the STOP mode cannot be used. (Subsystem clock oscillation cannot be stopped.)

5.5.1 Main system clock operations


When operated with the main system clock (with bit 5 (CLS) of the processor clock control register (PCC) set to 0), the following operations are carried out by PCC setting.

- (a) Because the operation guarantee instruction execution speed depends on the power supply voltage, the instruction execution time can be changed by bits 0 to 2 (PCC0 to PCC2) of the PCC.
- (b) If bit 7 (MCC) of the PCC is set to 1 when operated with the main system clock, the main system clock oscillation does not stop. When bit 4 (CSS) of the PCC is set to 1 and the operation is switched to subsystem clock operation (CLS = 1) after that, the main system clock oscillation stops (see Figure 5-6).


- MCC CSS CLS Main System Clock Oscillation Subsystem Clock Oscillation CPU Clock
- (a) Operation when MCC is set after setting CSS with main system clock operation

(b) Operation when MCC is set in case of main system clock operation

Figure 5-6: Main System Clock Stop Function (2/2)

(c) Operation when CSS is set after setting MCC with main system clock operation

5.5.2 Subsystem clock operations

When operated with the subsystem clock (with bit 5 (CLS) of the processor clock control register (PCC) set to 1), the following operations are carried out.

- (a) The instruction execution time remains constant (122 μ s when operated at 32.768 kHz) irrespective of bits 0 to 2 (PCC0 to PCC2) of the PCC.
- (b) Watchdog timer counting stops.

Caution: Do not execute the STOP instruction while the subsystem clock is in operation.

5.6 Changing System Clock and CPU Clock Settings

5.6.1 Time required for switchover between system clock and CPU clock

The system clock and CPU clock can be switched over by means of bit 0 to bit 2 (PCC0 to PCC2) and bit 4 (CSS) of the processor clock control register (PCC).

The actual switchover operation is not performed directly after writing to the PCC, but operation continues on the pre-switchover clock for several instructions (see Table 5-2).

Determination as to whether the system is operating on the main system clock or the subsystem clock is performed by bit 5 (CLS) of the PCC register.

SetVa			Set Values before Switchover																									
MCS	CSS	F002	PCC1	FCC0	CSS	PCC2	PCC1	PCCO	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCCO	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCCO	CSS	PCC2	PCC1	PCC0
					0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1	Х	х	Х
X	0	0	0	0					8 instructions			4 instructions			2 i	2 instructions		1i	1 instruction		1 i	1 instruction						
		0	0	1	16i	16instructions				4 i	nstr	ructions 2 instructions				ons	1 instruction			1 i	1 instruction							
		0	1	0	16i	16instructions 8 instruction			ons	2 instructions			1 instruction		1 i	nstrı	uctio	on										
		0	1	1	16i	nstru	ctior	IS	8 i	nstr	uctio	ons	4 i	nstr	uctio	ons					11	nstri	uctio	on	1 i	nstrı	uctio	on
		1	0	0	16i	nstru	ctior	IS	8 i	nstr	uctio	ons	4 i	nstr	uctio	ons	2 i	nstr	uctio	ons					1 i	nstrı	uctio	on
1	1	Х	Х	Х	fx/2	fx t ins t	tructio	on	fx/4	fxTins	tructi	on	fx/8	fx⊤ins	tructi	on	fx/1	6fxt in	struc	tion	fx/3	2fxT in	nstruc	tion	\square			
					(77	instru	ctions	6)	(39	instru	ctions	s)	(20	instru	ctions	6)	(10	instru	ction	s)	(5 ir	nstruc	tions)				
0					fx/4	fx t ins t	tructio	on	fx/8	fxTins	tructi	on	fx/1	6fx⊤in	struc	tion	fx/3	2fxT in	struc	tion	fx/6	4fx⊤in	nstruc	tion				
					(39	instru	ctions	6)	(20	instru	ction	s)	(10	instru	ctions	s)	(5iı	nstruc	tions)	(3ir	nstruc	tions)				

Table 5-2: Maximum Time Required for CPU Clock Switchover

- Caution: Selection of the CPU clock cycle scaling factor (PCC0 to PCC2) and switchover from the main system clock to the subsystem clock (changing CSS from 0 to 1) should not be performed simultaneously. Simultaneous setting is possible, however, for selection of the CPU clock cycle scaling factor (PCC0 to PCC2) and switchover from the subsystem clock to the main system clock (changing CSS from 1 to 0).
- **Remarks: 1.** One instruction is the minimum instruction execution time with the pre-switchover CPU clock.

5.6.2 System clock and CPU clock switching procedure

This section describes switching procedure between system clock and CPU clock.

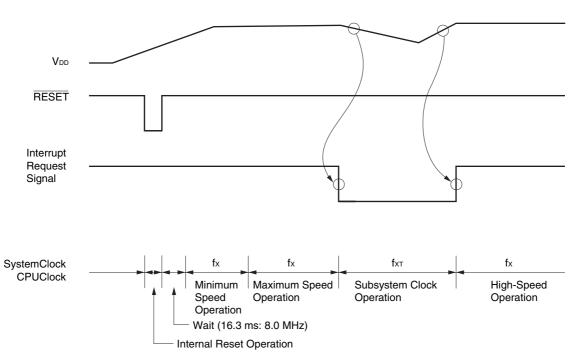


Figure 5-7: System Clock and CPU Clock Switching

- The CPU is reset by setting the RESET signal to low level after power-on. After that, when reset is released by setting the RESET signal to high level, main system clock starts oscillation. At this time, oscillation stabilization time (2¹⁷/fx) is secured automatically. After that, the CPU starts executing the instruction at the minimum speed of the main system clock (4 μs when operated at 8.0 MHz).
- (2) After the lapse of a sufficient time for the VDD voltage to increase to enable operation at maximum speeds, the processor clock control register (PCC) is rewritten and the maximum-speed operation is carried out.
- (3) Upon detection of a decrease of the VDD voltage due to an interrupt request signal, the main system clock is switched to the subsystem clock (which must be in an oscillation stable state).
- (4) Upon detection of Vbb voltage reset due to an interrupt request signal, 0 is set to bit 7 (MCC) of PCC and oscillation of the main system clock is started. After the lapse of time required for stabilization of oscillation, the PCC is rewritten and the maximum-speed operation is resumed.
- Caution: When subsystem clock is being operated while main system clock was stopped, if switching to the main system clock is made again, be sure to switch after securing oscillation stable time by software.

[Memo]

Chapter 6 16-Bit Timer/ Event Counter

6.1 16-bit Timer/Event Counter Function

16-bit timer/event counter (TM0) has the following functions:

- Interval timer
- PPG output
- Pulse width measurement
- External event counter
- Square wave output

(1) Interval timer

When 16-bit timer/event counter is used as an interval timer, it generates an interrupt request at predetermined time intervals.

(2) PPG output

16-bit timer/event counter can output a square wave whose frequency and output pulse width can be freely set.

(3) Pulse width measurement

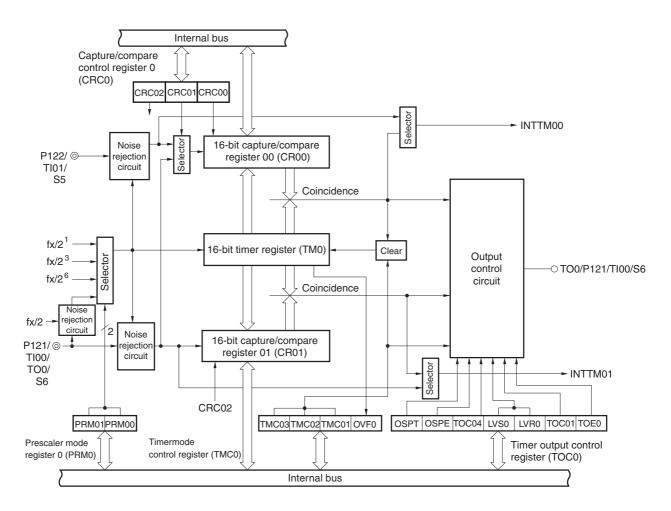
16-bit timer/event counter can be used to measure the pulse width of a signal input from an external source.

(4) External event counter

16-bit timer/event counter can be used to measure the number of pulses of a signal input from an external source.

(5) Square wave output

16-bit timer/event counter can output a square wave any frequency.


6.2 16-bit Timer/Event Counter Configuration

16-bit timer/event counter (TM0) consists of the following hardware:

Table	6-1:	Configuration	of	16-bit	Timer/Event	Counter	(TM0)
-------	------	---------------	----	--------	-------------	---------	-------

Item	Configuration
Timer register	16 bits x 1 (TM0)
Register	Capture/compare register: 16 bits x 2 (CR00, CR01)
Timer output	1 (TO0)
Control register	16-bit timer mode control register (TMC0) Capture/compare register 0 (CRC0) 16-bit timer output control register (TOC0) Prescaler mode register 0 (PRM0) Port mode register 12 (PM12)

Figure 6-1: Block Diagram of 16-Bit Timer/Event Counter (TM0)

1) 16-bit timer register (TM0)

TMO is a 16-bit read-only register that counts count pulses.

The counter is incremented in synchronization with the rising edge of an input clock. If the count value is read during operation, input of the count clock is temporarily stopped, and the count value at that point is read. The count value is reset to 0000H in the following cases:

- <1> RESET is input.
- <2> TMC03 and TMC02 are cleared.
- <3> Valid edge of TI00 is input in the clear & start mode by inputting valid edge of TI00.
- <4> TM0 and CR00 coincide with each other in the clear & start mode on coincidence between TM0 and CR00.

2) Capture/compare register 00 (CR00)

CR00 is a 16-bit register that functions as a capture register and as a compare register. Whether this register functions as a capture or compare register is specified by using bit 0 (CRC00) of the capture/compare control register 0.

• When using CR00 as compare register

The value set to CR00 is always compared with the count value of the 16-bit timer register (TM0). When the values of the two coincide, an interrupt request (INTTM00) is generated. When TM00 is used as an interval timer, CR00 can also be used as a register that includes the interval time and as register which sets the pulse width in the PPD operation mode.

• When using CR00 as capture register

The valid edge of the TI00 or TI01 pin can be selected as a capture trigger. The valid edge of TI00 and TI01 is performed via the prescaler mode register 0 (PRM0).

Tables 6-2 and 6-3 show the conditions that apply when the capture trigger is specified as the valid edge of the TI00 pin and the valid edge of the TI01 pin respectively.

Table 6-2: Valid Edge of TI00 Pin and Valid Edge of Capture Trigger of Capture/Compare Register

ES01	ES00	Valid Edge of TI00 Pin	Capture Trigger of CR00	Capture Trigger of CR01
0	0	Falling edge	Rising edge	Falling edge
0	1	Rising edge	Falling edge	Rising edge
1	0	Setting prohibited	Setting prohibited	Setting prohibited
1	1	Both rising and falling edges	No capture operation	Both rising and falling edges

Table 6-3: Valid Edge of TI01 Pin and	Valid Edge of Capture T	rigger of Capture/Compare Register

ES01	ES00	Valid Edge of TI01 Pin	Capture Trigger of CR00
0	0	Falling edge	Rising edge
0	1	Rising edge	Falling edge
1	0	Setting prohibited	Setting prohibited
1	1	Both rising and falling edges	Both rising and falling edges

CR00 is set by a 16-bit memory manipulation instruction. After RESET input, the value of CR00 is undefined.

- Cautions: 1. Set a value other than 0000H in CR00. This means 1-pulse count operation cannot be performed when CR00 is used as an event counter. However, in the free-running mode and in the clear mode using the valid edge of Tl00, if 0000H is set to CR00, an interrupt request (INTTM00) is generated following overflow (FFFFH).
 - 2. If the new value of CR00 is less than the value of 16-bit timer counter 0 (TM0), TM0 continues counting, overflows, and than starts counting from 0 again. If the new value CR00 is less than the old value, therefore, the timer must be restarted after the value of CR00 is changed.

3) 16-bit capture/compare register 01 (CR01)

CR01 is a 16-bit register which has the functions of both a capture register and a compare register. Whether it is used as a capture register or a compare register is set bit 2 (CRC02) of capture/compare control register 0 (CRC0).

• When CR01 is used as a compare register

The value set in the CR01 is constantly compared with the 16-bit timer counter 0 (TM0) count value, and an interrupt request (INTTM01) is generated if they match.

• When CR01 is used as a capture register

It is possible to select the valid edge of the TI00 pin as the capture trigger. The TI00 valid edge is set by means of the prescaler mode register 0 (PRM0).

CR01 is set by a 16-bit memory manipulation instruction. The value of this register is undefined when $\overrightarrow{\text{RESET}}$ is input.

Caution: Set other than 0000H to CR01. This means, that an 1-pulse count operation cannot be performed when CR01 is used as an event counter. However, in the free-running mode and in the clear mode using the valid edge of TI00, if 0000H is set to CR01, an interrupt request (INTTM01) is generated following overflow (FFFFH).

6.3 16-Bit Timer/Event Counter Control Register

The following four types of registers control 16-bit timer/event counter (TM0).

- 16-bit timer mode control register (TMC0)
- Capture/compare control register (CRC0)
- 16-bit timer output control register (TOC0)
- Prescaler mode register 0 (PRM0)
- Port mode register 12 (PM12)

(1) 16-bit timer mode control register (TMC0)

This register specifies the operation mode of the 16-bit timer and the clear mode, output timing, and overflow detection of the 16-bit timer register.

TMC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TMC0 to 00H.

Caution: The 16-bit timer register starts operating when a value other than 0, 0 (operation stop mode) is set to TMC02 and TMC03. To stop the operation, set 0, 0 to TMC02 and TMC03.

Symbol	7	6	5	4	3	2	1	\bigcirc	
тмсо	0	0	0	0	TMC03	TMC02	TMC0	1 OVF0	
		TMC03	TMC02	TMC01	Operating Mod Clear mode an clear mode		n of TO0 iming	Generation of interrupt	
		0	0	0	Operation sto	P Not affe	cted	Does not generate.	
		0	0	1	(TM0 is cleared to 0).	a			
	0 1 0 Free running Coincide mode and CR0 coincide between and CR0		n TM0 00 or ence n TM0	Generates on coincidence between TM0 and CR00 and coincidence between TM0					
		0	1	1		Coincide between and CR coincide between and CR valid ed TI00	n TM0 20, ence n TM0 01, or	and CR01.	
		1	0	0	Clears and starts at valid edge of TI00.		-		
		1	0	1			-		
		1	1	0	Clears and starts on coincidence between TM0 and CR00.	Coincide between and CR coincide between and CR	n TM0 00 or ence n TM0		
		1	1	1		Coincide betweer and CR coincide betweer and CR valid ed TI00	n TM0 20, ence n TM0 01, or		

Figure 6-2: Format of 16-Bit Timer Mode Control Register (TMC0)

Address: FF60H After Reset: 00H R/W

0VF0	Detection of overflow of 16-bit timer register
0	Overflows.
1	Does not overflow.

- Cautions: 1. Before changing the clear mode and TO0 output timing, be sure to stop the timer operation (reset TMC02 and TMC03 to 0, 0).
 - 2. The valid edge of the TI00 pin is selected by using the prescaler mode register 0 (PRM0).
 - 3. When a mode in which the timer is cleared and started on coincidence between TM0 and CR00, the OVF0 flag is set to 1 when the count value of TM0 changes from FFFFH to 0000H with CR00 set to FFFFH.

ΝΕC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

Remark:	T00	:	output pin of 16-bit timer/counter (TM0)
	TI00	:	input pin of 16-bit timer/counter (TM0)
	TM0	:	16-bit timer register

CR00: compare register 00

CR01: compare register 01

(2) Capture/compare control register 0 (CRC0)

This register controls the operation of the capture/compare registers (CR00 and CR01). <u>CRC0</u> is set by a 1-bit or 8-bit memory manipulation instruction. <u>RESET</u> input sets CRC0 to 00H.

Figure 6-3: Format of Capture/Compare Control Register 0 (CRC0)

Address:	FF62H After	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
CRC0	0	0	0	0	0	CRC02	CRC01	CRC00
		CRC02		Selec	ction of opera	tion mode of	CR01	

CRC02	Selection of operation mode of CR01
0	Operates as compare register
1	Operates as capture register
	-

CRC01	Selection of capture trigger of CR00							
0	Captured at valid edge of TI01							
1	Captured in reverse phase of valid edge of TI00							

CRC00	Selection of operation mode of CR00
0	Operates as compare register
1	Operates as capture register

Cautions: 1. Before setting CRC0, be sure to stop the timer operation.

- 2. When the mode in which the timer is cleared and started on coincidence between TM0 and CR00 is selected by the 16-bit timer mode control register (TMC0), do not specify CR00 as a capture register.
- 3. If valid edge of TI00 is both falling and rising, the capture operation is not available when CRC01 = 1.
- 4. To surely perform the capture operation, the capture trigger requires a pulse two times longer than the count clock selected by the prescaler mode register 0 (PRM0).

(3) 16-bit timer output control register (TOC0)

This register controls the operation of the 16-bit timer/event counter (TM0) output control circuit by setting or resetting the R-S flip-flop, enabling or disabling reverse output, enabling or disabling output of 16-bit timer/counter (TM0).

TOC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TOC0 to 00H.

Figure 6-4 shows the format of TOC0.

Figure 6-4: Format of 16-Bit Timer Output Control Register (TOC0)

Address: FF63H After Reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TOC0	0	0	0	TOC04	LVS0	LVR0	TOC01	TOE0

TOC04	Timer output F/F control on coincidence between CR01 and TM0
0	Disables inversion timer output
1	Enables inversion timer output

LVS0	LVR0	Set status of timer output F/F of 16-bit timer/counter (TM0)
0	0	Not affected
0	1	Resets timer output F/F (0)
1	0	Sets timer output F/F (1)
1	1	Setting prohibited

TOC01	Timer output F/F control on coincidence between CR00 and TM0
0	Disables inversion timer output F/F
1	Enables inversion timer output F/F

TOE0	Output control of 16-bit timer/counter (TM0)
0	Disables output (port mode)
1	Enables output

Cautions: 1. Before setting TOC0, be sure to stop the timer operation.

- 2. LVS0 and LVR0 are 0 when read after data have been set to them.
- 3. Be sure to set bits 5 to 7 to 0.

(4) Prescaler mode register 0 (PRM0)

1

1

0

1

This register selects a count clock of the 16-bit timer/event counter (TM0) and the valid edge of TI00, <u>TI01 input.</u> PRM0 is set by an 8-bit memory manipulation instruction. RESET input sets PRM0 to 00H.

Address: F	F61H Aft	er Reset: 00)H R/W					
Symbol	7	6	5	4	3	2	1	0
PRM0	ES11	ES10	ES01	ES00	0	0	PRM01	PRM00
		ES11	ES10		Selectior	n of valid edg	e of TI01	
		0	0	Falling edge	Э			
		0	1	Rising edge)			

Setting prohibited

Both falling and rising edges

Figure 6-5: Format of Prescaler Mode Register 0 (PRM0)	Figure 6-5:	Format o	of Prescaler	Mode	Register	0 (PRM0)
--	-------------	----------	--------------	------	----------	----------

ES01	ES00	Selection of valid edge of TI00
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

PRM01	PRM00	Selection of count clock
0	0	fx/2 ¹ (4.00 MHz)
0	1	fx/2 ³ (1.00 MHz)
1	0	fx/2 ⁶ (125 KHz)
1	1	Valid edge of TI00 ^{Note}

Note: The external clock requires a pulse two times longer than internal count clock (fx/2¹).

- Cautions: 1. If the valid edge of TI00 is to be set to the count clock, do not set the clear/start mode and the capture trigger at the valid edge of TI00.
 - 2. Be sure to stop timer operation before setting PRM0.
 - 3. If the TI00 or TI01 in is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI00 pin or TI01 pin to enable the operation of the 16-bit timer/counter 0 (TM0). Please be careful when pulling up the TI00 pin or the TI01 pin. However, when re-enabling operation after the operation has been stopped once, the rising edge is not detected.

Remarks: 1. fx: Main system clock operation frequency

- 2. TI00,TI01: 16-bit timer/event counter 0 input pin
- 3. Figures in parentheses are for operation with fx = 8.0 MHz.

(5) Port mode register 12 (PM12)

This register sets port 12 input/output in 1-bit units.

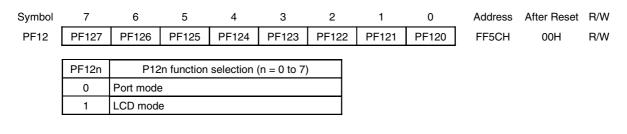
When using the P121/TO0/TI00/S6 pin for timer output, set PM121 and the output latch of P121 to 0.

Figure 6-6: Port Mode Register 12 (PM12) Format

PM12 is set with an 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM12 value to FFH.

Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PM12 PM126 PM123 PM127 PM125 PM124 PM122 PM121 PM120 FF2CH R/W FFH PM12n P12n pin input/output mode selection (n = 0 to 7) 0 Output mode (output buffer ON) 1 Input mode (output buffer OFF)


(6) Port function register 12 (PM12)

This register sets the port function of port 12 in 1-bit units.

When using the timer for timer output or timer input, the register PF12 has to be set to port function. <u>PM12 is set with an 1-bit or 8-bit memory manipulation instruction</u>.

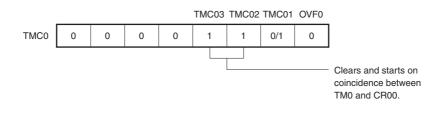
RESET input sets PM12 value to 00H.

Figure 6-7: Port Function Register 12 (PM12) Format

Note: For the µPD1616 set always 00H to PF12.

6.4 16-Bit Timer/Event Counter Operations

6.4.1 Operation as interval timer (16 bits)


The 16-bit timer/event counter operates as an interval timer when the 16-bit timer mode control register (TMC0) and capture/compare control register 0 (CRC0) are set as shown in Figure 6-8.

In this case, 16-bit timer/event counter repeatedly generates an interrupt at the time interval specified by the count value set in advance to the 16-bit capture/compare register 00 (CR00).

When the count value of the 16-bit timer register (TM0) coincides with the set value of CR00, the value of TM0 is cleared to 0, and the timer continues counting. At the same time, an interrupt request signal (INTTM00) is generated.

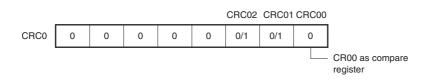

The count clock of the 16-bit timer/event counter can be selected by bits 0 and 1 (PRM00 and PRM01) of the prescaler mode register 0 (PRM0).

Figure 6-8: Control Register Settings When Timer 0 Operates as Interval Timer

(a) 16-bit timer mode control register (TMC0)

(b) Capture/compare control register 0 (CRC0)

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the interval timer function. For details, refer to Figures 6-2 and 6-3.

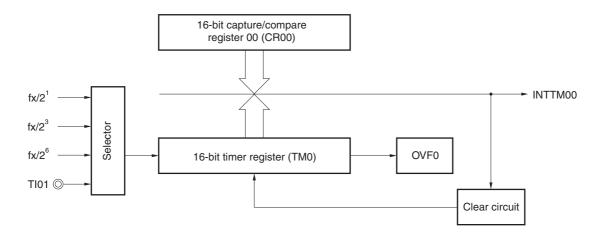
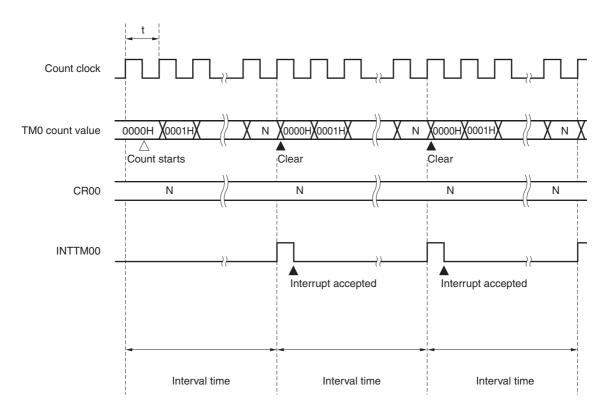



Figure 6-9: Configuration of Interval Timer

Remark: Interval time = (N+1) x t: N = 0000H to FFFFH

6.4.2 PPG output operation

The 16-bit timer/counter can be used for PPG (Programmable Pulse Generator) output by setting the 16-bit timer mode control register (TMC0) and capture/compare control register 0 (CRC0) as shown in Figure 6-11.

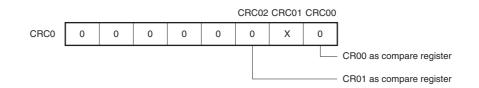
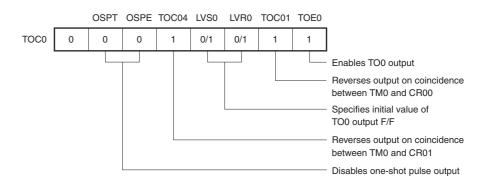

The PPG output function outputs a rectangular wave with a cycle specified by the count value set in advance to the 16-bit capture/compare register 00 (CR00) and a pulse width specified by the count value set in advance to the 16-bit capture/compare register 01 (CR01).

Figure 6-11: Control Register Settings in PPG Output Operation


(a) 16-bit timer mode control register (TMC0)

TMC03 TMC02 TMC01 OVF0 TMC0 0 0 0 1 1 0 0 Clears and starts on coincidence between TM0 and CR00.

(b) Capture/compare control register 0 (CRC0)

(c) 16-bit timer output control register (TOC0)

Remark: x : don't care on : can be used for other functions

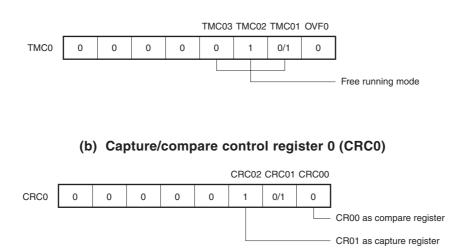
Caution: Make sure that $0000H \le CR01 < CR00 \le FFFFH$ is set to CR00 and CR01.

6.4.3 Pulse width measurement

The 16-bit timer register (TM0) can be used to measure the pulse widths of the signals input to the TI00 and TI01 pins.

Measurement can be carried out with TM0 used as a free running counter or by restarting the timer in synchronization with the edge of the signal input to the TI00 pin.

(1) Pulse width measurement with free running counter and one capture register


If the edge specified by the prescaler mode register 0 (PRM0) is input to the TI00 pin when the 16bit timer register (TM0) is used as a free running counter (refer to Figure 6-12), the value of TM0 is loaded to the 16-bit capture/compare register 01 (CR01), and an external interrupt request signal (INTTM01) is set.

The edge is specified by using bits 6 and 7 (ES10 and ES11) of the prescaler mode register 0 (PRM0). The rising edge, falling edge, or both the rising and falling edges can be selected.

The valid edge is detected through sampling at a count clock cycle selected by the prescaler mode register 0n (PRM0), and the capture operation is not performed until the valid level is detected two times. Therefore, noise with a short pulse width can be rejected.

Figure 6-12: Control Register Settings for Pulse Width Measurement with Free Running Counter and One Capture Register

(a) 16-bit timer mode control register (TMC0)

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the pulse width measurement function. For details, refer to Figures 6-2 and 6-3.

Figure 6-13: Configuration for Pulse Width Measurement with Free Running Counter

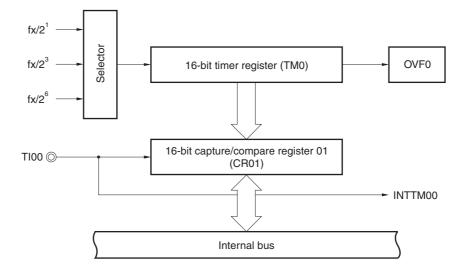
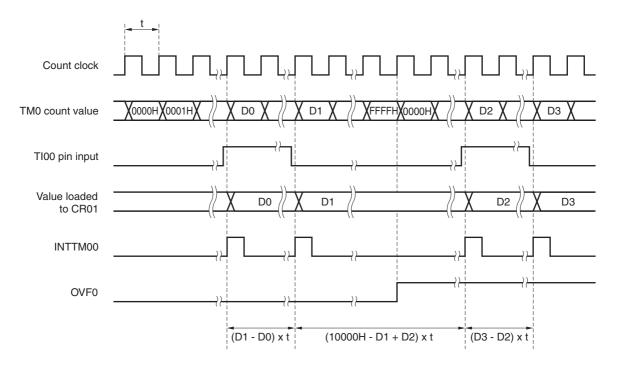
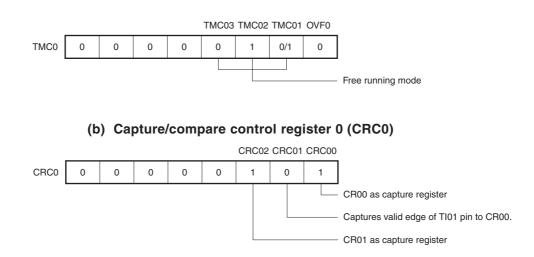



Figure 6-14: Timing of Pulse Width Measurement with Free Running Counter and One Capture Register (with both edges specified)

(2) Measurement of two pulse widths with free running counter

The pulse widths of the two signals respectively input to the TI00 and TI01 pins can be measured when the 16-bit timer register (TM0) is used as a free running counter (refer to Figure 6-14).

When the edge specified by bits 4 and 5 (ES00 and ES01) of the prescaler mode register 0 (PRM0) is input to the TI00 pin, the value of the TM0 is loaded to the 16-bit capture/compare register 01 (CR01) and an external interrupt request signal (INTTM01) is set.


When the edge specified by bits 6 and 7 (ES10 and ES11) of the prescaler mode register 0 (PRM0) is input to the TI01 pin, the value of TM0 is loaded to the 16-bit capture/compare register 00 (CR00), and an external interrupt request signal (INTTM00) is set.

The edges of the TI00 and TI01 pins are specified by bits 4 and 5 (ES00 and ES01) and bits 6 and 7 (ES10 and ES11) of PRM0, respectively. The rising, falling, or both rising and falling edges can be specified.

The valid edge of TI00 pin and TI01 pin is detected through sampling at a count clock cycle selected by the prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected two times. Therefore, noise with a short pulse width can be rejected.

Figure 6-15: Control Register Settings for Measurement of Two Pulse Widths with Free Running Counter

(a) 16-bit timer mode control register (TMC0)

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the pulse width measurement function. For details, refer to Figures 6-2 and 6-3.

• Capture operation (free running mode)

The following figure illustrates the operation of the capture register when the capture trigger is input.

Figure 6-16: CR01 Capture Operation with Rising Edge Specified

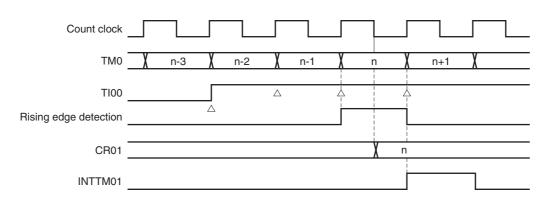
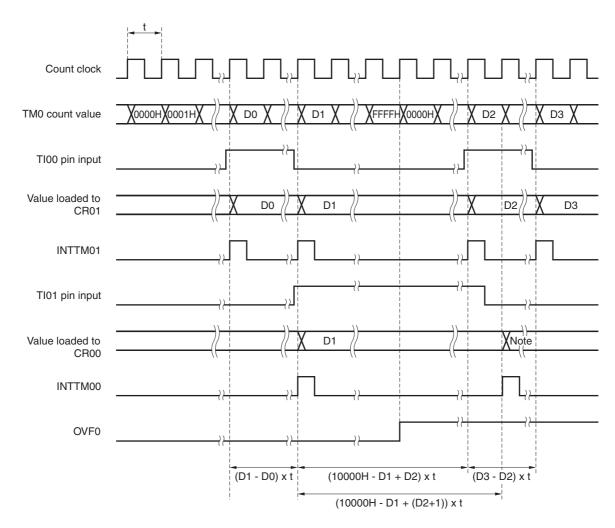



Figure 6-17: Timing of Pulse Width Measurement with Free Running Counter (with both edges specified)

(3) Pulse width measurement with free running counter and two capture registers

When the 16-bit timer register (TM0) is used as a free running counter (refer to Figure 6-17), the pulse width of the signal input to the TI00 pin can be measured.

When the edge specified by bits 4 and 5 (ES00 and ES01) of the prescaler mode register 0 (PRM0) is input to the TI00 pin, the value of TM0 is loaded to the 16-bit capture/compare register 01 (CR01), and an external interrupt request signal (INTTM01) is set.

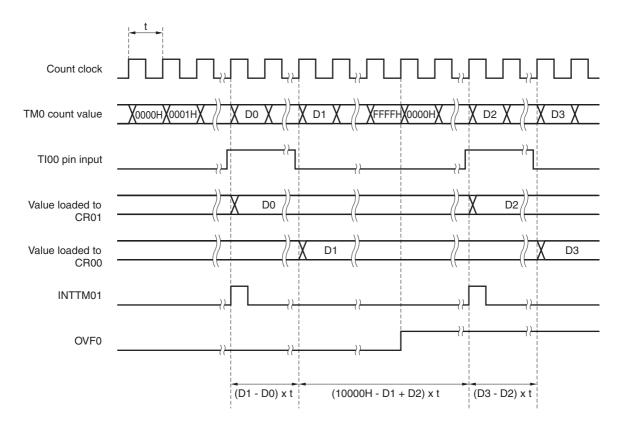
The value of TM0 is also loaded to the 16-bit capture/compare register 00 (CR00) when an edge reverse to the one that triggers capturing to CR01 is input.

The edge of the TI00 pin is specified by bits 4 and 5 (ES00 and ES01) of the prescaler mode register 0 (PRM0). The rising or falling edge can be specified.

The valid edge of TI00 pin and TI01 pin is detected through sampling at a count clock cycle selected by the prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected two times. Therefore, noise with a short pulse width can be rejected.

Caution: If the valid edge of the TI00 pin is specified to be both the rising and falling edges, the capture/compare register 00 (CR00) cannot perform its capture operation.

Figure 6-18: Control Register Settings for Pulse Width Measurement with Free Running Counter and Two Capture Registers

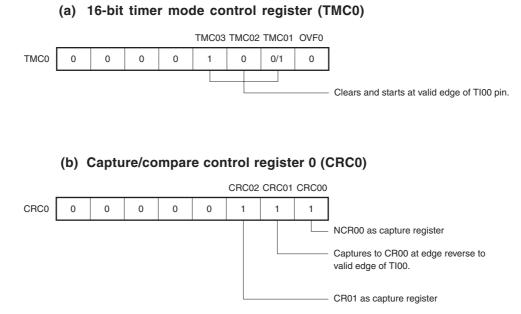

(a) 16-bit timer mode control register (TMC0)

CR01 as capture register

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the pulse width measurement function. For details, refer to Figures 6-2 and 6-3.

Figure 6-19: Timing of Pulse Width Measurement with Free Running Counter and Two Capture Registers (with rising edge specified)

(4) Pulse width measurement by restarting


When the valid edge of the TI00 pin is detected, the pulse width of the signal input to the TI00n pin can be measured by clearing the 16-bit timer register (TM0) once and then resuming counting after loading the count value of TM0 to the 16-bit capture/compare register 01 (CR01).

The edge of the TI00 pin is specified by bits 4 and 5 (ES00 and ES01) of PRM0. The rising or falling edge can be specified.

The valid edge is detected through sampling at a count clock cycle selected by the prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected two times. Therefore, noise with a short pulse width can be rejected.

Caution: If the valid edge of the TI00 pin is specified to be both the rising and falling edges, the capture/compare register 00 (CR00) cannot perform its capture operation.

Figure 6-20: Control Register Settings for Pulse Width Measurement by Restarting

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the pulse width measurement function. For details, refer to Figures 6-2 and 6-3.

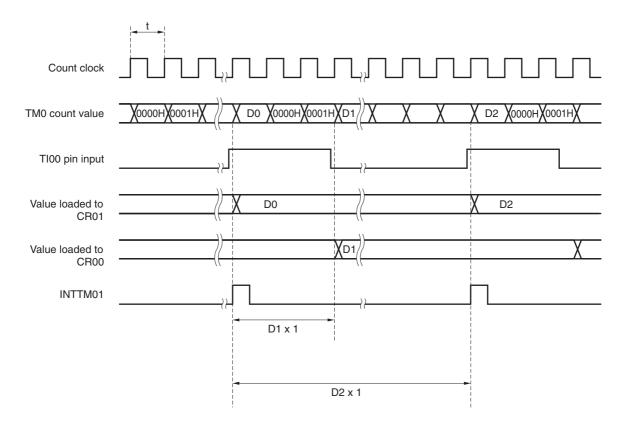
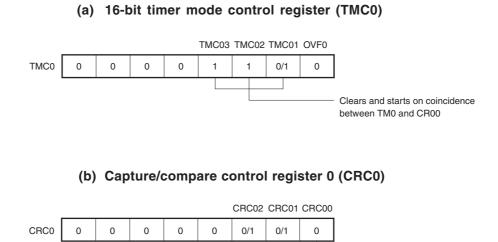


Figure 6-21: Timing of Pulse Width Measurement by Restarting (with rising edge specified)

6.4.4 Operation as external event counter

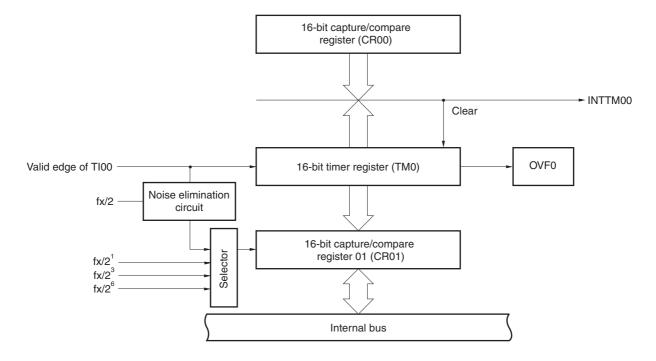
16-bit timer/event counter can be used as an external event counter which counts the number of clock pulses input to the TI00 pin from an external source by using the 16-bit timer register (TM0).


Each time the valid edge specified by the prescaler mode register 0 (PRM0) has been input to the TI00 pin, TM0 is incremented.

When the count value of TM0 coincides with the value of the 16-bit capture/compare register 00 (CR00), TM0 is cleared to 0, and an interrupt request signal (INTTM00) is generated.

The edge of the TI00 pin is specified by bits 4 and 5 (ES00 and ES01) of the prescaler mode register 0 (PRM0). The rising, falling, or both the rising and falling edges can be specified.

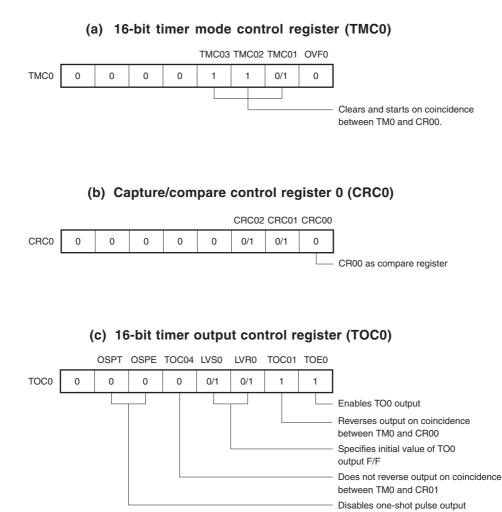
The valid edge is detected through sampling at a count clock cycle, selected by the prescaler mode register 0 (PRM0) and performed until the valid level is detected two times. Therefore, noise with a short pulse width can be rejected.


Figure 6-22: Control Register Settings in External Event Counter Mode

CR00 as compare register

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the external event counter function. For details, refer to Figures 6-2 and 6-3.

TI00 pin input	
TM0 count value	ХоооонХооо1нХооо2нХооо3нХооо4нХооо5нХ (Хи - 1 Хи ХоооонХооо1нХооо2нХооознХ
CR00	N (
INTTM00	,


Figure 6-24: Timing of External Event Counter Operation (with rising edge specified)

Caution: Read TM0 when reading the count value of the external event counter.

6.4.5 Operation to output square wave

The 16-bit timer/event counter can be used to output a square wave with any frequency at an interval specified by the count value set in advance to the 16-bit capture/compare register 00 (CR00).

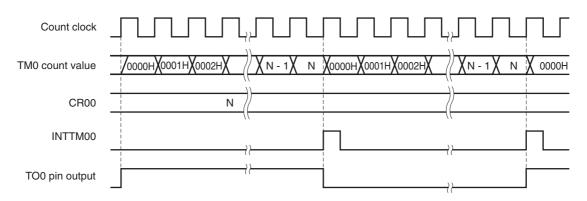
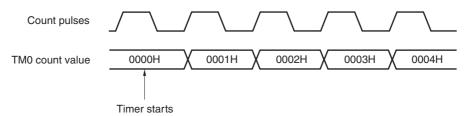

By setting bits 0 (TOE0) and 1 (TOC01) of the 16-bit timer output control register to 1, the output status of the TO0 pin is reversed at an interval specified by the count value set in advance to CR00. In this way, a square wave of any frequency can be output.

Figure 6-25: Set Contents of Control Registers in Square Wave Output Mode

Remark: 0/1: When these bits are reset to 0 or set to 1, the other functions can be used along with the square wave output function. For details, refer to Figures 6-2, 6-3, and 6-4.

Figure 6-26: Timing of Square Wave Output Operation

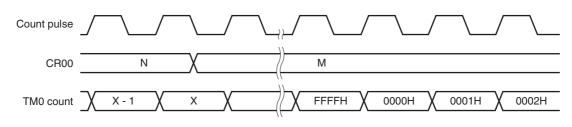

6.5 16-Bit Timer/Event Counter Operating Precautions

(1) Error on starting timer

An error of up to 1 clock occurs before the coincidence signal is generated after the timer has been started.

This is because the 16-bit timer register (TM0) is started asynchronously in respect to the count pulse.

Figure 6-27: Start Timing of 16-Bit Timer Register


(2) 16-bit compare register setting

Set another value than 0000H to the 16-bit captured compare register CR00, CR01. This means, that a 1-pulse count operation cannot be performed, when it is used as event counter.

(3) Setting compare register during timer count operation

If the value to which the current value of the 16-bit capture/compare register 00 (CR00) has been changed is less than the value of the 16-bit timer register (TM0), TM0 continues counting, overflows, and starts counting again from 0. If the new value of CR00 (M) is less than the old value (N), the timer must be restarted after the value of CR00 has been changed.

Remark: N > X > M

(4) Data hold timing of capture register

If the valid edge is input to the TI00 pin while the 16-bit capture/compare register 01 (CR01) is read, CR01 performs the capture operation, but this capture value is not guaranteed. However, the interrupt request flag (INTTM01) is set as a result of detection of the valid edge.

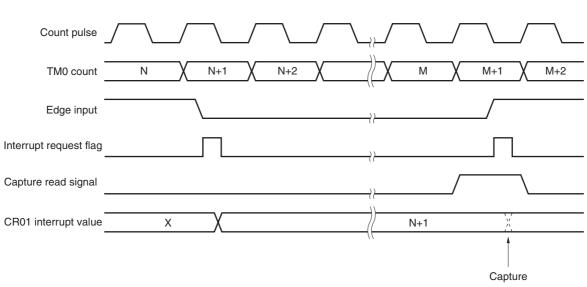
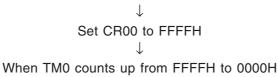


Figure 6-29: Data Hold Timing of Capture Register


(5) Setting valid edge

Before setting the valid edge of the TI00 pin, stop the timer operation by resetting bits 2 and 3 (TMC02 and TMC03) of the 16-bit timer mode control register to 0, 0. Set the valid edge by using bits 4 and 5 (ES00 and ES01) of the prescaler mode register 0 (PRM0).

(6) Operation of OVF0 flag

The OVF0 flag is set to 1 in the following case:

Select mode in which 16-bit timer/counter is cleared and started on coincidence between TM0 and CR00.

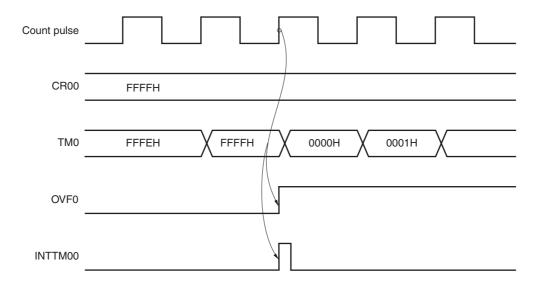


Figure 6-30: Operation Timing of OVF0 Flag

- (7) Contending operations
 - (a) The contending operation between the read time of 16-bit capture/compare register (CR00/CR01) and capture trigger input (CR00/CR01 used as capture register) Capture/trigger input is prior to the other. The data read from CR00/CR01 is not defined.
 - (b) The coincidence timing of contending operation between the write period of 16-bit capture/compare register (CR00/CR01) and 16-bit timer register (TM0) (CR00/CR01 used as a compare register)

The coincidence discriminant is not performed normally. Do not write any data to CR00/CR01 near the coincidence timing.

(8) Timer operation

- (a) Even if the 16-bit timer/counter 0 (TM0) is read, the value is not captured by 16-bit timer capture/ compare register 01 (CR01).
- (b) Regardless of the CPU's operation mode, when the timer stops, the input signals to pins TI00/ TI01 are not aknowledged.

(9) Capture operation

- (a) If TI00 is specified as the valid edge of the count clock, capture operation by the capture register specified as the trigger for TI00 is not possible.
- (b) If both the rising and the falling edges are selected as the valid edges of TI00, capture is not performed.
- (c) To ensure the reliability of the capture operation, the capture trigger requires a pulse two times longer than the count clock selected by prescaler mode register 0 (PRM0).
- (d) The capture operation is performed at the fall of the count clock. An interrupt request input (INTTM0n), however, is generated at the rise of the next count clock.

(10) Compare operation

- (a) The INTTMO may not be generated if the set value of 16-bit timer capture registers 00, 01 (CR00, CR01) and the count value of 16-bit timer/counter 0 (TM0) match and CR00 and CR01 are overwritten at the timing of INTTMO generation. Therefore, do not overwrite CR00 and CR01 frequently even if overwriting the same value.
- (b) Capture operation may not be performed for CR00/CR01 set in compare mode even if a capture trigger has been input.

(11) Edge detection

- (a) If the TI00 pin or the TI01 pin is high level immediately after system reset and rising edge or both the rising and falling edges are specified as the valid edge for the TI00 pin or TI01 pin to enable the 16-bit timer/counter 0 (TM0) operation, a rising edge is detected imediately after. Be careful when pulling up the TI00 pin or the TI01 pin. However, the rising edge is not detected at restart after the operation has been stopped once.
- (b) The sampling clock used to remove noise differs when a TI00 pin valid edge is used as a count clock and when it is used as a capture trigger. In the former case, the count clock is fx/2¹, and in the latter case the count clock is selected by prescaler mode register 0 (PRM0). When a valid level of the TI00 pin is detected twice by sampling with the above-mentioned sampling clock, the capture operation is started, therefore noise with short pulse can be removed.

[Memo]

Chapter 7 8-Bit Timer/Event Counters 50 and 51

7.1 8-Bit Timer/Event Counters 50 and 51 Functions

The 8-bit timer event counters 50 and 51 (TM50, TM51) have the following functions.

- Interval timer
- External event counter
- Square-wave output
- PWM output

(1) 8-bit interval timer

Interrupts are generated at the preset time intervals.

Minimum Interval Width	Maximum Interval Width	Resolution
2 ¹ x 1/fx (250 ns)	2 ⁹ x 1/fx (64 μs)	2 ¹ x 1/fx (250 ns)
2 ³ x 1/fx (1 μs)	2 ¹¹ x 1/fx (256 μs)	2 ³ x 1/fx (1 μs)
2⁵ x 1/fx (4 μs)	2 ¹³ x 1/fx (1 ms)	2⁵ x 1/fx (4 μs)
2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/fx (4 ms)	2 ⁷ x 1/fx (16 μs)
2 ⁸ x 1/fx (32 μs)	2 ¹⁶ x 1/fx (8 ms)	2 ^ε x 1/fx (32 μs)
2 ¹¹ x 1/fx (256 μs)	2 ¹⁹ x 1/fx (65 ms)	2 ¹¹ x 1/fx (256 μs)

Table 7-1: 8-Bit Timer/Event Counter 50 Interval Times

Table 7-2:	8-Bit Timer/Event	Counter 51	Interval Times
------------	-------------------	------------	----------------

Minimum Interval Width	Maximum Interval Width	Resolution
1/fx (125 ns)	2 ^ε x 1/fx (32 μs)	1/fx (125 ns)
2 ⁴ x 1/fx (2 μs)	2 ¹² x 1/fx (512 μs)	2 ⁴ x 1/fx (2 μs)
2 ⁶ x 1/fx (8 μs)	2 ¹⁴ x 1/fx (2 ms)	2 ⁶ x 1/fx (8 μs)
2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/fx (4 ms)	2 ⁷ x 1/fx (16 μs)
2 ^ε x 1/fx (32 μs)	2 ¹⁶ x 1/fx (8 ms)	2 ⁸ x 1/fx (32 μs)
2 ¹⁰ x 1/fx (128 μs)	2 ¹⁸ x 1/fx (32 ms)	2 ¹⁰ x 1/fx (128 μs)

Remarks: 1. fx: Main system clock oscillation frequency

2. Values in parentheses when operated at fx = 8.0 MHz.

(2) External event counter

The number of pulses of an externally input signal can be measured.

(3) Square-wave output

A square wave with any selected frequency can be output.

Minimum Pulse Width	Maximum Pulse Width	Resolution
2 ¹ x 1/fx (250 ns)	2 ⁹ x 1/fx (64 μs)	2 ¹ x 1/fx (250 ns)
2 ³ x 1/fx (1 μs)	2 ¹¹ x 1/fx (256 μs)	2 ³ x 1/fx (1 μs)
2⁵ x 1/fx (4 μs)	2 ¹³ x 1/fx (1 ms)	2⁵ x 1/fx (4 μs)
2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/fx (4 ms)	2 ⁷ x 1/fx (16 μs)
2 ⁸ x 1/fx (32 μs)	2 ¹⁶ x 1/fx (8 ms)	2 ⁸ x 1/fx (32 μs)
2 ¹¹ x 1/fx (256 μs)	2 ¹⁹ x 1/fx (65 ms)	2 ¹¹ x 1/fx (256 μs)

Table 7-4: 8-Bit Timer/Event Counter 50 Square-Wave Output Range	Table 7-4:	8-Bit Timer/Event	Counter 50 Sc	quare-Wave Outpe	ut Ranges
--	------------	-------------------	---------------	------------------	-----------

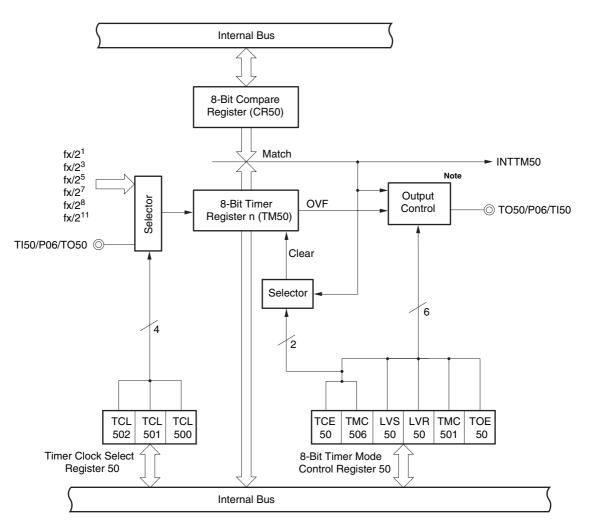
Minimum Pulse Width	Maximum Pulse Width	Resolution
1/fx (125 ns)	2 ^ε x 1/fx (32 μs)	1/fx (125 ns)
2 ⁴ x 1/fx (2 μs)	2° x 1/fx (512 μs)	2 ¹ x 1/fx (2 μs)
2 ⁶ x 1/fx (8 μs)	2 ¹¹ x 1/fx (2 ms)	2 ³ x 1/fx (8 μs)
2 ⁷ x 1/fx (16 μs)	2 ¹³ x 1/fx (4 ms)	2⁵ x 1/fx (16 μs)
2 ⁸ x 1/fx (32 μs)	2 ¹⁵ x 1/fx (8 ms)	2 ⁷ x 1/fx (32 μs)
2 ¹⁰ x 1/fx (128 μs)	2 ²⁰ x 1/fx (32 ms)	2 ¹² x 1/fx (128 μs)

Remarks: 1. fx: Main system clock oscillation frequency

2. Values in parentheses when operated at fx = 8.0 MHz.

(4) PWM output

TM50 and TM51 can generate an 8-bit resolution PWM output.


7.2 8-Bit Timer/Event Counters 50 and 51 Configurations

The 8-bit timer/event counters 50 and 51 consist of the following hardware.

Table 7-5: 8-Bit Timer/Event Counters 50 and 51 Configurations

Item	Configuration					
Timer register	8 bits x 2 (TM50, TM51)					
Register Compare register 8 bits x 2 (CR50, CR51)						
Timer output	2 (TO50, TO51)					
	Timer clock select register 50 and 51 (TCL50, TCL51)					
Control register	8-bit timer mode control registers 5 and 6 (TMC50, TMC51)					
	Port mode registers 0 (PM0)					

Figure 7-1: 8-Bit Timer/Event Counter 50 Block Diagram

Note: Refer to Figure 7-2 for details of configurations of 8-bit timer/event counters 50 and 51 output control circuits.

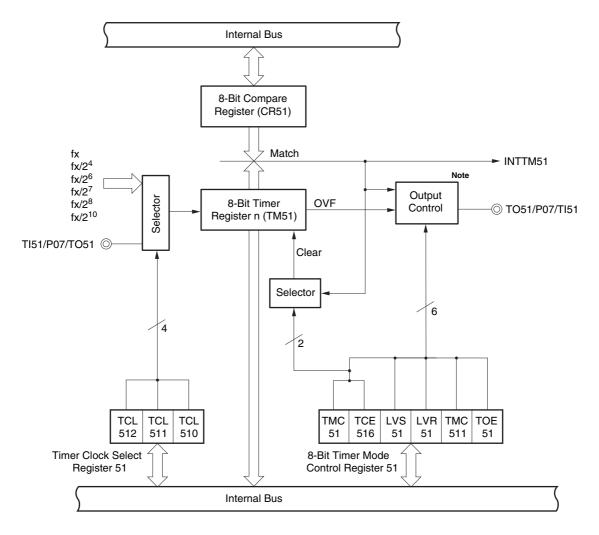


Figure 7-2: 8-Bit Timer/Event Counter 51 Block Diagram

Note: Refer to Figure 7-3 for details of configurations of 8-bit timer/event counters 50 and 51 output control circuits.

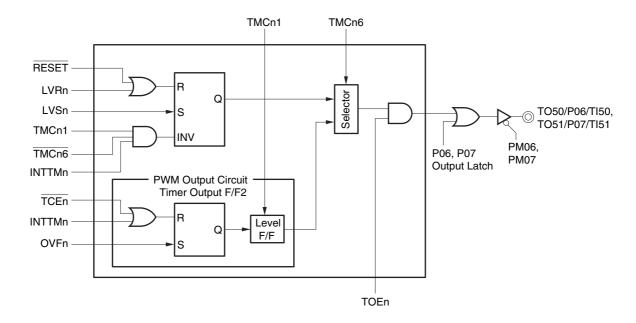


Figure 7-3: Block Diagram of 8-Bit Timer/Event Counters 50 and 51 Output Control Circuit

Remarks: 1. The section in the line is an output control circuit. **2.** n = 50, 51

(1) Compare register 50 and 51 (CR50, 51)

These 8-bit registers compare the value set to CR50 to 8-bit timer register 5 (TM50) count value, and the value set to CR51 to the 8-bit timer register 51 (TM51) count value, and, if they match, generate interrupts request (INTTM50 and INTTM51, respectively).

CR50 and CR51 are set with an 8-bit memory manipulation instruction. They cannot be set with a 16bit memory manipulation instruction. The 00H to FFH values can be set. RESET input sets CR50 and CR51 values to 00H.

RESET input sets CR50 and CR51 values to 00H.

Caution: To use PWM mode, set CRn value before setting TMCn (n = 50, 51) to PWM mode.

(2) 8-bit timer registers 50 and 51 (TM50, TM51)

These 8-bit registers count count pulses.

TM50 and TM51 are read with an 8-bit memory manipulation instruction.

RESET input sets TM50 and TM51 to 00H.

7.3 8-Bit Timer/Event Counters 50 and 51 Control Registers

The following three types of registers are used to control the 8-bit timer/event counters 50 and 51.

- Timer clock select register 50 and 51 (TCL50, TCL51)
- 8-bit timer mode control registers 50 and 51 (TMC50, TMC51)
- Port mode register 0 (PM0)

(1) Timer clock select register 50 (TCL50)

This register sets count clocks of 8-bit timer register 50. TCL50 is set with an 8-bit memory manipulation instruction. RESET input sets TCL50 to 00H.

Symbol	7	6	5	4	3	2	1	0	Add	lress	After Reset	I
TCL50	0	0	0	0	0	TCL502	TCL501	TCL500	FF	71H	00H	I
	TCL502	TCL501	TCL500	8-bit Ti	mer Re	egister 50	Count C	lock Sele	ction			
	0	0	0	TI50 fa	lling ea	dge ^{Note}						
	0	0	1	TI50 ri	sing ed	lge ^{Note}						
	0	1	0	fx/2 ¹	(4.0 N	IHz)						
	0	1	1	fx/2 ³	(1.0 N	1Hz)						
	1	0	0	fx/2 ⁵	(250 k	(Hz)						
	1	0	1	fx/2 ⁷	(62.5	kHz)						
	1	1	0	fx/2 ⁸	(31.25	5 kHz)						
	1	1	1	fx/2 ¹¹	(3.9 k	Hz)						
	Othe	r than ab	oove	Setting	ı prohit	oited						

Figure 7-4: Timer Clock Select Register 50 Format

R/W R/W

Note: When clock is input from the external, timer output (PWM output) cannot be used.

Caution: When rewriting TCL50 to other data, stop the timer operation beforehand.

- Remarks: 1. fx: Main system clock oscillation frequency
 - 2. TI50: 8-bit timer register 50 input pin
 - 3. Values in parentheses apply to operation with fx = 8.0 MHz

(2) Timer clock select register 51 (TCL51)

This register sets count clocks of 8-bit timer register 51. TCL51 is set with an 8-bit memory manipulation instruction. RESET input sets TCL51 to 00H.

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
TCL51	0	0	0	0	0	TCL512	TCL51	ITCL510	FF75H	00H	R/W
	TCL512	TCL511	TCL510	8-bit Ti	mer Re	gister 51	Count C	lock Selec	otion		
	0	0	0	TI51 fa	Illing ea	dge ^{Note}					
	0	0	1	TI51 ri	sing ed	lge ^{Note}					
	0	1	0	fx	(8.0 M	Hz)					
	0	1	1	fx/2 ⁴	(500 k	(Hz)					
	1	0	0	fx/2 ⁶	(125 k	(Hz)					
	1	0	1	fx/2 ⁷	(62.5	kHz)					
	1	1	0	fx/2 ⁸	(31.25	5 kHz)					
	1	1	1	fx/2 ¹⁰	(7.8 k	Hz)					
	Othe	r than at	oove	Setting	ı prohik	oited					

Figure 7-5: Timer Clock Select Register 51 Format

Note: When clock is input from the external, timer output (PWM output) cannot be used.

Caution: When rewriting TCL51 to other data, stop the timer operation beforehand.

- Remarks: 1. fx: Main system clock oscillation frequency
 - 2. TI51: 8-bit timer register 51 input pin
 - 3. Values in parentheses apply to operation with fx = 8.0 MHz

(3) 8-bit timer mode control register 50 (TMC50)

This register enables/stops operation of 8-bit timer register 50, sets the operating mode of 8-bit timer register 50 and controls operation of 8-bit timer/event counter 50 output control circuit.

It selects the R-S flip-flop (timer output F/F 1,2) setting/resetting, the active level in PWM mode, inversion enabling/disabling in modes other than PWM mode and 8-bit timer/event counter 5 timer output enabling/disabling.

TMC50 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TMC50 to 04H.

Symbol <7>	6	5	4	<3>	<2>	1	<0>	A	ddress	After Reset	R/W
TMC50 TCE5	50 TMC506	0	0	LVS50	LVR50	TMC50	1 TOE50	F	F70H	04H	R/W
								-			
								TOE50	8-Bit 1	Timer/Event Count	er 50 Output Control
								0	Outpu	t disabled (Port mo	ode)
								1	Outpu	t enabled	
											ha Olik an Maria
								TMC501		n PWM Mode	In Other Mode
										ve level selection	Timer output F/F1 control
								0	Active	high	Inversion operation disabled
								1	Active	low	Inversion operation enabled
								LVS50	LVR50	8-Bit Timer/Even Output F/F1 State	t Counter 50 Timer us Setting
								0	0	No change	
								0	1	Timer output F/F	1 reset (0)
								1	0	Timer output F/F	1 set (1)
								1	1	Setting prohibited	ł
								TMOROG	о Di+ T	mor/Event Counter (O Operating Made Selection
								<u> </u>	<u> </u>		50 Operating Mode Selection
								0			h of TM50 and CR50
								1	PWM r	node (free-running)	
								TCE50	8-Bit Ti	mer Register 50 Ope	eration Control
								0		ion Stop (TM50 clea	
								1		ion Enable	
									Operat		

Figure 7-6: 8-Bit Timer Output Control Register 50 Format

Cautions: 1. Timer operation must be stopped before setting TMC50.2. If LVS50 and LVR50 are read after data are set, they will be 0.3. Be sure to set bit 4 and bit 5 to 0.

Note:If TM50 is used as clock generation for SIO3, no clock will be supplied to SIO3 unlessTOE50 is set to 1. In this case a square wave signal is output from the TO50 pin.

(4) 8-bit timer mode control register 51 (TMC51)

This register enables/stops operation of 8-bit timer register 51, sets the operating mode of 8-bit timer register 51 and controls operation of 8-bit timer/event counter 51 output control circuit.

It selects the R-S flip-flop (timer output F/F 1,2) setting/resetting, active level in PWM mode, inversion enabling/disabling in modes other than PWM mode and 8-bit timer/event counter 51 timer output enabling/disabling.

TMC51 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TMC51 to 04H.

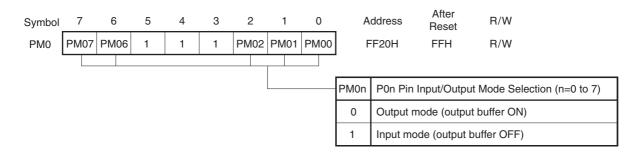
Symbol <7>	6	5	4	<3>	<2>	1	<	0>	A	ddress	After Reset	R/W
TMC51 TCE51	TMC516	0	0	LVS51	LVR6	TMC	511 TO	E51	F	F74H	04H	R/W
									•			
									TOE51	8-Bit T	Timer/Event Counter	er 51 Output Control
									0	Outpu	t disabled (Port mo	ode)
									6	Outpu	t enabled	
												la Othan Maria
									TMC511		n PWM Mode	
									0			Timer output F/F1 control
									1	Active Active	•	Inversion operation disabled Inversion operation enabled
									I	Active	IOW	Inversion operation enabled
									LVS51	LVR51	8-Bit Timer/Even Output F/F1 State	t Counter 51 Timer us Setting
									0	0	No change	
									0	1	Timer output F/F	1 reset (0)
									1	0	Timer output F/F	1 set (1)
									1	1	Setting prohibited	1
									TMC516	8-Bit Ti	imer/Event Counter F	51 Operating Mode Selection
									0			th of TM51 and CR51
									1	PWM r	node (free-running)	
											. 3/	
									TCE51	8-Bit Ti	imer Register 51 Ope	eration Control
									0	Operat	ion Stop (TM51 clear	r to 0)
									1	Operat	ion Enable	

Figure 7-7: 8-Bit Timer Output Control Register 51 Format

Cautions 1. Timer operation must be stopped before setting TMC51.

- 2. If LVS51 and LVR51 are read after data are set, they will be 0.
- 3. Be sure to set bit 4 and bit 5 to 0.

(5) Port mode register 0 (PM0)


This register sets port 0 input/output in 1-bit units.

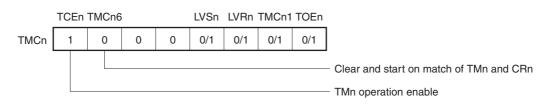
When using the P06/TI50/TO50 and P07/TI51/TO51 pins for timer output, set PM06, PM07 and output latches of P06 and P07 to 0.

PM0 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM0 to FFH.

Figure 7-8: Port Mode Register 0 Format

7.4 8-Bit Timer/Event Counters 50 and 51 Operations


7.4.1 Interval timer operations

Setting the 8-bit timer mode control registers (TMC50 and TMC51) as shown in Figure 7-9 allows operation as an interval timer. Interrupts are generated repeatedly using the count value preset in 8-bit compare registers (CR50 and CR51) as the interval.

When the count value of the 8-bit timer register 50 or 51 (TM50, TM51) matches the value set to CR50 or CR51, counting continues with the TM50 or TM51 value cleared to 0 and the interrupt request signal (INTTM50, INTTM51) is generated.

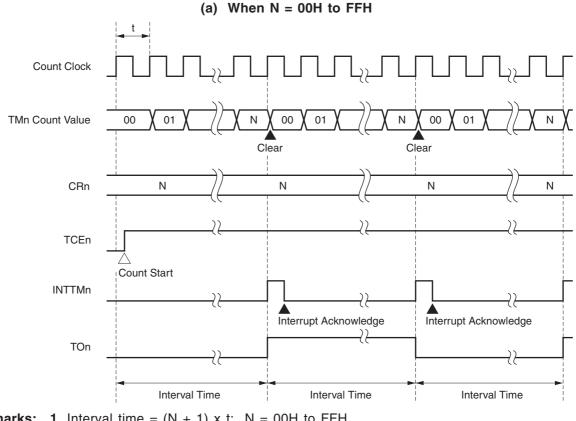

Count clock of the 8-bit timer register 50 (TM50) can be selected with the timer clock select register 50 (TCL50) and count clock of the 8 bit timer register 51 (TM51) can be selected with the timer clock select register 51 (TCL51).

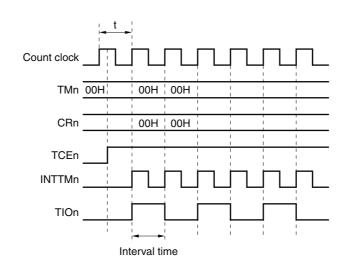
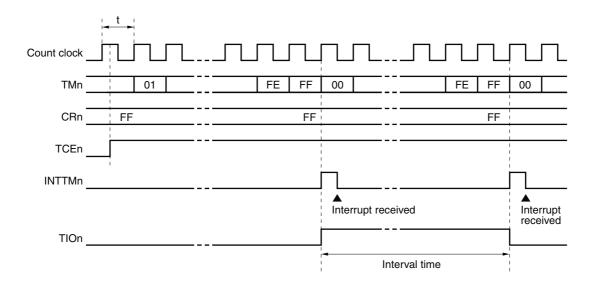
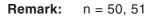
Figure 7-9: 8-Bit Timer Mode Control Register Settings for Interval Timer Operation

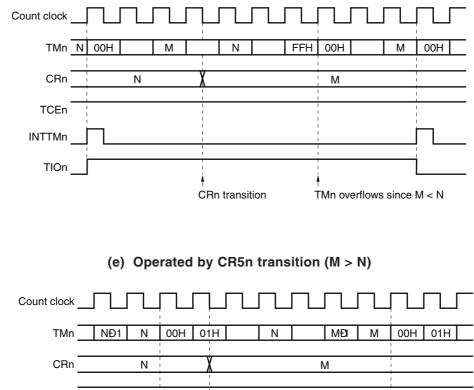
Remarks: 1. 0/1: Setting 0 or 1 allows another function to be used simultaneously with the interval timer. See 9.3 (3), (4) for details.
2. n = 50, 51

Remarks: 1. Interval time = $(N + 1) \times t$: N = 00H to FFH

2. n = 50, 51

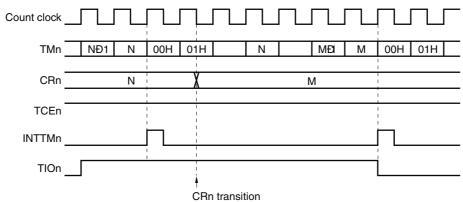
3. Signal output at TO50, when defined as square wave output.


Figure 7-10: Interval Timer Operation Timings (2/3)

(b) When CRn = 00H

(c) When CRn = FFH



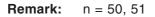


Figure 7-10: Interval Timer Operation Timings (3/3)

(d) Operated by CR5n transition (M < N)

TCLn2	TCLn1	TCLn0	Minimum Interval Time	Maximum Interval Time	Resolution	
0	0	0	Tin input cycle	2 ⁸ x Tin input cycle	Tin input edge input cycle	
0	0	1	Tin input cycle	2 ⁸ x Tin input cycle	Tin input edge input cycle	
0	1	0	2 ¹ x 1/fx (250 ns)	2 [°] x 1/fx (64 μs)	2 ¹ x 1/fx (250 ns)	
0	1	1	2³ x 1/fx (1 μs)	2 ¹¹ x 1/fx (256 μs)	2³ x 1/fx (1 μs)	
1	0	0	2⁵ x 1/fx (4 μs)	2 ¹³ x 1/fx (1 ms)	2⁵ x 1/fx (4 μs)	
1	0	1	2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/fx (4 ms)	2 ⁷ x 1/fx (16 μs)	
1	1	0	2 ⁸ x 1/fx (32 μs)	2 ¹⁶ x 1/f _X (8 ms)	2 ⁸ x 1/fx (32 μs)	
1	1	1	2 ¹¹ x 1/fx (256 μs) 2 ¹⁹ x 1/fx (65 ms) 2 ¹¹ x 1/fx (256 μs)			
Other than above		ove		Setting prohibited		

Table 7-6: 8-Bit Timer/Event Counters 50 Interval Times

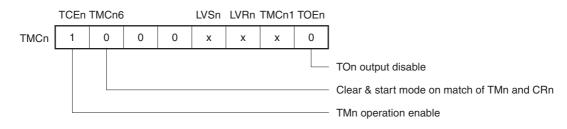
Table 7-7: 8-Bit Timer/Event Counters 51 Interval Times

TCLn2	TCLn1	TCLn0	Minimum Interval Time	Maximum Interval Time	Resolution
0	0	0	Tin input cycle	2 ⁸ x Tin input cycle	Tin input edge input cycle
0	0	1	Tin input cycle	2 ⁸ x Tin input cycle	Tin input edge input cycle
0	1	0	1/fx (125 ns)	2 ⁸ x 1/fx (32 μs)	1/fx (125 ns)
0	1	1	2 ⁴ x 1/fx (2 μs)	2 ¹² x 1/fx (512 μs)	2 ⁴ x 1/fx (2 μs)
1	0	0	2 ⁶ x 1/fx (8 μs)	2 ¹⁴ x 1/fx (2 ms)	2 ⁶ x 1/fx (8 μs)
1	0	1	2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/fx (4 ms)	2 ⁷ x 1/fx (16 μs)
1	1	0	2 ⁸ x 1/fx (32 μs)	2 ¹⁶ x 1/fx (8 ms)	2 ⁸ x 1/fx (32 μs)
1	1	1	2 ¹⁰ x 1/fx (128 μs) 2 ¹⁸ x 1/fx (32 ms) 2 ¹⁰ x 1/fx (128 μ		2 ¹⁰ x 1/fx (128 μs)
Other than above		ove		Setting prohibited	

Remarks: 1. fx: Main system clock oscillation frequency

2. Values in parentheses apply to operation with fx = 8.0 MHz.

3. n = 50, 51


7.4.2 External event counter operation

The external event counter counts the number of external clock pulses to be input to the TI50/P06/TO50 and TI51/P07/TO51 pins with 8-bit timer registers 50 and 51 (TM50 and TM51).

TM50 and TM51 are incremented each time the valid edge specified with timer clock select registers 50 and 51 (TCL50 and TCL51) is input. Either rising or falling edge can be selected.

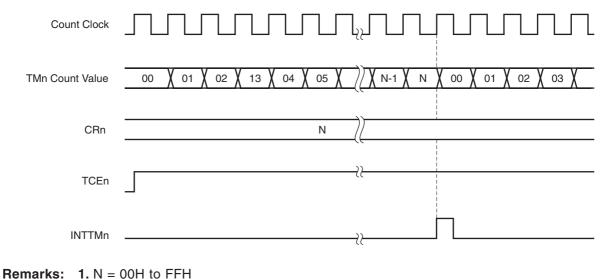
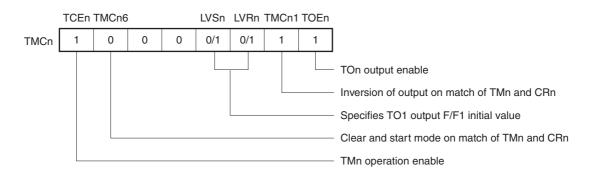

When the TM50 and TM51 counted values match the values of 8-bit compare registers (CR50 and CR51), TM50 and TM51 are cleared to 0 and the interrupt request signals (INTTM50 and INTTM51) are generated.

Figure 7-11: 8-Bit Timer Mode Control Register Setting for External Event Counter Operation

Remarks: 1. n = 50, 51 **2.** x: don't care

Figure 7-12: External Event Counter Operation Timings (with Rising Edge Specified)

2. n = 50, 51


7.4.3 Square-wave output

A square wave with any selected frequency is output at intervals of the value preset to 8-bit compare registers (CR50 and CR51).

The TO50/P06/TI50 or TO51/P07/TI51 pin output status is reversed at intervals of the count value preset to CR50 or CR51 by setting bit 1 (TMC501) and bit 0 (TOE50) of the 8-bit timer output control register 5 (TMC50), or bit 1 (TMC511) and bit 0 (TOE51) of the 8-bit timer mode control register 6 (TMC51) to 1.

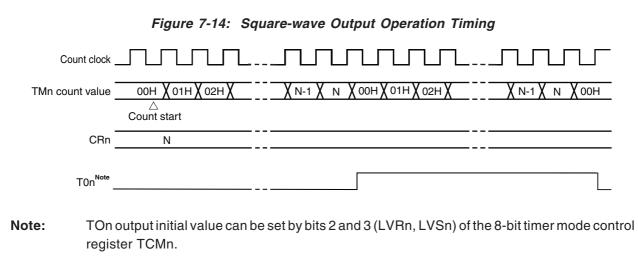

This enables a square wave of any selected frequency to be output.

Figure 7-13: 8-Bit Timer Mode Control Register Settings for Square-Wave Output Operation

Caution: When TI50/P06/TO50 or TI51/P07/TO51 pin is used as the timer output, set port mode register (PM00 or PM07) and output latch to 0.

Remark: n = 50, 51

Remark: n = 50, 51

Minimum Pulse Time	Maximum Pulse Time	Resolution
2 ¹ x 1/fx (250 ns)	2 [°] x 1/fx (64 μs)	2 ¹ x 1/fx (250 ns)
2 ³ x 1/fx (1 μs)	2 ¹¹ x 1/fx (256 μs)	2 [°] x 1/fx (1 μs)
2⁵ x 1/fx (4 μs)	2 ¹³ x 1/fx (1 ms)	2⁵ x 1/fx (4 μs)
2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/fx (4 ms)	2 ⁷ x 1/fx (16 μs)
2 ⁸ x 1/fx (32 μs)	2 ¹⁶ x 1/fx (8 ms)	2 ^ε x 1/fx (32 μs)
2 ¹¹ x 1/fx (256 μs)	2 ¹⁹ x 1/fx (65 ms)	2 ¹¹ x 1/fx (256 μs)

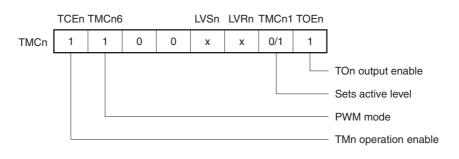
Table 7-9: 8-Bit Timer/Event Counters 51 Square-Wave Output Ranges

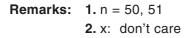
Minimum Pulse Time	Maximum Pulse Time	Resolution
1/fx (125 ns)	2 ^ε x 1/fx (32 μs)	1/fx (125 ns)
2 ⁴ x 1/fx (2 μs)	2 ¹² x 1/fx (512 μs)	2⁴ x 1/fx (2 μs)
2 ⁶ x 1/fx (8 μs)	2 ¹⁴ x 1/fx (2 ms)	2 ⁶ x 1/fx (8 μs)
2 ⁷ x 1/fx (16 μs)	2 ¹⁵ x 1/f _X (4 ms)	2 ⁷ x 1/fx (16 μs)
2 ^ε x 1/fx (32 μs)	2 ¹⁶ x 1/fx (8 ms)	2 ^ε x 1/fx (32 μs)
2 ¹⁰ x 1/fx (128 μs)	2 ¹⁸ x 1/fx (32 ms)	2 ¹⁰ x 1/fx (128 μs)

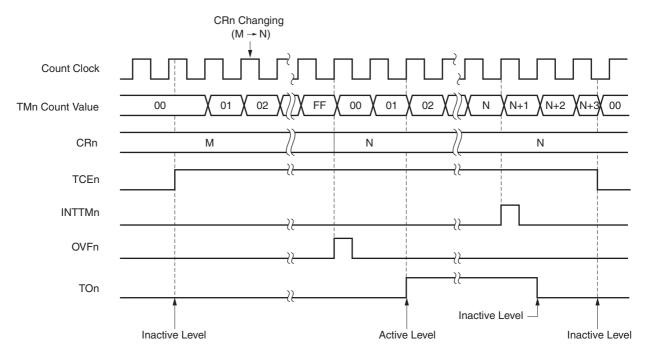
Remarks: 1. f: Main system clock oscillation frequency2. Values in parentheses when operated at fx = 8.0 MHz.

3. n = 50, 51

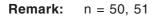
7.4.4 PWM output operations

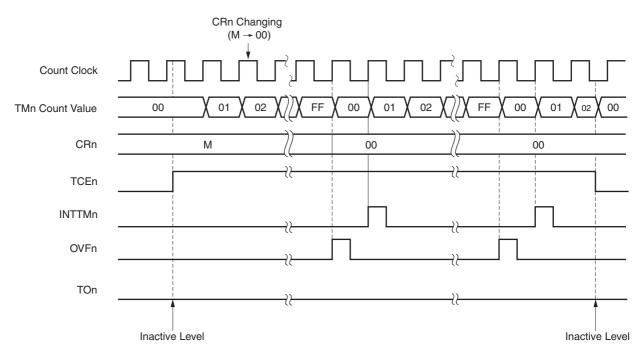

Setting the 8-bit timer mode control registers (TMC50 and TMC51) as shown in Figure 7-15 allows operation as PWM output. Pulses with the duty rate determined by the values preset in 8-bit compare registers (CR50 and CR51) output from the TO50/P06/TI50 or TO51/P07/TI51 pin.

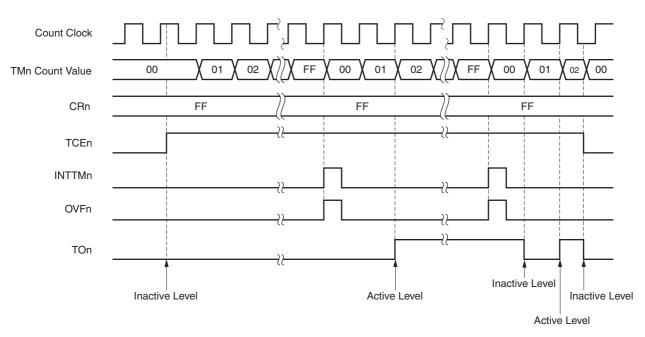

Select the active level of PWM pulse with bit 1 of the 8-bit timer mode control register 50 (TMC50) or bit 1 of the 8-bit timer mode control register 51 (TMC51).

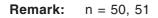

This PWM pulse has an 8-bit resolution. The pulse can be converted into an analog voltage by integrating it with an external low-pass filter (LPF). Count clock of the 8-bit timer register 50 (TM50) can be selected with the timer clock select register 50 (TCL50) and count clock of the 8-bit timer register 51 (TM51) can be selected with the timer clock select register 51 (TCL51).

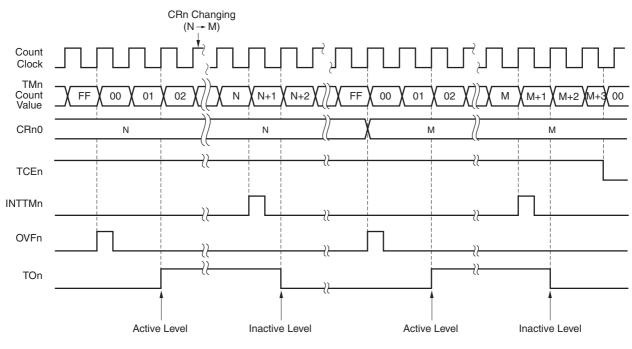
PWM output enable/disable can be selected with bit 0 (TOE50) of TMC50 or bit 0 (TOE51) of TMC51.

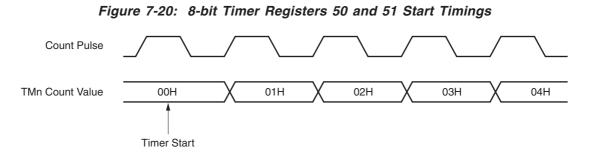

Figure 7-15: 8-Bit Timer Control Register Settings for PWM Output Operation









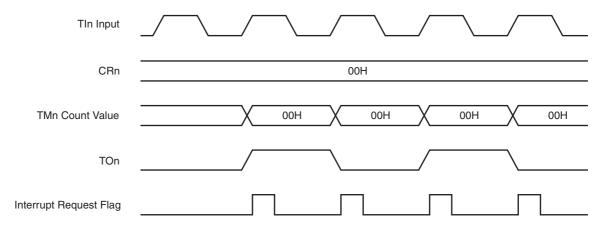

Remark: n = 50, 51

Caution: If CRn is changed during TMn operation, the value changed is not reflected until TMn overflows.

7.5 Cautions on 8-Bit Timer/Event Counters 50 and 51

(1) Timer start errors

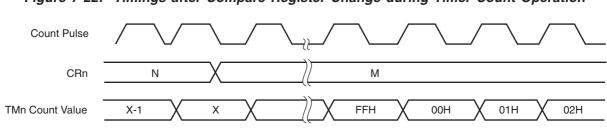
An error with a maximum of one clock might occur concerning the time required for a match signal to be generated after the timer starts. This is because 8-bit timer registers 50 and 51 are started asynchronously with the count pulse.


Remark: n = 50, 51

(2) Compare registers 50 and 51 sets

The 8-bit compare registers (CR50 and CR51) can be set to 00H.

Thus, when an 8-bit compare register is used as an event counter, one-pulse count operation can be carried out.



Remark: n = 50, 51

(3) Operation after compare register change during timer count operation

If the values after the 8-bit compare registers (CR50 and CR51) are changed are smaller than those of 8-bit timer registers (TM50 and TM51), TM50 and TM51 continue counting, overflow and then restarts counting from 0. Thus, if the value (M) after CR50 and CR51 change is smaller than that (N) before change it is necessary to restart the timer after changing CR50 and CR51.

Remark: n = 50, 51

[Memo]

Chapter 8 Watch Timer

8.1 Watch Timer Functions

The watch timer has the following functions:

- Watch timer
- Interval timer

The watch timer and the interval timer can be used simultaneously. The figure 8-1 shows Watch Timer Block Diagram.

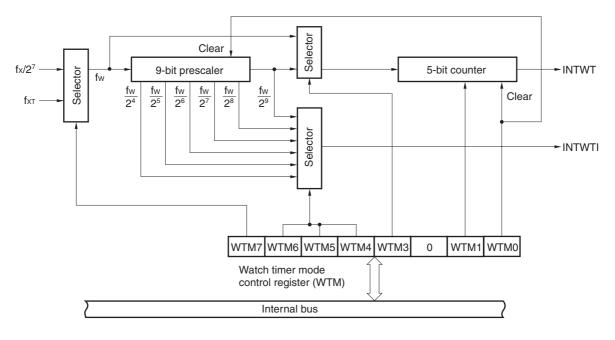


Figure 8-1: Block Diagram of Watch Timer

(1) Watch timer

When the main system clock or subsystem clock is used, interrupt requests (INTWT) are generated at 0.5 second intervals.

(2) Interval timer

Interrupt requests (INTWTI) are generated at the preset time interval.

Interval Time	When operated at fx=8.00 MHz	When operated at fxT=32.768 KHz	
2⁴/fw	256 μs	488 μs	
2⁵/fw	512 μs	977 μs	
2 ⁶ /fw	1 ms	1,95 ms	
2 ⁷ /fw	2 ms	3,91 ms	
2 ⁸ /fw	4 ms	7,81 ms	
2 ⁹ /fw	8,19 ms	15,6 ms	

Table 8-1: Interval Time Selection

Remark:	fx:	Main system clock oscillation frequency
	fx⊤:	Subsystem clock oscillation frequency

8.2 Watch Timer Configuration

The watch timer consists of the following hardware.

Table	8-2:	Watch	Timer	Configuration
-------	------	-------	-------	---------------

Item	Configuration
Counter	5 bits x 1
Prescaler	9 bits x 1
Control register	Watch timer mode control register (WTM)

8.3 Watch Timer Mode Register (WTM)

This register sets the watch timer count clock, the watch timer operating mode, and prescaler interval time and enables/disables prescaler and 5-bit counter operations. WTM is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets WTM to 00H.

Symbol	7	6	5	4	3	2	1	0	Address	AfterReset	R/W
WTM	WTM7	WTM6	WTM5	WTM4	WTM3	0	WTM1	WTM0	FF41H	00H	R/W
	WTM7	Watch Timer Count Clock Selection									
	0	Input clock set to fx/2 ⁷									
	1	Input cloc	k set to fx	т							
				ī							_ _
	WTM6	WTM5	WTM4			Presca	ler Interva	Time Selec	tion		
				fX = 8.00	MHz Opera	ation		fx⊤ = 32.768	3 kHz Opera	tion	
	0	0	0	2⁴/fw (256 μs)				2⁴/fw (488 μs)			
	0	0	1	2⁵/fw (512 s)				2⁵/fw (977 μs)			
	0	1	0	2 ⁶ /fw (1 ms)				2 ⁶ /fw (1.95 r	ns)		
	0	1	1	2 ⁷ /fw (2 ms)				2 [∞] /fw (3.91 ms)			
	1	0	0	2 [°] /fw (4 ms)				2 [°] /fw (7.81 ms)			
	1	0	1	2º/fw (8.1	9 ms)			2º/fw (15.6 r	ns)		
	Oth	her than above Setting prohibited									
											_
	WTM3				Watch C	Operating I	Mode Sele	ctions			
	0	Normal of	perating m	ode (interr	upt genera	tion at 214/	fw)				
	1	Fast feed operating mode (interrupt generation at 2 ⁵ /fw)									

Figure 8-2: Watch Timer Mode Control Register (WTM) Format

WTM1	5-Bit Counter Operation Control
0	Clear after operation stop
1	Operation enable

WTM0	Prescaler Operation Control			
0	lear after operation stop			
1	Operation enable			

Caution: When the watch timer is used, the prescaler should not be cleared frequently. When rewriting WTM4 to WTM6 to other data, stop the timer operation beforehand.

Remarks: 1. fw: Watch timer clock frequency (fx/2⁷ or fxt)

Main system clock oscillation frequency **2.** fx:

3. fxt: Subsystem clock oscillation frequency

8.4 Watch Timer Operations

8.4.1 Watch timer operation

When the 32.768-KHz subsystem clock is used, the timer operates as a watch timer with a 0.5-second interval.

The watch timer is generated interrupt request at the constant time interval.

When bit 0 (WTM0) and bit 1 (WTM1) of the watch timer mode control register (WTM) are set to 1, the count operation starts. When set to 0, the 5-bit counter is cleared and the count operation stops.

For simultaneous operation of the interval timer, zero-second start can be set only for the watch timer by setting WTM1 to 0. However, since the 9-bit prescaler is not cleared the first overflow of the watch timer (INTWT) after zero-second start may include an error of up to $2^9 \times 1/fw$.

8.4.2 Interval timer operation

The watch timer operates as interval timer which generates interrupt request repeatedly at an interval of the preset count value.

The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer mode control register (WTM).

WTM6	WTM5	WTM4	Interval Time	fx=8.00 MHz Operation	fxT=32.768 MHz Operation	
0	0	0	2 ⁴ x 1/fw	256 μs	488 μs	
0	0	1	2 ⁴ x 1/fw	512 μs	977 μs	
0	1	0	2 ⁴ x 1/fw	1 ms	1.95 ms	
0	1	1	2 ⁴ x 1/fw	2 ms	3.91 ms	
1	0	0	2 ⁴ x 1/fw	4 ms	7.81 ms	
1	0	1	2 ⁴ x 1/fw	8.19 ms	15.6 ms	
Oth	Other than above			Setting prohibited		

Table 8-3: Interval Timer Operation

Remark: fx: Main system clock oscillation frequency

- fxT: Subsystem clock oscillation frequency
- fw: Watch timer clock frequency

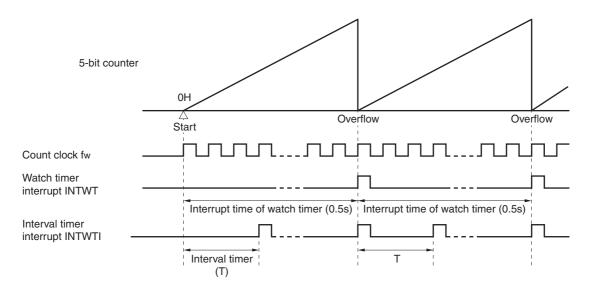


Figure 8-3: Operation Timing of Watch Timer/Interval Timer

[Memo]

Chapter 9 Watchdog Timer

9.1 Watchdog Timer Functions

The watchdog timer has the following functions:

- Watchdog timer
- Interval timer

Caution: Select the watchdog timer mode or the interval timer mode with the watchdog timer mode register (WDTM).

(1) Watchdog timer mode

An inadvertent program loop is detected. Upon detection of the inadvertent program loop, a non-maskable interrupt request or RESET can be generated.

Runaway Detection Time						
2 ¹² x 1/fx	2 ¹² x 1/fx (512 μs)					
2 ¹³ x 1/fx	2 ¹³ x 1/fx (1 ms)					
2 ¹⁴ x 1/fx	2 ¹⁴ x 1/fx (2 ms)					
2 ¹⁵ x 1/fx	2 ¹⁵ x 1/fx (4 ms)					
2 ¹⁶ x 1/fx	2 ¹⁶ x 1/fx (8.19 ms)					
2 ¹⁷ x 1/fx	2 ¹⁷ x 1/fx (16.38 ms)					
2 ¹⁸ x 1/fx	2 ¹⁸ x 1/fx (32.76 ms)					
2 ²⁰ x 1/fx	2 ²⁰ x 1/fx (131 ms)					

Table 9-1: Watchdog Timer Inadvertent Program Overrun Detection Times

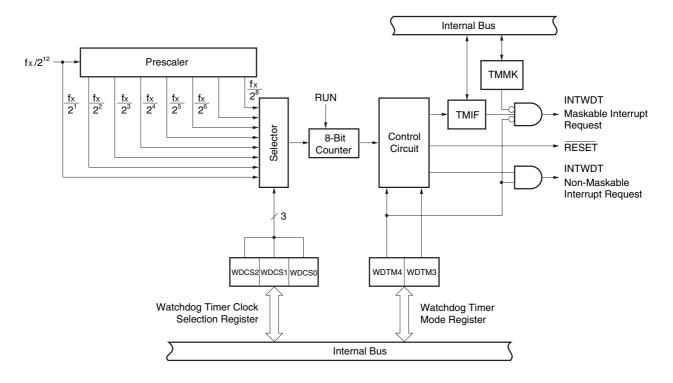
Remark: Figures in parentheses apply to operation with fx = 8.0 MHz.

(2) Interval timer mode

Interrupts are generated at the preset time intervals.

Table 9-2: Interval Times

Interval Time					
2 ¹² x 1/fx	2 ¹² x 1/fx (512 μs)				
2 ¹³ x 1/fx	2 ¹³ x 1/fx (1 ms)				
2 ¹⁴ x 1/fx	2 ¹⁴ x 1/fx (2 ms)				
2 ¹⁵ x 1/fx	2 ¹⁵ x 1/fx (4 ms)				
2 ¹⁶ x 1/fx	2 ¹⁶ x 1/fx (8.19 ms)				
2 ¹⁷ x 1/fx	2 ¹⁷ x 1/fx (16.38 ms)				
2 ¹⁸ x 1/fx	2 ¹⁸ x 1/fx (32.76 ms)				
2 ²⁰ x 1/fx	2 ²⁰ x 1/fx (131 ms)				


Remark: Figures in parentheses apply to operation with fx = 8.0 MHz.

9.2 Watchdog Timer Configuration

The watchdog timer consists of the following hardware.

Table 9-3: Watchdog Timer Configuration

Item	Configuration		
Control register	Timer clock select register (WDCS) Watchdog timer mode register (WDTM)		

Figure 9-1: Watchdog Timer Block Diagram

9.3 Watchdog Timer Control Registers

The following two types of registers are used to control the watchdog timer.

- Watchdog timer clock select register (WDCS)
- Watchdog timer mode register (WDTM)

(1) Watchdog timer clock select register (WDCS)

This register sets the watchdog timer count clock. WDCS is set with an 8-bit memory manipulation instruction. RESET input sets WDCS to 00H.

Figure 9-2: Watchdog Timer Clock Select Register Format

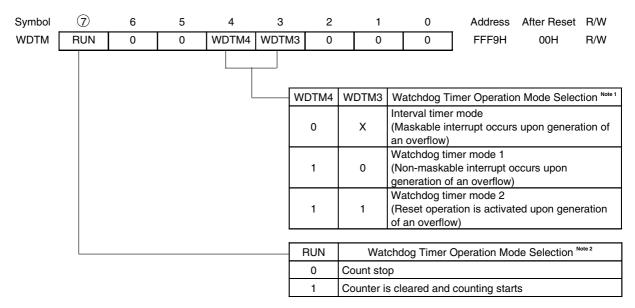
Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
WDCS	0	0	0	0	0	WDCS2	WDCS1	WDCS0	FF42H	00H	R/W
	WDCS2	WDCS1	WDCS0	Overflo	w time of v	vatchdog 1	interval ti	mer			
	0	0	0	fx/212 (512	2 μs)						
	0	0	1	fx/2 ¹³ (1 m	is)						
	0	1	0	fx/2 ¹⁴ (2 m	ıs)						
	0	1	1	fx/2 ¹⁵ (4 m	ıs)						
	1	0	0	fx/2 ¹⁶ (8.1	9 ms)						
	1	0	1	fx/2 ¹⁷ (16.	38 ms)						
	1	1	0	fx/2 ¹⁸ (32.	76 ms)						

Caution: When rewriting WDCS to other data, stop the timer operation beforehand.

Remarks: 1. fx: Main system clock oscillation frequency

1

1


1

2. Figures in parentheses apply to operation with fx = 8.0 MHz.

fx/2²⁰ (131 ms)

(2) Watchdog timer mode register (WDTM)

This register sets the watchdog timer operating mode and enables/disables counting. WDTM is set with a 1-bit or 8-bit memory manipulation instruction. RESET input sets WDTM to 00H.

Figure 9-3: Watchdog Timer Mode Register Format

- Notes: 1. Once set to 1, WDTM3 and WDTM4 cannot be cleared to 0 by software.
 2. Once set to 1, RUN cannot be cleared to 0 by software. Thus, once counting starts, it can only be stopped by RESET input.
- Caution: When 1 is set in RUN so that the watchdog timer is cleared, the actual overflow time is up to 0.5 % shorter than the time set by watchdog timer clock select register.

Remark: x = don't care.

9.4 Watchdog Timer Operations

9.4.1 Watchdog timer operation

When bit 4 (WDTM4) of the watchdog timer mode register (WDTM) is set to 1, the watchdog timer is operated to detect any inadvertent program loop.

The watchdog timer count clock (inadvertent program loop detection time interval) can be selected with bits 0 to 2 (WDCS0 to WDCS2) of the timer clock select register (WDCS).

Watchdog timer starts by setting bit 7 (RUN) of WDTM to 1. After the watchdog timer is started, set RUN to 1 within the set overrun detection time interval. The watchdog timer can be cleared and counting is started by setting RUN to 1. If RUN is not set to 1 and the inadvertent program loop detection time is past, system reset or a non-maskable interrupt request is generated according to the WDTM bit 3 (WDTM3) value.

The watchdog timer can be cleared when RUN is set to 1.

The watchdog timer continues operating in the HALT mode but it stops in the STOP mode. Thus, set RUN to 1 before the STOP mode is set, clear the watchdog timer and then execute the STOP instruction.

Cautions: 1. The actual overrun detection time may be shorter than the set time by a maximum of 0.5 %.

2. When the subsystem clock is selected for CPU clock, watchdog timer count operation is stopped.

WDCS2	WDCS1	WDCS0	Runaway Detection Time	
0	0	0	fx/2 ¹² (512 μs)	
0	0	1	fx/2 ¹³ (1 ms)	
0	1	0	fx/2 ¹⁴ (2 ms)	
0	1	1	fx/2 ¹⁵ (4 ms)	
1	0	0	fx/2 ¹⁶ (8.19 ms)	
1	0	1	fx/2 ¹⁷ (16.38 ms)	
1	1	0	fx/2 ¹⁸ (32.76 ms)	
1	1	1	fx/2 ²⁰ (131 ms)	

Table 9-4: Watchdog Timer Overrun Detection Time

Remarks: 1. fx: Main system clock oscillation frequency

2. Figures in parentheses apply to operation with fx = 8.0 MHz.

9.4.2 Interval timer operation

The watchdog timer operates as an interval timer which generates interrupts repeatedly at an interval of the preset count value when bit 3 (WDTM3) of the watchdog timer mode register (WDTM) is set to 0, respectively.

When the watchdog timer operates as interval timer, the interrupt mask flag (TMMK4) and priority specify flag (TMPR4) are validated and the maskable interrupt request (INTWDT) can be generated. Among maskable interrupts, the INTWDT default has the highest priority.

The interval timer continues operating in the HALT mode but it stops in STOP mode. Thus, set bit 7 (RUN) of WDTM to 1 before the STOP mode is set, clear the interval timer and then execute the STOP instruction.

- Cautions: 1. Once bit 4 (WDTM4) of WDTM is set to 1 (with the watchdog timer mode selected), the interval timer mode is not set unless **RESET** input is applied.
 - 2. The interval time just after setting with WDTM may be shorter than the set time by a maximum of 0.5 %.
 - 3. When the subsystem clock is selected for CPU clock, watchdog timer count operation is stopped.

WDCS2	WDCS1	WDCS0	Interval Time	
0	0	0	fx/2 ¹² (512 μs)	
0	0	1	fx/2 ¹³ (1 ms)	
0	1	0	fx/2 ¹⁴ (2 ms)	
0	1	1	fx/2 ¹⁵ (4 ms)	
1	0	0	fx/2 ¹⁶ (8.19 ms)	
1	0	1	fx/2 ¹⁷ (16.38 ms)	
1	1	0	fx/2 ¹⁸ (32.76 ms)	
1	1	1	fx/2 ²⁰ (131 ms)	

Table 9-	5: Interval	Timer	Interval	Time

Remarks: 1. fx: Main system clock oscillation frequency

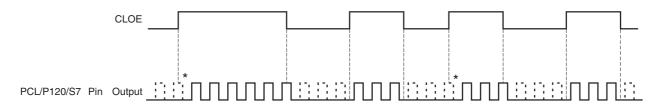
2. Figures in parentheses apply to operation with fx = 8.0 MHz.

[Memo]

Chapter 10 Clock Output Control Circuit

10.1 Clock Output Control Circuit Functions

The clock output control circuit is intended for carrier output during remote controlled transmission and clock output for supply to peripheral LSI. Clocks selected with the clock output selection register (CKS) are output from the PCL/P120/S7 pin.


Follow the procedure below to output clock pulses.

- (1) Select the clock pulse output frequency (with clock pulse output disabled) with bits 0 to 3 (CCS0 to CCS2) of CKS.
- (2) Set the P120 output latch to 0.
- (3) Set bit 0 (PM120) of port mode register 120 to 0 (set to output mode).
- (4) Set bit 4 (CLOE) of clock output selection register to 1.

Caution: Clock output cannot be used when setting the output latch to 1.

Remark: When clock output enable/disable is switched, the clock output control circuit does not output pulses with small widths (See the portions marked with * in Figure 12-1).

Figure 10-1: Remote Controlled Output Application Example

10.2 Clock Output Control Circuit Configuration

The clock output control circuit consists of the following hardware.

Table 10-1: Clock Output Control Circuit Configuration

Item	Configuration
Control register	Clock output selection register (CKS) Port mode register 3 (PM3)

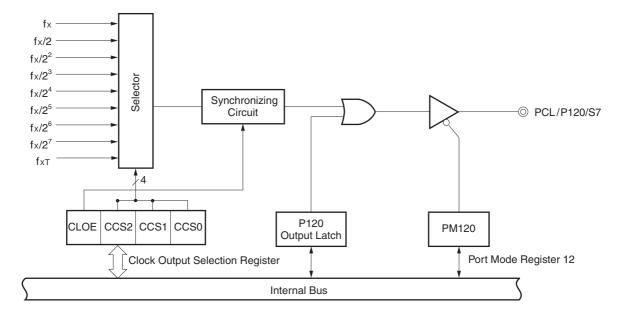


Figure 10-2: Clock Output Control Circuit Block Diagram

10.3 Clock Output Function Control Registers

The following two types of registers are used to control the clock output function.

- Clock output selection register (CKS)
- Port mode register 12 (PM12)

(1) Clock Output Selection Register (CKS)

This register sets PCL output clock. CKS is set with a 1-bit or 8-bit memory manipulation instruction. RESET input sets CKS to 00H.

Caution: When enabling PCL output, set CCS50 to CCS52, then set 1 in CLOE with a 1-bit memory manipulation instruction.

Symbol	Ø	6	5	4	3	2	1	0	Address	After Reset	R/W
CKS	0	0	0	CLOE	CCS3	CCS2	CCS1	CCS0	FF40H	00H	R/W
	CCS3	CCS2	CCS1	CCS0	PC	L Output (Clock Sele	ection]		
	0	0	0	0	fx (8 MH	z)					
	0	0	0	1	fx/2 ¹ (4 N	1Hz)					
	0	0	1	0	fx/2 ² (2 N	1Hz)					
	0	0	1	1	fx/2 ³ (1 N	1Hz)					
	0	1	0	0	fx/24 (500) KHz)					
	0	1	0	1	fx/2⁵ (250) KHz)					
	0	1	1	0	fx/2 ⁶ (125	5 KHz)					
	0	1	1	1	fx/2 ⁷ (62.	5 KHz)					
	1	0	0	0	fx⊤ (32.7	KHz)					
		Other the	an above			Setting	prohibited	I			
									1		
	CLOE			PCI	Output C	ontrol			1		

Figure 10-3: Clock Output Selection Register Format

CLOE	PCL Output Control
0	Output disable
1	Output enable

Remarks: 1. fx: Main system clock oscillation frequency

- 2. fxT: subsystem clock oscillation frequency.
- **3.** Figures in parentheses apply to operation with fx = 8.0 MHz and fxT = 32.718 kHz.

(2) Port Mode Register 12 (PM12)

This register sets port 12 input/output in 1-bit units. When using the P120/PCL/S7 pin for clock output function, set PM120 and output latch of P120 to 0. PM12 is set with a 1-bit or 8-bit memory manipulation instruction. RESET input sets PM12 to FFH.

Symbol 7 5 2 6 4 3 1 0 Address After Reset R/W PM12 PM127 PM126 PM125 PM124 PM123 PM122 PM121 PM120 FF2CH FFH R/W P12n pin input/output mode selection (n = 0 to 7) PM12n 0 Output mode (output buffer ON) 1 Input mode (output buffer OFF)

Figure 10-4: Port Mode Register 12 Format

(3) Port Function Register 12 (PF12)

This register sets the port function of port 12 in 1-bit units. When using the PCL output, the register PF12 has to be set to port function.

PF12 is with an 1-bit or an 8-bit memory manipulation instruction.

RESET input sets PM12 to 00H.

Figure 10-5: Port Function Register 12 (PF12) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PF12	PF127	PF126	PF125	PF124	PF123	PF122	PF121	PF120	FF5CH	00H	R/W

PF12n	P12n port function selection ($n = 0$ to 7)
0	Port mode
1	LCD mode

Note: For the µPD1616 set always 00H to PF12.

[Memo]

Chapter 11 A/D Converter

11.1 A/D Converter Functions

The A/D converter is an 8-bit resolution converter that converts analog inputs into digital values. It can control up to 4 analog input channels (ANI0 to ANI3). This A/D converter has the following functions:

(1) A/D conversion with 8-bit resolution

One channel of analog input is selected from ANI0 to ANI3, and A/D conversion is repeatedly executed with a resolution of 8 bits. Each time the conversion has been completed, an interrupt request (INTAD) is generated.

(2) Power-fail detection function

This function is to detect for example a voltage drop in the battery of an automobile. The result of A/D conversion (value of the ADCR1 register) and the value of PFT register (PFT: power-fail compare threshold value register) are compared. If the condition for comparison is satisfied, the INTAD is generated.

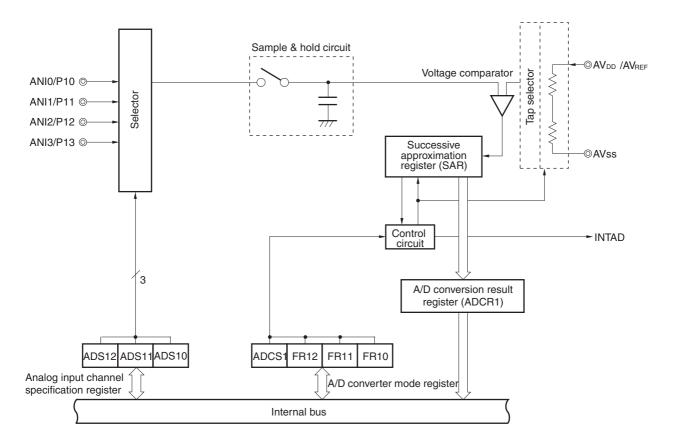
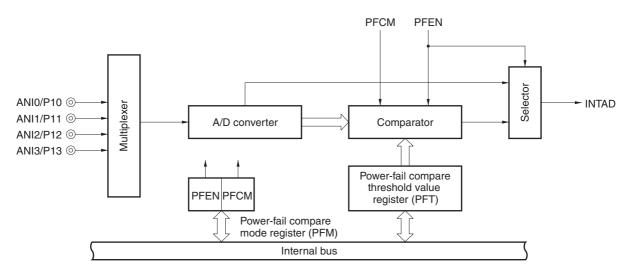



Figure 11-1: A/D Converter Block Diagram

Figure 11-2: Power-Fail Detection Function Block Diagram

11.2 A/D Converter Configuration

A/D converter consists of the following hardware.

Table	11-1:	A/D	Converter	Configuration
-------	-------	-----	-----------	---------------

Item	Configuration
Analog input	8 channels (ANI0 to ANI7)
Register	Successive approximation register (SAR) A/D conversion result register (ADCR1)
Control register	A/D converter mode register (ADM1) Analog input channel specification register (ADS1) Power-fail compare mode register (PFM) Power-fail compare threshold value register (PFT)

(1) Successive approximation register (SAR)

This register compares the analog input voltage value to the voltage tap (compare voltage) value applied from the series resistor string, and holds the result from the most significant bit (MSB). When up to the least significant bit (LSB) is set (end of A/D conversion), the SAR contents are transferred to the A/D conversion result register.

(2) A/D conversion result register (ADCR1)

This register holds the A/D conversion result. Each time when the A/D conversion ends, the conversion result is loaded from the successive approximation register. <u>ADCR1</u> is read with an 8-bit memory manipulation instruction. <u>RESET</u> input clears ADCR1 to 00H.

Caution: If a write operation is executed to the A/D converter mode register (ADM1) and the analog input channel specification register (ADS1) the contents of ADCR1 are undefined. Read the conversion result before a write operation is executed to ADM1 and ADS1. If a timing other than the above is used, the correct conversion result may not be read.

(3) Sample & hold circuit

The sample & hold circuit samples each analog input sequentially applied from the input circuit, and sends it to the voltage comparator. This circuit holds the sampled analog input voltage value during A/D conversion.

(4) Voltage comparator

The voltage comparator compares the analog input to the series resistor string output voltage.

(5) Series resistor string

The series resistor string is in AVDD to AVss, and generates a voltage to be compared to the analog input.

(6) ANI0 to ANI3 pins

These are four analog input pins to input analog signals to the A/D converter. ANIO to ANI3 are alternate-function pins that can also be used for digital input.

Caution: Use ANI0 to ANI3 input voltages within the specification range. If a voltage higher than AV_{DD} or lower than AV_{SS} is applied (even if within the absolute maximum rating range), the conversion value of that channel will be undefined and the conversion values of other channels may also be affected.

(7) AVDD/AVREF pin

This pin inputs the A/D converter reference voltage and is used as the AD-converter power supply pin.

It converts signals input to ANI0 to ANI3 into digital signals according to the voltage applied between AV_{DD}/AV_{REF} and AV_{SS}.

Keep the AVDD/AVREF pin always at the same potential on the VDD pin, even when the AD-converter is no used.

(8) AVss pin

This is the GND potential pin of the A/D converter. Always keep it at the same potential as the Vss pin even when not using the A/D converter.

11.3 A/D Converter Control Registers

The following 4 types of registers are used to control A/D converter.

- A/D converter mode register (ADM1)
- Analog input channel specification register (ADS1)
- Power-fail compare mode register (PFM)
- Power-fail compare threshold value register (PFT)

(1) A/D converter mode register (ADM1)

This register sets the conversion time for analog input to be A/D converted, conversion start/stop and external trigger. ADM1 is set with 1-bit or 8-bit memory manipulation instruction. RESET input clears ADM1 to 00H.

Figure 11-3: A/D Converter Mode Register (ADM1) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
ADM1	ADCS1	0	FR12	FR11	FR10	0	0	0	FF80H	00H	R/W
	-										
	ADCS1				A/D Co	onversion (Operation	Control			
	0	Stop con	version op	eration							
	1	Enable c	onversion	operation							
	FR12	FR11	FR10			Conv	version Tir	ne Selectio	on ^{Note}		
	0	0	0	144/fx							
	0	0	1	120/fx							
	0	1	0	96/fx							
	1	0	0	288/fx							
	1	0	1	240/fx							
	1	1	0	192/fx							
	Oth	ner than at	ove				Setting p	prohibited			

Note: Set FR10 to FR12 that the A/D conversion time is 15 µs or more.

Caution: Bits 0 to 2 and bit 6 must be set to 0.

Remark: fx: Main system clock oscillation frequency

(2) Analog input channel specification register (ADS1)

This register specifies the analog voltage input port for A/D conversion. ADS1 is set with an 8-bit memory manipulation instruction. RESET input clears ADS1 to 00H.

Figure 11-4: Analog Input Channel Specification Register (ADS1) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
ADS1	0	0	0	0	0	0	ADS11	ADS10	FF81H	00H	R/W

ADS11	ADS10	Analog Input Channel Specification
0	0	ANIO
0	1	ANI1
1	0	ANI2
1	1	ANI3

Caution: Bits 2 to 7 must be set to 0.

(3) Power-fail compare mode register (PFM)

The power-fail compare mode register (PFM) controls a comparison operation. PFM is set with an 8-bit manipulation instruction.

RESET input clears PFM to 00H.

		Figure	11-5:	Power-l	Fail Con	npare N	lode F	Register	(PFM) Fori	nat	
Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PFM	PFEN	PFCM	0	0	0	0	0	0	FF82H	00H	R/W
	PFEN				Enabl	es Power-	Fail Cor	nparison			
	0	Disables	power-fai	l comparis	on (used a	s normal A	VD conv	verter)			
	1	Enables	power-fail	compariso	on (used to	detect po	wer failu	ıre)			
		PFCM				Power-I	ail Com	npare Mode	Selection		
	0	ADCR	DCR1 ≥ PFT Generates interrupt request signal INTAD								

	PFCM	Power-Fail Compare Mode Selection
0	$ADCR1 \ge PFT$	Generates interrupt request signal INTAD
0	ADCR1 < PFT	Does not generate interrupt request signal INTAD
1	$ADCR1 \ge PFT$	Does not generate interrupt request signal INTAD
1	ADCR1 < PFT	Generates interrupt request signal INTAD

Caution: Bits 0 to 5 must be set to 0.

(4) Power-fail compare threshold value register (PFT)

The power-fail compare threshold value register (PFT) sets a threshold value against which the result of A/D conversion is to be compared.

PFT is set with an 8-bit memory manipulation instruction.

RESET input clears PFT to 00H.

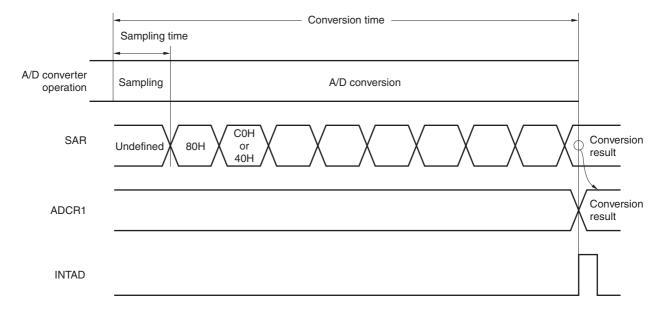
Figure 11-6: Power-fail compare threshold value register (PFT)

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PFT	PFT7	PFT6	PFT5	PFT4	PFT3	PFT2	PFT1	PFT0	FF83H	00H	R/W

11.4 A/D Converter Operations

11.4.1 Basic operations of A/D converter

- <1> Select one channel for A/D conversion with the analog input channel specification register (ADS1).
- <2> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the input analog voltage is held until the A/D conversion operation is ended.
- <4> Bit 7 of the successive approximation register (SAR) is set internally so that the tap selector starts with a series resistor string voltage tap of (1/2) AV_{DD}.
- <5> The voltage difference between the series resistor string voltage tap and analog input is compared with the voltage comparator. If the analog input is greater than (1/2) AVDD, the MSB of SAR remains set. If the analog input is smaller than (1/2) AVDD, the MSB is reset.
- <6> Next, bit 6 of SAR is automatically set, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 7, as described below.


• Bit 7 = 1: (3/4) AVDD

• Bit 7 = 0: (1/4) AVDD

The voltage tap and analog input voltage are compared and bit 6 of SAR is manipulated as follows.

- Analog input voltage \geq Voltage tap: Bit 6 = 1
- Analog input voltage < Voltage tap: Bit 6 = 0
- <7> Comparison is continued in this way up to bit 0 of SAR.
- <8> Upon completion of the comparison of 8 bits, an effective digital result value remains in SAR, and the result value is transferred to and latched in the A/D conversion result register (ADCR1). At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.

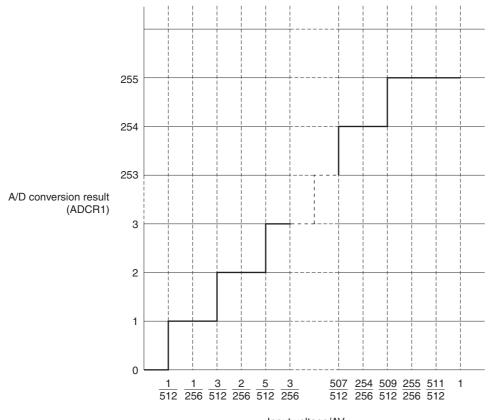
Caution: The first A/D conversion value just after A/D conversion is undefined.

Figure 11-7: Basic Operation of 8-Bit A/D Converter

A/D conversion operations are performed continuously until bit 7 (ADCS1) of the A/D converter mode register (ADM1) is reset (to 0) by software.

If a write operation to the ADM1 and analog input channel specification register (ADS1) is performed during an A/D conversion operation, the conversion operation is initialized, and if the ADCS1 bit is set (to 1), conversion starts again from the beginning.

RESET input sets the A/D conversion result register (ADCR1) to 00H.


11.4.2 Input voltage and conversion results

The relation between the analog input voltage input to the analog input pins (ANI0 to ANI3) and the A/D conversion result (stored in the A/D conversion result register (ADCR1)) is shown by the following expression.

 $\begin{array}{l} \text{ADCR1} = \text{INT} \left(\begin{array}{c} \text{VIN} \\ \overline{\text{AV_{DD}}} \end{array} x 256 + 0.5 \right) \\ \text{or} \\ \left(\text{ADCR1} - 0.5 \right) x \frac{\text{AV_{DD}}}{256} - \text{V}_{\text{IN}} < \left(\text{ADCR1} + 0.5 \right) x \frac{\text{AV_{DD}}}{256} \\ \text{where, INT()} : Function which returns integer part of value in parentheses} \\ \text{V}_{\text{IN}} : \text{Analog input voltage} \\ \text{AV_{DD}} : \text{AV_{DD} pin voltage} \\ \text{ADCR1} : \text{A/D conversion result register (ADCR1) value} \\ \end{array}$

Figure 11-8 shows the relation between the analog input voltage and the A/D conversion result.

Input voltage/AVDD

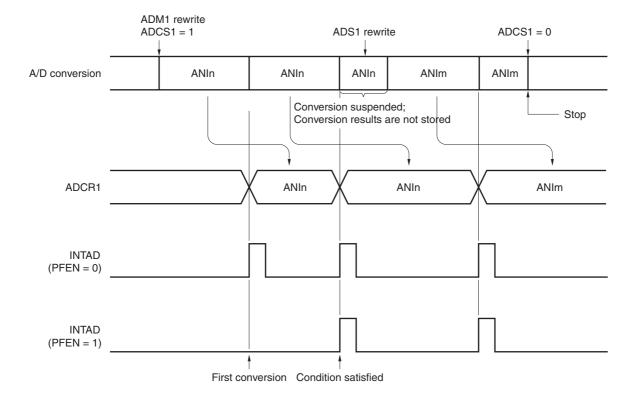
11.4.3 A/D converter operation mode

The operation mode of the A/D converter is the select mode. One analog input channel is selected from among ANI0 to ANI3 with the analog input channel specification register (ADS1) and A/D conversion is performed.

The following two types of functions can be selected by setting the PFEN flag of the PFM register.

- (1) Normal 8-bit A/D converter (PFEN = 0)
- (2) Power-fail detection function (PFEN = 1)

(1) A/D conversion (when PFEN = 0)


When bit 7 (ADCS1) of the A/D converter mode register (ADM1) is set to 1 and bit 7 of the powerfail compare mode register (PFM) is set to 0, A/D conversion of the voltage applied to the analog input pin specified with the analog input channel specification register (ADS1) starts. Upon the end of the A/D conversion, the conversion result is stored in the A/D conversion result register (ADCR1), and the interrupt request signal (INTAD) is generated. After one A/D conversion operation is started and ended, the next conversion operation is immediately started. A/D conversion operations are repeated until new data is written to ADS1.

If ADS1 is rewritten during A/D conversion operation, the A/D conversion operation under execution is stopped, and A/D conversion of a newly selected analog input channel is started. If data with ADCS1 set to 0 is written to ADM1 during A/D conversion operation, the A/D conversion operation stops immediately.

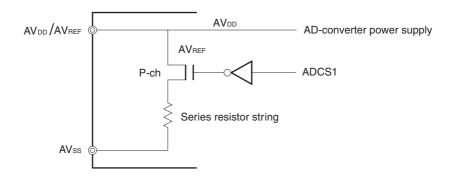
(2) Power-fail detection function (when PFEN = 1)

When bit 7 (ADCS1) of the A/D converter mode register (ADM1) and bit 7 (PFEN) of the powerfail compare mode register (PFM) are set to 1, A/D conversion of the voltage applied to the analog input pin specified with the analog input channel specification register (ADS1) starts. Upon the end of the A/D conversion, the conversion result is stored in the A/D conversion result register (ADCR1), compared with the value of the power-fail compare threshold value register (PFT), the INTAD is generated under the condition specified by the PFCM flag of the PFM register.

Caution: When executing power-fail comparison, the interrupt request signal (INTAD) is not generated on completion of the first conversion after ADCS1 has been set to 1. INTAD is valid from completion of the second conversion.

Figure 11-9: A/D Conversion

Remarks: 1. n = 0, 1, ..., 7 2. m = 0, 1, ..., 7


11.5 A/D Converter Precautions

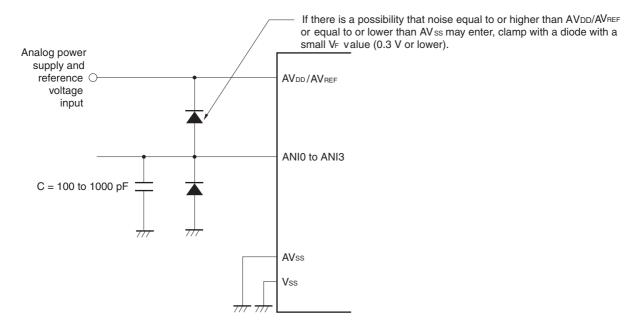
(1) Current consumption in standby mode

A/D converter stops operating in the standby mode. At this time, current consumption can be reduced by setting bit 7 (ADCS1) of the A/D converter mode register (ADM1) to 0 to stop conversion.

Figure 11-10 shows how to reduce the current consumption in the standby mode.

Figure 11-10: Example Method of Reducing Current Consumption in Standby Mode

(2) Input range of ANI0 to ANI3


The input voltages of ANI0 to ANI3 should be within the specification range. In particular, if a voltage higher than AV_{DD}/AV_{REF} or lower than AV_{SS} is input (even if within the absolute maximum rating range), the conversion value of that channel will be undefined and the conversion values of other channels may also be affected.

(3) Contending operations

- <1> Contention between A/D conversion result register (ADCR1) write and ADCR1 read by instruction upon the end of conversion ADCR1 read is given priority. After the read operation, the new conversion result is written to ADCR1.
- <2> Contention between ADCR1 write and A/D converter mode register (ADM1) write or analog input channel specification register (ADS1) write upon the end of conversion ADM1 or ADS1 write is given priority. ADCR1 write is not performed, nor is the conversion end interrupt request signal (INTAD) generated.

(4) Noise countermeasures

To maintain 8-bit resolution, attention must be paid to noise input to pin AV_{DD}/AV_{REF} and pins ANI0 to ANI3. Because the effect increases in proportion to the output impedance of the analog input source, it is recommended that a capacitor be connected externally as shown in the Figure 11-11 to reduce noise.

Figure 11-11: Analog Input Pin Handling

(5) ANIO to ANI3

The analog input pins (ANI0 to ANI3) also function as input port pins (P10 to P13). When A/D conversion is performed with any of pins ANI0 to ANI3 selected, do not execute a port input instruction while conversion is in progress, as this may reduce the conversion resolution. Also, if digital pulses are applied to a pin adjacent to the pin in the process of A/D conversion, the expected A/D conversion value may not be obtainable due to coupling noise. Therefore, avoid applying pulses to pins adjacent to the pin undergoing A/D conversion.

(6) AVDD/AVREF pin input impedance

A series resistor string of approximately 21 k Ω is connected between the AVDD/AVREF pin and the AVss pin.

Therefore, if the output impedance of the reference voltage is high, this will result in parallel connection to the series resistor string between the AV_{DD} pin and the AV_{SS} pin, and there will be a large reference voltage error.

(7) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS1) is changed.

Caution is therefore required if a change of analog input pin is performed during A/D conversion. The A/D conversion result and conversion end interrupt request flag for the pre-change analog input may be set just before the ADS1 rewrite, if the ADIF is read immediately after the ADS1 rewrite, the ADIF may be set despite to the fact that the A/D conversion for the post-change analog input has not ended.

When the A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.

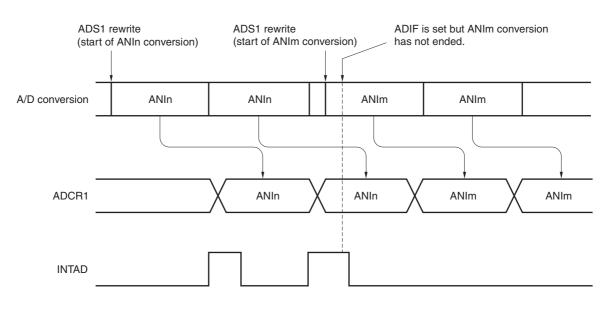


Figure 11-12: A/D Conversion End Interrupt Request Generation Timing

```
Remarks: 1. n = 0, 1, ..., 7
```

2. m = 0, 1, ..., 7

(8) Read of A/D conversion result register (ADCR1)

When a write operation is executed to A/D converter mode register (ADM1) and analog input channel specification register (ADS1), the contents of ADCR1 are undefined. Read the conversion result before write operation is executed to ADM1, ADS1. If a timing other than the above is used, the correct conversion result may not be read.

11.6 Cautions on Emulation

To perform debugging with an in-circuit emulator, the D/A converter mode register (DAM0) must be set. DAM0 is a register used to set the I/O board.

11.6.1 D/A converter mode register (DAM0)

DAMO is necessary if the power-fail detection function is used. Unless DAMO is set, the power-fail detection function cannot be used. DAMO is a write-only register.

Because the I/O board uses an external analog comparator and a D/A converter to implement part of the power-fail detection function, the reference voltage must be controlled. Therefore, set bit 0 (DACE) of DAM0 to 1 when using the power-fail detection function.

Figure 11-13: D/A Converter Mode Register (DAM0) Format

Symbol DAM0

ol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
5 [0	0	0	0	0	0	0	DACE	FF84H	00H	W
_											
	DACE Reference Voltage Control										
	0	Disabled									
	1	1 Enabled (when power-fail detection function is used)									

- Cautions: 1. DAM0 is a special register that must be set when debugging is performed with an in-circuit emulator. Even if this register is used, the operation of the μPD1615A Subseries is not affected. However, delete the instruction that manipulates this register from the program at the final stage of debugging.
 - 2. Bits 7 to 1 must be set to 0.

[Memo]

Chapter 12 Serial Interface Outline

12.1 Serial Interface Outline

The µPD1615A subseries incorporates two channels of serial interfaces.

Table 12-1: Differences between the Serial Interface Channels

Serial Transfer Mode	μPD1615A(A)	μPD1615B(A)	μPD1615F(A)	μPD1616F(A)	μPD16F15A
SIO 3 (3-wire serial I/O)	0	0	0	0	0
UART	0	0	0	0	0

Remark: O : Provided

- : Not provided

[Memo]

Chapter 13 Serial Interface SIO3

13.1 Serial Interface Channel 3 Functions

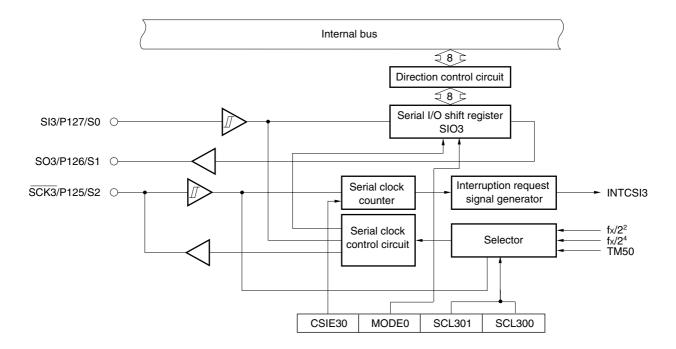
The SIO3 has the following two modes.

- Operation stop mode
- 3-wire serial I/O mode

(1) Operation stop mode

This mode is used if serial transfer is not performed. For details, see 15.5.1 Operation Stop Mode.

(2) 3-wire serial I/O mode (fixed as MSB first)


This is an 8-bit data transfer mode using three lines: a serial clock line ($\overline{SCK3}$), serial output line (SO3), and serial input line (SI3).

Since simultaneous transmit and receive operations are enabled in 3-wire serial I/O mode, the processing time for data transfers is reduced.

The first bit in the 8-bit data in serial transfers is fixed as the MSB.

3-wire serial I/O mode is useful for connection to a peripheral I/O device that includes a clock-synchronous serial interface, like a display controller, etc. For details see **13.5.2 Three-Wire Serial I/O Mode**.

Figure 13-1 shows a block diagram of the SIO3.

13.2 Serial Interface Channel 3 Configuration

The SIO3 includes the following hardware.

Table 13-1: Composition of SIO3

Item	Configuration
Registers	Serial I/O shift register 3 (SIO3)
Control registers	Serial operation mode register 3 (CSIM3)

(1) Serial I/O shift register 3 (SIO3)

This is an 8-bit register that performs parallel-serial conversion and serial transmit/receive (shift operations) synchronized with the serial clock.

SIO3 is set by an 8-bit memory manipulation instruction.

When "1" is set to bit 7 (CSIE30) of the serial operation mode register 3 (CSIM3), a serial operation can be started by writing data to or reading data from SIO3.

When transmitting, data written to SIO3 is output via the serial output (SO3).

When receiving, data is read from the serial input (SI3) and written to SIO3.

The $\overline{\text{RESET}}$ signal resets the register value to 00H.

Caution: Do not access SIO3 during a transmit operation unless the access is triggered by a transfer start. (Read is disabled when MODE = 0 and write is disabled when MODE = 1.)

13.3 List of SFRs (Special Function Registers)

Table 13-2:	List of SFRs	(Special Function	Registers)
-------------	--------------	-------------------	------------

SFR name	Cumbol	R/W	Units availa	able for bit ma	anipulation	Value when react
SFRhame	Symbol	H/ VV	1 bit	8 bits	16 bits	Value when reset
Serial operation mode register 3	CSIM3	R/W	0	0	—	00H
Serial I/O shift register 3	SIO3		_	0		

13.4 Serial Interface Control Registers

The SIO3 uses the following type of register for control functions.

• Serial operation mode register 3 (CSIM3)

(1) Serial operation mode register 3 (CSIM3)

This register is used to enable or disable SIO3's serial clock, operation modes, and specific operations.

CSIM3 can be set via a 1-bit or 8-bit memory manipulation instruction.

The RESET input sets the value to 00H.

Figure 13-2: Format of Serial Operation Mode Register 3 (CSIM3)

Address: FF6FH When reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CSIM3	CSIE30	0	0	0	0	MODE0	SCL301	SCL300

CSIE30	Enable/disable specification for SIO3						
CSIESU	Shift register operation	Serial counter	Port Note 1				
0	Operation stop	Clear	Port function				
1	Operation enable	Count operation enable	Serial operation + port function				

MODE0	Transfer operation modes and flags					
MODEO	Operation mode	Operation mode Transfer start trigger				
0	Transmit/receive mode	Write to SIO3	SO3 output			
1	Receive-only mode Note 2	Read from SIO3	Port function			

SCL301	SCL300	Clock selection
0	0	External clock input
0	1	fx/2 ²
1	0	fx/2 ⁴
1	1	TM50 output

- **Notes: 1.** When CSIE30 = 0 (SIO3 operation stop status), the pins connected to SI3 and SO3 can be used for port functions.
 - **2.** When MODE0 = 1 (Receive mode), pin P126/SO3/S1 can be used for port function.
- Caution: If TM50 is used as clock generation for SIO3, no clock will be supplied to SIO3 unless TOE50 is set to 1. In this case a square wave output signal is output from the TO50 pin.

13.5 Serial Interface Operations

This section explains on two modes of SIO3.

13.5.1 Operation stop mode

This mode is used if the serial transfers are not performed to reduce power consumption. During the operation stop mode, the pins can be used as normal I/O ports as well.

(1) Register settings

The operation stop mode can be set via the serial operation mode register 3 (CSIM3). CSIM3 can be set via 1-bit or 8-bit memory manipulation instructions. The RESET input sets the value to 00H.

Address: FF6FH When reset: 00H R/W Symbol 7 6 5 3 2 1 0 4 CSIE30 CSIM3 0 0 0 0 MODE0 SCL301 SCL300 SIO3 operation enable/disable specification CSIE30 Port Note Shift register operation Serial counter Clear 0 Port function Operation stop 1 Operation enable Count operation enable Serial operation + port function

Note: When CSIE30 = 0 (SIO3 operation stop status), the pins connected to SI3 and SO3 can be used for port functions.

13.5.2 Three-wire serial I/O mode

The three-wire serial I/O mode is useful when connecting a peripheral I/O device that includes a clock-synchronous serial interface, a display controller, etc.

This mode executes the data transfer via three lines: a serial clock line (SCK3), serial output line (SO3), and serial input line (SI3).

(1) Register settings

The 3-wire serial I/O mode is set via serial operation mode register 3 (CSIM3). CSIM3 can be set via 1-bit or 8-bit memory manipulation instructions. The $\ensuremath{\,\overline{\text{RESET}}}$ input set the value to 00H .

Figure 13-4: Format of Serial Operation Mode Register 3 (CSIM3)

Address: FF6FH When reset: 00H R/W 7 Symbol 6 5 4 3 2 1 0 CSIM30 CSIE30 0 0 0 0 MODE0 SCL301 SCL300

CSIE30		Enable/disable specification for SIO3						
CSIE	Shift register operation		Serial counter	Port Note 1				
0		Operation stop	Clear	Port function				
1		Operation enable	Count operation enable	Serial operation + port function				

MODE0	Transfer operation modes and flags						
MODEU	Operation mode	Transfer start trigger	P126/SO3/S1				
0	Transmit/receive mode	Write to SIO3	SO3 output				
1	Receive-only mode Note 2	Read from SIO3	Port function				

SCL301	SCL300	Clock selection (fx = 8.00 MHz)
0	0	External clock input
0	1	fx/2 ²
1	0	fx/2 ⁴
1	1	TM50 output

- **Note: 1.** When CSIE30 = 0 (SIO3 operation stop status), the pins connected to SI3 and SO3 can be used for port functions.
 - **2.** When MODE0 = 1 (Receive mode), pin P126/SO3/S1 can be used for port function.
- Caution: If TM50 is used as clock generation for SIO3, no clock will be supplied to SIO3 unless TOE50 is set to 1. In this case a square wave output signal is output from the TO50 pin.

(2) Communication Operations

In the three-wire serial I/O mode, data is transmitted and received in 8-bit units. Each bit of data is sent or received synchronized with the serial clock.

The serial I/O shift register 3 (SIO3) is shifted synchronized with the falling edge of the serial clock. The transmission data is held in the SO3 latch and is output from the SO3 pin. The data is received via the SI3 pin synchronized with the rising edge of the serial clock is latched to SIO3.

The completion of an 8-bit transfer automatically stops operation of SIO3 and sets a serial transfer completion flag.

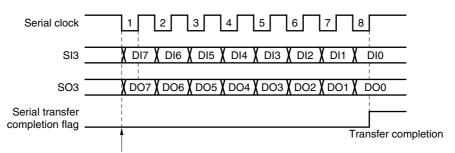


Figure 13-5: Timing of Three-wire Serial I/O Mode

Transfer starts in synchronized with the serial clock's falling edge

(3) Transfer start

A serial transfer starts when the following two conditions have been satisfied and transfer data has been set to serial I/O shift register 3 (SIO3).

- The SIO3 operation control bit (CSIE30) = 1
- After an 8-bit serial transfer, the internal serial clock is either stopped or is set to high level.
- Transmit/receive mode When CSIE30 = 1 and MODE0 = 0, transfer starts when writing to SIO3.
- Receive-only mode When CSIE30 = 1 and MODE0 = 1, transfer starts when reading from SIO3.

Cautions: 1. After the data has been written to SIO30, the transfer will not start even if the CSIE30 bit value is set to "1".1.

2. For a continuous data reception in the transmit/receive mode you schould restart the transfer trigger (write to SIO3) after the received data has been read out.

The completion of an 8-bit transfer automatically stops the serial transfer operation and sets a serial transfer completion flag.

[Memo]

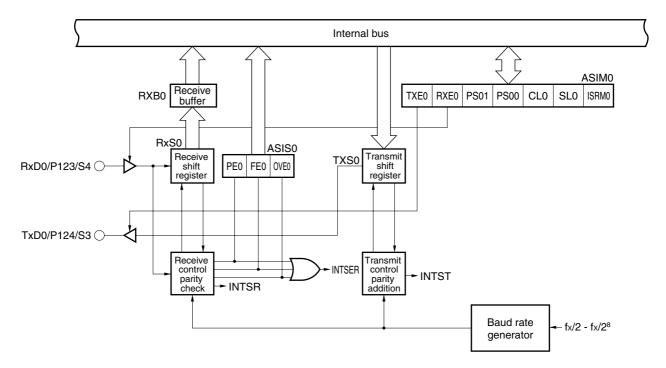
Chapter 14 Serial Interface UART

14.1 Serial Interface UART Functions

The serial interface UART has the following two modes.

(1) Operation stop mode

This mode is used if the serial transfer is performed to reduce power consumption. For details, see **14.5.1 Operation Stop Mode**.


(2) Asynchronous serial interface (UART) mode

This mode enables the full-duplex operation where one byte of data is transmitted and received after the start bit.

The on-chip dedicated UART baud rate generator enables communications using a wide range of selectable baud rates.

For details, see 14.5.2 Asynchronous Serial Interface (UART) Mode.

Figure 14-1 shows a block diagram of the UART macro.

Figure 14-1: Block Diagram of UART

14.2 Serial Interface UART Configuration

The UART includes the following hardware.

Table 14-1: Configuration of UART

Item	Configuration
Registers	Transmit shift register 1 (TXS0) Receive shift register 1 (RXS0) Receive buffer register (RXB0)
Control registers	Asynchronous serial interface mode register (ASIM0) Asynchronous serial interface status register (ASIS0) Baud rate generator control register (BRGC0)

(1) Transmit shift register 1 (TXS0)

This register is for setting the transmit data. The data is written to TXS0 for transmission as serial data. When the data length is set as 7 bits, bits 0 to 6 of the data written to TXS0 are transmitted as serial data. Writing data to TXS0 starts the transmit operation.

TXS0 can be written via 8-bit memory manipulation instructions. It cannot be read. When $\overrightarrow{\text{RESET}}$ is input, its value is FFH.

Caution: Do not write to TXS0 during a transmit operation.

The same address is assigned to TXS0 and the receive buffer register (RXB0). A read operation reads values from RXB0.

(2) Receive shift register 1 (RXS0)

This register converts serial data input via the RxD pin to parallel data. When one byte of the data is received at this register, the receive data is transferred to the receive buffer register (RXB0). RXS0 cannot be manipulated directly by a program.

(3) Receive buffer register (RXB0)

This register is used to hold receive data. When one byte of data is received, one byte of new receive data is transferred from the receive shift register (RXS0).

When the data length is set as 7 bits, receive data is sent to bits 0 to 6 of RXB0. The MSB must be set to "0" in RXB0.

RXB0 can be read to via 8-bit memory manipulation instructions. It cannot be written to. When $\overrightarrow{\text{RESET}}$ is input, its value is FFH.

Caution: The same address is assigned to RXB0 and the transmit shift register (TXS0). During a write operation, values are written to TXS0.

(4) Transmission control circuit

The transmission control circuit controls transmit operations, such as adding a start bit, parity bit, and stop bit to data that is written to the transmit shift register (TXS0), based on the values set to the asynchronous serial interface mode register (ASIM0).

(5) Reception control circuit

The reception control circuit controls the receive operations based on the values set to the asynchronous serial interface mode register (ASIM0). During a receive operation, it performs error checking, such as parity errors, and sets various values to the asynchronous serial interface status register (ASIS0) according to the type of error that is detected.

14.3 List of SFRS (Special Function Registers)

SFR name	Symbol	R/W	Units m	Value when		
			1 bit	8 bits	16 bits	reset
Transmit shift register	TXS0	W		0		FFH
Receive buffer register	RXB0	R	-	0	-	ГГП
Asynchronous serial interface mode register	ASIM0	R/W	0	0	-	
Asynchronous serial interface status register	ASIS0	W	-	0	-	00H
Baud rate generator control register	BRGC0	R/W	-	0	-	

Table 14-2: List of SFRs (Special Function Registers)

14.4 Serial Interface Control Registers

The UART uses the following three types of registers for control functions.

- Asynchronous serial interface mode register (ASIM0)
- Asynchronous serial interface status register (ASIS0)
- Baud rate generator control register (BRGC0)

(1) Asynchronous serial interface mode register (ASIM0)

This is an 8-bit register that controls the UART serial transfer operation. <u>ASIM0</u> can be set by 1-bit or 8-bit memory manipulation instructions. <u>RESET</u> input sets the value to 00H. Figure 14-2 shows the format of ASIM0.

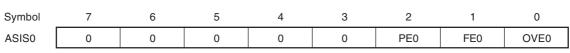
Address: FFA0H When reset: 00H R/W									
Symbol	7	6	5	4	3	2	1	0	
ASIM0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	0	
	TXE0	RXE0	Operatio	on mode	RxD0/P123/S	64pin function	TxD0/P124/S	3pin function	
	0	0	Operation s	top	Port functio	n	Port function	n	
	0	1	UART0 mode (receive only)		Serial operation		Port function		
	1	0	UART0 mode (transmit only)		Port function		Serial operation		
	1	1	UART0 mod (transmit ar		Serial opera	ation	Serial opera	ation	
	PS01	PS00			Parity bit s	pecification			
	0	0	No parity						
	0	1		-	d during tran		do not occur	·)	
	1	0	Odd aprity	Odd aprity					
	1	1	Even parity						

Figure 14-2: Format of Asynchronous Serial Interface Mode Register (ASIM0)

CL0		Character length specification
0	7 bits	
1	8 bits	

SL0	Stop bit length specification for transmit data
0	1 bit
1	2 bits

ISRM0	Receive completion interrupt control when error occurs						
0	Receive completion interrupt is issued when an error occurs						
1	Receive completion interrupt is not issued when an error occurs						


Do not switch the operation mode until after the current serial transmit/receive Caution: operation has stopped.

(2) Asynchronous serial interface status register (ASIS0)

When a receive error occurs during UART mode, this register indicates the type of error. ASIS0 can be read using an 8-bit memory manipulation instruction. When RESET is input, its value is 00H.

Figure 14-3: Format of Asynchronous Serial Interface Status Register (ASIS0)

Address: FFA1H When reset: 00H R

PE0	Parity error flag				
0	No parity error				
0	Parity error (Incorrect parity bit detected)				

FE0	Framing error flag					
0	No framing error					
1	Framing error ^{Note 1} (Stop bit not detected)					

OVE0	Overrun error flag
0	No overrun error
1	Overrun error ^{Note 2}
	(Next receive operation was completed before data was read from receive buffer register)

- Notes: 1. Even if a stop bit length of two bits has been set to bit 2 (SL0) in the asynchronous serial interface mode register (ASIM0), the stop bit detection during a receive operation only applies to a stop bit length of 1 bit.
 - 2. Be sure to read the contents of the receive buffer register (RXB0) when an overrun error has occurred.

Until the contents of RXB0 are read, further overrun errors will occur when receiving data.

(3) Baud rate generator control register (BRGC0)

This register sets the serial clock for UART.

BRGC can be set via an 8-bit memory manipulation instruction.

When RESET is input, its value is 00H.

Figure 14-4 shows the format of BRGC0.

Address: F	FA2H When	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
BRGC0	0	TPS02	TPS01	TPS00	MDL03	MDL02	MDL01	MDL00
	(fx = 8.00							= 8.00 MHz)
	TPS02	TPS01	TPS00	So	urce clock sel	ection for 5-b	oit counter	n
	0	0	0	fx/2 ¹				1
	0	0	1	fx/2 ²				2
	0	1	0	fx/2 ³				3
	0	1	1	fx/2 ⁴				4
	1	0	0	fx/2 ⁵				5
	1	0	1	fx/2 ⁶				6
	1	1	0	fx/2 ⁷				7
	1	1	1	fx/2 ⁸				8
		1						I
	MDL03	MDL02	MDL01	MDL00	Inputcloc	k selection for ba	aud rate generate	or k
	0	0	0	0	fscк/16			0
	0	0	0	1	fscк/17			1

Figure 14-4: Format of Baud Rate Generator Control Register (BRGC0)

MDL03	MDL02	MDL01	MDL00	Input clock selection for baud rate generator	k
0	0	0	0	fsck/16	0
0	0	0	1	fsck/17	1
0	0	1	0	fscк/18	2
0	0	1	1	fsck/19	3
0	1	0	0	fsck/20	4
0	1	0	1	fsck/21	5
0	1	1	0	fsck/22	6
0	1	1	1	fscк/23	7
1	0	0	0	fsck/24	8
1	0	0	1	fsck/25	9
1	0	1	0	fsck/26	10
1	0	1	1	fsck/27	11
1	1	0	0	fsck/28	12
1	1	0	1	fscк/29	13
1	1	1	0	fscк/30	14
1	1	1	1	Setting prohibit	_

Caution: Writing to BRGC0 during a communication operation may cause abnormal output from the baud rate generator and disable further communication operations. Therefore, do not write to BRGC0 during a communication operation.

Remarks: 1. fsck: Source clock for 5-bit counter 2. n: Value set via TPS00 to TPS02 $(1 \le n \le 8)$ 3. k: Value set via MDL00 to MDL03 $(0 \le k \le 14)$

14.5 Serial Interface Operations

This section explains the three modes of the UART.

14.5.1 Operation stop mode

This mode is used when serial transfers are not performed to reduce power consumption. In the operation stop mode, pins can be used as ordinary ports.

(1) Register settings

Operation stop mode settings are made via the asynchronous serial interface mode register (ASIM0). ASIM0 can be set via 1-bit or 8-bit memory manipulation instructions. When RESET is input, its value is 00H.

Address: FFA0H When reset: 00H R/W								
Symbol	7	6	5 4		3 2		1	0
ASIM0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	0
	TXE0 RXE0		Operation mode		RxD0/P123/S4pin function		TxD0/P124/S3pin function	
	0	0	Operation stop		Port function		Port function	
	0	1	UART0 mode (receive only)		Serial operation		Port function	
	1	0	UART0 mode (transmit only)		Port function		Serial operation	
	1	1	UART0 mod	de	Serial operation		Serial operation	

Caution: Do not switch the operation mode until after the current serial transmit/receive operation has stopped.

(transmit and receive)

14.5.2 Asynchronous serial interface (UART) mode

This mode enables full-duplex operation where one byte of the data is transmitted or received after the start bit.

The on-chip dedicated UART baud rate generator enables communications by using a wide range of selectable baud rates.

(1) Register settings

The UART mode settings are made via the asynchronous serial interface mode register (ASIM0), asynchronous serial interface status register (ASIS0), and the baud rate generator control register (BRGC0).

(a) Asynchronous serial interface mode register (ASIM0)

6

RXE0

ASIM0 can be set by 1-bit or 8-bit memory manipulation instructions. When $\overrightarrow{\text{RESET}}$ is input, its value is 00H.

5

PS01

Figure 14-6: Asynchronous serial interface mode register (ASIM0)

4

PS00

Address: FFA0H When reset: 00H R/W

7

TXE0

Symbol ASIM0

TXE0	PEX0	Operation mode	RxD0/P123/S4pin function	TxD0/P124/S3pin function
0	0	Operation stop	Port function	Port function
0	1	UART0 mode (receive only)	Serial operation	Port function
1	0	UART0 mode (transmit only)	Port function	Serial operation
1	1	UART0 mode (transmit and receive)	Serial operation	Serial operation

3

CL0

2

SL0

1

ISRM0

0

0

PS01	PS00	Parity bit specification
0	0	No parity
0	1	Zero parity always added during transmittion No parity detection during reception (parity errors do not occur)
1	0	Odd aprity
1	1	Even parity

CL0	Character length specification
0	7 bits
0	8 bits

SL0	Stop bit length specification for transmit data
0	1 bit
1	2 bits

ISRM0	Receive completion interrupt control when error occurs
0	Receive completion interrupt is issued when an error occurs
1	Receive completion interrupt is not issued when an error occurs

Caution: Do not switch the operation mode until after the current serial transmit/receive operation has stopped.

(b) Asynchronous serial interface status register (ASIS0)

ASIS0 can be read using an 8-bit memory manipulation instruction. When $\overline{\text{RESET}}$ is input, its value is 00H.

Figure 14-7: Asynchronous serial interface status register (ASIS0)

Address: FFA1H When reset: 00H R Symbol 7 6 5 4 3 2 1 0 ASIS0 0 PE0 OVE0 0 0 0 0 FE0

PE0	Parity error flag
0	No parity error
1	Parity error (Incorrect parity bit detected)

FE0	Framing error flag
0	No framing error
1	Framing error Note 1 (Stop bit not detected)

OVE0	Overrun error flag
0	No overrun error
1	Overrun error Note 2 (Next receive operation was completed before data was read from receive buffer register)

- Notes: 1. Even if a stop bit length of two bits has been set to bit 2 (SL0) in the asynchronous serial interface mode register (ASIM0), stop bit detection during a receive operation only applies to a stop bit length of 1 bit.
 - 2. Be sure to read the contents of the receive buffer register (RXB0) when an overrun error has occurred.

Until the contents of RXB0 are read, further overrun errors will occur when receiving data.

(c) Baud rate generator control register (BRGC0)

BRGC0 can be set by an 8-bit memory manipulation instruction. When $\overrightarrow{\text{RESET}}$ is input, its value is 00H.

Figure 14-8: Baud rate generator control register (BRGC0)

Address: FFA2H When reset: 00H R/W

Symbol	7	6	5	4	3	2	1		0
BRGC0	0	TPS02	TPS01	TPS00	MDL03	MDL02	MDL01	MD	L00
	(fx = 8.00) MHz)
	TPS02	TPS01	TPS00	Sou	irce clock se	lection for 5-b	oit counter		n
	0	0	0	fx/2 ¹					1
	0	0	1	fx/2 ²					2
	0	1	0	fx/2 ³					3
	0	1	1	fx/2 ⁴					4
	1	0	0	fx/2 ⁵					5
	1	0	1	fx/2 ⁶					6
	1	1	0	fx/2 ⁷					7
	1	1	1	fx/2 ⁸					8

MDL03	MDL02	MDL01	MDL00	Input clock selection for baud rate generator	k
0	0	0	0	fscк/16	0
0	0	0	1	fscк/17	1
0	0	1	0	fscк/18	2
0	0	1	1	fscк/19	3
0	1	0	0	fscк/20	4
0	1	0	1	fscк/21	5
0	1	1	0	fscк/22	6
0	1	1	1	fscк/23	7
1	0	0	0	fscк/24	8
1	0	0	1	fscк/25	9
1	0	1	0	fscк/26	10
1	0	1	1	fscк/27	11
1	1	0	0	fscк/28	12
1	1	0	1	fscк/29	13
1	1	1	0	fscк/30	14
1	1	1	1	Setting prohibit	—

- Caution: Writing to BRGC0 during a communication operation may cause abnormal output from the baud rate generator and disable further communication operations. Therefore, do not write to BRGC0 during a communication operation.
- Remarks: 1. fsck: Source clock for 5-bit counter
 - **2.** n: Value set via TPS00 to TPS02 $(1 \le n \le 8)$
 - **3.** k: Value set via MDL00 to MDL03 ($0 \le k \le 14$)

The transmit/receive clock that is used to generate the baud rate is obtained by dividing the main system clock.

• Use of main system clock to generate a transmit/receive clock for baud rate The main system clock is divided to generate the transmit/receive clock. The baud rate generated by the main system clock is determined according to the following formula.

[Baud rate] =
$$\frac{fx}{2^{n+1}(k + 16)}$$
 [bps]

- fx: Oscillation frequency of main system clock (in Hz)
- n : Value set via TPS00 to TPS02 (1 \le n \le 8) For details, see Table 17-3.
- k : Value set via MDL00 to MDL02 (0 \leq k \leq 14)

Table 17-3 shows the relation between the 5-bit counter's source clock assigned to bits 4 to 6 (TPS00 to TPS02) of BRGC0 and the "n" value in the above formula.

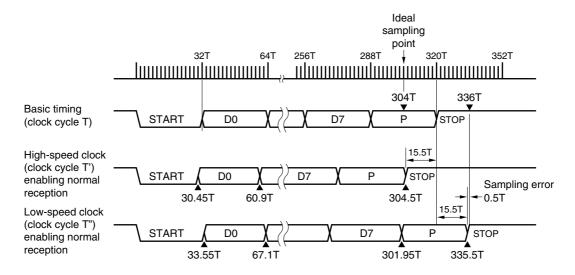
TPS02	TPS01	TPS00	5-bit counter's source clock selected	n
0	0	0	fx/2 ¹	1
0	0	1	fx/2 ²	2
0	1	0	fx/2 ³	3
0	1	1	fx/2 ⁴	4
1	0	0	fx/2 ⁵	5
1	0	1	fx/2 ⁶	6
1	1	0	fx/2 ⁷	7
1	1	1	fx/2 ⁸	8

Table 14-3: Relation between 5-bit Counter's Source Clock and "n" Value

Remark: fx: Oscillation frequency of main system clock.

• Error tolerance range for baud rates

The tolerance range for baud rates depends on the number of bits per frame and the counter's division rate [1/(16 + k)].


Table 14-4 describes the relation between the main system clock and the baud rate and Figure 14-9 shows an example of a baud rate error tolerance range.

Baud rate	fx = 8.0	00 MHz	fx = 4.00 MHz			
(bps)	BRGC0	ERR(%)	BRGC0	ERR(%)		
600	7AH	0.16	6AH	0.16		
1200	6AH	0.16	5AH	0.16		
2400	5AH	0.16	4AH	0.16		
4800	4AH	0.16	ЗАН	0.16		
9600	ЗАН	0.16	2AH	0.16		
19200	2AH	0.00	1AH	0.00		
38400	1AH	0.16	0AH	0.16		
76800	0AH	0.16	-	-		
115200	02H	0.16	-	-		

Table 14-4: Relation between Main System Clock and Baud Rate

Remarks: 1. fx: Oscillation frequency of main system clock

- **2.** n: Value set via TPS00 to TPS02 (1 \leq n \leq 8)
- **3.** k: Value set via MDL00 to MDL03 ($0 \le k \le 14$)

Figure 14-9: Error Tolerance (when k = 0), including Sampling Errors

Remark: T: 5-bit counter's source clock cycle

Baud rate error tolerance (when k = 0) = $\frac{\pm 15.5}{320}$ x 100 = 4.8438 (%)

(2) Communication operations

(a) Data format

As shown in Figure 14-10, the format of the transmit/receive data consists of a start bit, character bits, a parity bit, and one or more stop bits.

The asynchronous serial interface mode register (ASIM0) is used to set the character bit length, parity selection, and stop bit length within each data frame.

Figure 14-10: Format of Transmit/Receive Data in Asynchronous Serial Interface

- Start bit 1 bit
- Character bits ... 7 bits or 8 bits
- Parity bit Even parity, odd parity, zero parity, or no parity
- Stop bit(s) 1 bit or 2 bits

When "7 bits" is selected as the number of character bits, only the low-order 7 bits (bits 0 to 6) are valid, so that during a transmission the highest bit (bit 7) is ignored and during reception the highest bit (bit 7) must be set to "0".

The asynchronous serial interface mode register (ASIM0) and the baud rate generator control register (BRGC0) are used to set the serial transfer rate.

If a receive error occurs, information about the receive error can be recognized by reading the asynchronous serial interface status register (ASIS0).

(b) Parity types and operations

The parity bit is used to detect bit errors in transfer data. Usually, the same type of parity bit is used by the transmitting and receiving sides. When odd parity or even parity is set, errors in the parity bit (the odd-number bit) can be detected. When zero parity or no parity is set, errors are not detected.

(1) Even parity

• During transmission

The number of bits in transmit data that includes a parity bit is controlled so that there are an even number of "1" bits. The value of the parity bit is as follows.

If the transmit data contains an odd number of "1" bits : the parity bit value is "1" If the transmit data contains an even number of "1" bits: the parity bit value is "0"

• During reception

The number of "1" bits is counted among the transfer data that include a parity bit, and a parity error occurs when the result is an odd number.

(2)Odd parity

• During transmission

The number of bits in transmit data that includes a parity bit is controlled so that there is an odd number of "1" bits. The value of the parity bit is as follows.

If the transmit data contains an odd number of "1" bits : the parity bit value is "0" If the transmit data contains an even number of "1" bits: the parity bit value is "1"

• During reception

The number of "1" bits is counted among the transfer data that include a parity bit, and a parity error occurs when the result is an even number.

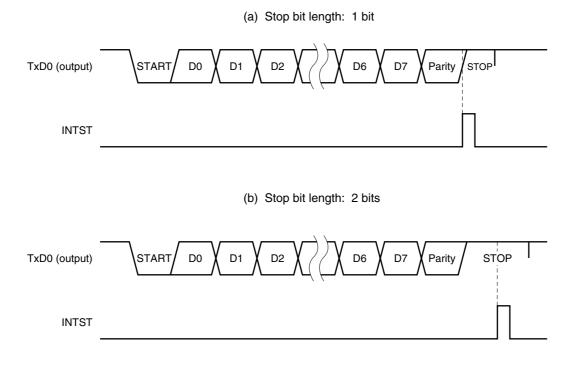
(3)Zero parity

During transmission, the parity bit is set to "0" regardless of the transmit data. During reception, the parity bit is not checked. Therefore, no parity errors will occur regardless of whether the parity bit is a "0" or a "1".

(4)No parity

No parity bit is added to the transmit data.

During reception, receive data is regarded as having no parity bit. Since there is no parity bit, no parity errors will occur.


(c) Transmission

The transmit operation is started when transmit data is written to the transmit shift register (TXS0). A start bit, parity bit, and stop bit(s) are automatically added to the data.

Starting the transmit operation shifts out the data in TXS0, thereby emptying TXS0, after which a transmit completion interrupt (INTST) is issued.

The timing of the transmit completion interrupt is shown in Figure 14-11.

Figure 14-11: Timing of Asynchronous Serial Interface Transmit Completion Interrupt

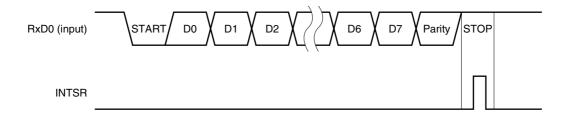
Caution: Do not write to the asynchronous serial interface mode register (ASIM0) during a transmit operation. Writing to ASIM0 during a transmit operation may disable further transmit operations (in such cases, enter a RESET to restore normal operation). Whether or not a transmit operation is in progress can be determined via software using the transmit completion interrupt (INTST) or the interrupt request flag (STIF) that is set by INTST.

(d) Reception

The receive operation is enabled when "1" is set to bit 6 (RXE0) of the asynchronous serial interface mode register (ASIM0), and input data via RxD pin is sampled.

The serial clock specified by ASIM0 is used when sampling the RxD0 pin.

When the RxD0 pin goes low, the 5-bit counter begins counting and the start timing signal for data sampling is output if half of the specified baud rate time has elapsed. If the sampling of the RxD0 pin input of this start timing signal yields a low-level result, a start bit is recognized, after which the 5-bit counter is initialized and starts counting and data sampling begins. After the start bit is recognized, the character data, parity bit, and one-bit stop bit are detected, at which point reception of one data frame is completed.


Once the reception of one data frame is completed, the receive data in the shift register is transferred to the receive buffer register (RXB0) and a receive completion interrupt (INTSR) occurs.

Even if an error has occurred, the receive data in which the error occurred is still transferred to RXB0 and INTSR occurs (see Figure 14-9).

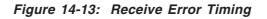
If the RXE0 bit is reset (to "0") during a receive operation, the receive operation is stopped immediately.

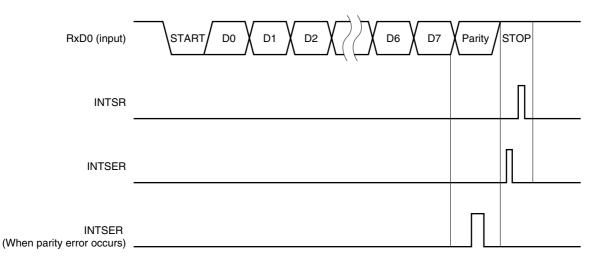
At this time, neither the contents of RXB0 and ASIS0 do not change, nor does INTSR or INTSER occur. Figure 14-12 shows the timing of the asynchronous serial interface receive completion interrupt.

Figure 14-12: Timing of Asynchronous Serial Interface Receive Completion Interrupt

Caution: Be sure to read the contents of the receive buffer register (RXB0) even when a receive error has occurred. Overrun errors will occur during the next data receive operations and the receive error status will remain until the contents of RXB0 are read.

(e) Receive errors


Three types of errors can occur during a receive operation: parity error, framing error, or overrun error. If, as the result of the data reception, an error flag is set to the asynchronous serial interface status register (ASIS0), a receive error interrupt (INTSER) will occur. Receive error interrupts are generated before receive interrupts (INTSR). Table 17-5 lists the causes behind receive errors.


As part of receive error interrupt (INTSER) servicing, the contents of ASIS0 can be read to determine which type of error occurred during the receive operation (see Table 14-5 and Figure 14-13).

The content of ASIS0 is reset (to "0") if the receive buffer register (RXB0) is read or when the next data is received (if the next data contains an error, another error flag will be set).

Receive error	Cause	ASIS0 value
Parity error	Parity specified during transmission does not match parity of receive data	04H
Framingerror	Stop bit was not detected	02H
Overrun error	Reception of the next data was completed before data was read from the receive buffer register	01H

Table 14-5: Causes of Receive Errors

- Cautions: 1. The contents of ASIS0 are reset (to "0") when the receive buffer register (RXB0) is read or when the next data is received. To obtain information about the error, be sure to read the contents of ASIS0 before reading RXB0.
 - 2. Be sure to read the contents of the receive buffer register (RXB0) even when a receive error has occurred. Overrun errors will occur during the next data receive operations and the receive error status will remain until the contents of RXB0 are read.

14.6 Standby Function

Serial transfer operations can be performed during HALT mode.

During STOP mode, serial transfer operations are stopped and the values in the asynchronous serial interface mode register (ASIM0), transmit shift register (TXS0), receive shift register (RxS0), and receive buffer register (RXB0) remain as they were just before the clock was stopped.

Output from the TxD0 pin retains the immediately previous data if the clock is stopped (if the system enters STOP mode) during a transmit operation. If the clock is stopped during a receive operation, the data received before the clock was stopped is retained and all subsequent operations are stopped. The receive operation can be restarted once the clock is restarted.

[Memo]

Chapter 15 VAN Controller

15.1 Features

- The VAN UART is compatible with the ISO 11519 VAN standard, Part 3, revision 4.00.
- The VAN UART executes all the VAN frame types:
- * Programmed in autonomous mode (RANK bit = 0), it performs the transmission and reception of data frames (transmits from the SOF field or from the IDEN field) and read frames as well as the in frame response.
- * Programmed in synchronous mode (RANK bit = 1), it performs the transmission (transmits from the IDEN field only) and reception of data and read frames as well as the in frame response.
- The transmission and reception of these frames can be done up to 500 kTS/s for an 8 MHz quartz clock.
- The VAN frame is encoded in Enhanced Manchester.
- In autonomous mode the choice of the bus speed is programmable via a 4 bit prescaler (DIAG_CTRL_REG register). A bit of this prescaler performing a division by 1,2,3 or 5 permits the use of "non binary" quartz clocks having a frequency of 3, 5 or 6 MHz.
- The VAN UART carries out the collision detection and goes into receive mode if lost arbitration before the end of the current Time Slot (TS). The circuit generates an interrupt if required by the user. The collision is not considered as an error.
- The VAN UART re-synchronises the transmission and reception clocks at each edge detected on the bus line.
- The VAN UART incorporates a cell calculating the CRC in transmission and in reception.
- The VAN UART integrates the line diagnosis function, which consists of:
- * The digital filtering of the outputs of the three comparators RXD0, RXD1 and RXD2.
- * Asynchronous diagnosis.
- * Synchronous diagnosis.
- * Transmission diagnosis (with enable bit).
- * Protocol error (8 consecutive dominant TS).
- * Possibility to force one of the three comparators.
- The VAN UART signals the errors that occurred on the VAN bus and generate an interrupt connected to each error if required by the user.
 3 bits implanted in the status register STAT BEG differentiate the errors in transmission or in

3 bits implanted in the status register STAT_REG differentiate the errors in transmission or in reception.

15.2 Overview of the VAN Bus

15.2.1 VAN UART Description

The VAN UART cell integrated in this microcontroller is comform to the VAN Standard (ISO 11519, Part 3, Rev 4.00).

15.2.2 VAN UART Interface

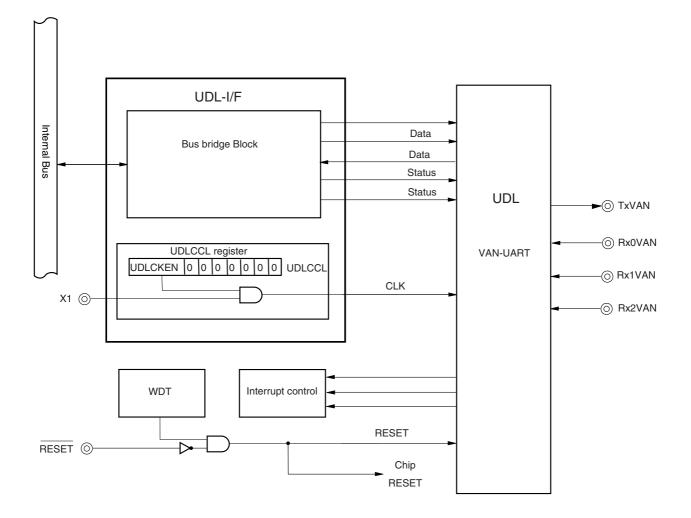
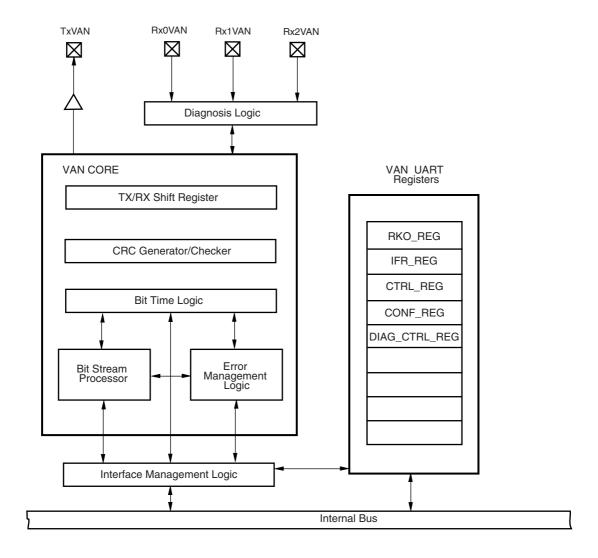
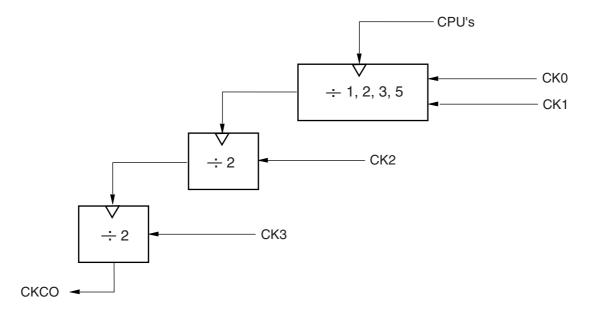



Figure 15-1: VAN UART Interface

The VAN UART is realised with one transmit register and one receive register. The application software may check the status registers in order to get information of the bus state and the received or transmitted messages. The device has the capability to generate an interrupt as soon as one byte is transmitted or received. Care has to be taken when transmitting or receiving in order not to miss the TBE (INT1) or RDA (INT2) interrupts occuring on every byte (TBE means transmit buffer empty and RDA means received data available). At each of these interrupts, the application software has to perform a data exchange between the application and the TX/RX register.


Figure 15-2: VAN UART Block Diagram

Interface Management Logic (IML) :

The IML executes the CPU's transmission and reception commands and controls the data transfer between CPU, Rx/Tx and VAN registers. It provides the VAN UART interface with Rx/Tx data from the memory mapped Register Block. It sets and resets the VAN status informations and generates interrupts to the CPU. It also generates the bit clock according the divider chosen by application software.

This divider divides the input clock by the value defined in the VAN Prescaler. The following picture shows the generation of the VAN clock :

The prescaler (CK0-CK3) is chosen in the DIAG_CTRL_REG register.

VAN Core :

The VAN Core incorporates two main state machines (transmission and reception) and controls the output driver TxVAN, the CRC logic and the Tx/Rx shift register. It also controls the synchronization to the VAN bus (according to VAN specifications) by the Bit Time Logic (BTL). It also detects all the symbols included in a VAN frame like the Start Of Frame (SOF), the End Of Data (EOD), the Acknowledge (ACK), the End Of Frame (EOF) or the Inter Frame Separation (IFS). It codes and decodes any VAN data according to the Enhanced-Manchester code.

Bit Stream Processor (BSP) :

The BSP is a sequencer that controls the data stream between the IML (parallel data) and the VAN bus line (serial data). It controls the BTL with regard to transmission, reception, arbitration and generates error signals according to the VAN bus specifications.

Error Management Logic (EML) :

The EML is responsible for the fault confinement of the VAN protocol. It also sets and resets the error flag bits and interrupts and changes the error status bits in the Status register. Any error on the VAN bus line generates an interrupt if enabled by the application software (INTO interrupt).

Cyclic Redundancy Check (CRC) generator and checker :

The CRC generator consists of a 15-bit shift register and the logic required to generate the checksum of the bit-stream. It informs the EML about the result of a receiver checksum. The checksum is generated by the polynomial :

 $g(x) = x^{15} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^4 + x^3 + x^2 + 1$

This logic performs the calculation of the CRC in transmission and in reception.

Receive/Transmit (RX/TX) register :

The Rx/Tx register is a 8-bit shift register controlled by the VAN Core. It is loaded or read by the IML which holds the data to be transmitted or the data that was received.

Bit Time Logic (BTL) :

The BTL is responsible for counting the bits and the bytes. It also resynchronise the bits according to VAN specifications.

Diagnosis Logic and Output Driver:

The Diagnosis Logic is responsible to hold the communication whenever one of the two wires of the VAN bus line (DATA and /DATA) is short-circuited to ground or battery or is opened-circuit. It decides on which line Rx0VAN, Rx1VAN or Rx2VAN, the VAN UART will continue to communicate. Operating on the RXD0 line is named «nominal or differential mode» because there is no default neither on the DATA line nor on the /DATA one.

Operating on the Rx1VAN or Rx2VAN line is named «degraded mode» since there is a default on DATA or /DATA and it is no longer a differential communication.

Assuming the Diagnosis Logic decides to put the device in the «degraded mode», it can also put it back to the «differential mode» when the problem on the DATA or /DATA has disapeared.

VAN UART Registers :

The register block consists of 21 registers which are described in more details in the following paragraphs.

15.3 Functional description

15.3.1 Overview of the VAN UART Registers

Figure 15-4: Overview of the VAN UART Registers

						1			
RK0_REG	F800H		TX6	TX5	TX4	TX3	TX2	TX1	TX0
IFR_REG	F801H	IFR7	IFR6	IFR5	IFR4	IFR3	IFR2	IFR1	IFR0
IFN_NEG	FOUTH	IFN/	IFNO	IFNO	IF N4	IFN3	IFNZ	IFNI	IFNV
CTRK_REG	F802H	0	0	0	0	STOP-	ACK-	LAST-	SOFT-
offin_n_n_d	100211	•	Ŭ	Ũ	Ŭ	TR	REQ	BYTE	RESET
CONFIG_REG	F803H	0	0	0	IT12	RANK	IFR	MSK1	MSK0
_									
DIAG_CTRL_REG	F804H	СКЗ	CK2	CK1	СК0	DIAG- TOP	ENAB_ EMECB	DIA1	DIA0
		I				TOP			
MSK1_MSG_REG	F805H								
MSK1_LSG_REG	F806H						0	0	0
		·		1		1			
AC1_MSG_REG	F807H								
			1			ĺ		0	0
AC1_LSG_REG	F808H						0	0	0
MSK2_MSG_REG	F809H								
									<u> </u>
MSK2_LSG_REG	F80AH						0	0	0
				1		1	1		
AC2_MSG_REG	F80BH								
				i		i			·
AC2_LSG_REG	F80CH						0	0	0
]
AC3_MSG_REG	F80DH								
AC3_LSG_REG	F80EH						0	0	0
A00_100_ned	TOOLIT						Ŭ	0	0
AC4_MSG_REG	F80FH								
									<u>I</u> I
AC4_LSG_REG	F810H						0	0	0
					-				
STAT_REG	F811H	0	LA_ RESP	EOM	LA	ACK	ERR2	ERR1	ERR0
REC_REG	F812H	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0
									 _
DIAG_STAT_REG	F813H	0	0	0	0	0	SC	SB	SA
	F0001							501/5	
INT_ENABLE_REG	F820H	GIE	RDAE	TBEE	FTE	FRE	LAE	EOME	0

15.3.2 Autonomous mode functions

15.3.2.1 Autonomous mode features

The user sets the VAN UART in autonomous mode by setting the RANK bit to 0. The transmission clock is the quartz clock divided by the prescaler chosen by the user in the DIAG_CTRL_REG register.

For example:

To be able to detect the frames, whose speed is 250 kTS/s, the minimum frequency of this quartz clock must be 4 MHz.

The component executes all VAN frame types:

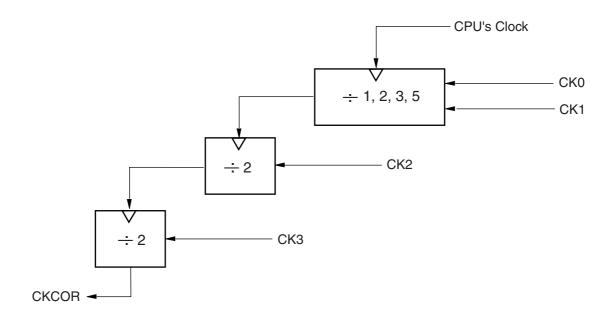
* The transmission of data transmit (write) or data request (read) frames (SOF included or rank 0) at any speed up to 500 kTS/s (with an 8 MHz quartz) depending on the division ratio chosen in the DIAG_CTRL_REG register.

* The reception of data frames at the same speeds depending on the programming of the prescaler.

* The transmission of data transmit or data request frames from the address field (synchronisation on the start bit or rank 1) at any speed depending on the programming of the prescaler.

* The transmission of in frame responses (or rank 16) at any speed depending on the programming of the prescaler.

15.3.2.2 Programming of the prescaler in Rank 0 transmission (SOF included)


Programming of the prescaler permits Rank 0 frames to be transmitted at different speeds without changing the quartz clock.

For example:

W hen an 8 MHz quartz clock supplies the UART, it is capable of sweeping the range 62,5 kTS/s to 500 kTS/s in rank 0 transmission.

The prescaler is chosen using the DIAG_CTRL_REG register with the 4 bits CK3, CK2, CK1 and CK0. The 2 least significant bits CK1 and CK0 are used to program a divider by 1, 2, 3 or 5 whilst the 2 other bits are used to program a divider to a power of 2.

Figure 15-5: Prescaler in Rank 0 transmission

Quartz	: (MHz)	1	2	3	4	5	6	8				
Div	Ratio		Network speed (KTS)									
0000	1	62.5	125		250			500				
0001	2	31.25	62.5		125			250				
0010	3			62.5			125					
0011	5					62.5						
0100	2	31.25	62.5		125			250				
0101	4	15.625	31.25		62.5			125				
0110	6			31.25			62.5					
0111	10					31.25						
1000	2	31.25	62.5		125			250				
1001	4	15.625	31.25		62.5			125				
1010	6			31.25			62.5					
1011	10					31.25						
1100	4	15.625	31.25		62.5			125				
1101	8	7.81	15.625		31.25			62.5				
1110	12			15.625			31.25					
1111	20					15.625						

Table 15-1: Network Speeds as a Function of the Quartz Clock and the Chosen Division Ratio

15.3.2.3 Transmission features in autonomous mode

A transmit request is triggered by writing in the rank0 transmit register RK0_REG when the component is in receive or in idle (typically after an EOM interrupt).

A rank 0 transmission start by the transmission of the SOF symbol following the detection of the EOF symbol (8 recessive TS) followed by the IFS symbol (4 recessive TS).

If these 12 recessive TS could not be detected on the network, the component then synchronises itself on the start bit seen on the bus. The transmission request is satisfied but transformed into rank 1 transmission.

In the autonomous mode, the component performs also the in frame response (IFR). To do this, the bit IFR must be set to 1 in the CTRL_REG register. In addition, the component must be in reception on the R/W bit of the command field of the VAN frame (please note that this receive state can be due to a lost of arbitration during the first or the second identifier byte).

The VAN UART compares the received identifier with one or more identifiers located in the MSK (mask) and AC (Acceptance Code) registers and generates or not a received byte interrupt. Then, the microcontroller accepts or refuses to respond in the frame (whether this identifier corresponds or not to an in frame response).

Writing of the first byte of the response in the IFR transmit register IFR_REG shows an acceptation.

Not writing shows a refusal.

15.3.3 Synchronous mode functions

15.3.3.1 Synchronous mode features

The user sets the VAN UART in synchronous mode by setting the RANK bit to 1 in the control register CTRL_REG. The transmission clock is the quartz clock divided by the prescaler chosen by the user in the DIAG_CTRL_REG register.

For example:

To be able to detect the frames, whose speed is 250 kTS/s, the minimum frequency of this quartz clock must be 4 MHz.

The component can no longer transmit rank 0 frames. However, it can receive data frames. It can transmit rank 1 frames (data frames and read frames synchronised on the start bit) and in frame responses. The range of speeds depends on the frequency of the quartz clock; at 8MHz, the range spreads from 62,5 kTS/s to 500 kTS/s.

15.3.3.2 Transmission features in synchronous mode

For rank 1 transmission, the transmit request is still triggered by writing in the Rank0 transmit register RK0_REG when the component is in receive or in idle (typically after an EOM interrupt). The transmission is triggered after the detection of a start bit. The transmission characteristic of an in frame response is identical to that mentioned in autonomous mode.

15.3.4 Handling of a collision

The UART automatically goes into reception during a lost arbitration after collision detection. This lost arbitration may be signalled either by interrupt, if it is enabled by the user (LAE bit of the INT_ENABLE_REG register), or by reading the LA bit in the status register STAT_REG.

15.3.5 Executing the CRC

15.3.5.1 CRC transmission

The transmission of the CRC is possible thanks to a CRC module integrated in the UART. It is performed by the following way:

The LAST-BYTE bit in the CTRL_REG register is set when there are no more bytes to transmit. The UART then automatically completes the frame by the two CRC bytes followed by the EOD symbol. In the case of a read frame, the LAST-BYTE bit should be set after the second identifier byte because if the requested node does not send its data, the UART will complete the frame by sending immediately the 2 CRC bytes.

Therefore, such a frame does not contain any data. This case is described in detail further.

15.3.5.2 Reception of the CRC

For high-speed applications, the UART incorporates a CRC module, which compares the received CRC with the calculated CRC. This comparison is carried out in transmission and in reception, giving place, in the latter case, to the transmission of a possible acknowledge.

15.3.6 Control of the acknowledge bit

In reception, if the EOD symbol has been detected and if the CRC is correct, then if the ACK-REQ bit is set to 1 in the CTRL_REG register before the end of the EOD field, a positive acknowledge is transmitted. Otherwise, the UART stays in reception, which is equivalent to a negative acknowledge.

The acknowledge bit is decoded in transmission as in reception and its value is indicated in the STAT_REG register by the ACK bit. The microcontroller compares the value of the ACK bit with the RAK bit received (and memorised) in the command field of the VAN frame.

15.3.7 Error control and Interrupt control

15.3.7.1 Error control

3 bits ERR2, ERR1 and ERR0 encode any error in transmission or in reception in the status register STAT_REG.

ERR2	ERR1	ERR0	Type of error
0	0	0	no error : initialisation
0	0	1	Physical violation
0	1	0	Not used
0	1	1	Code Violation in reception
1	0	0	Not used
1	0	1	CRC error in reception
1	1	0	Format error (ACK)
1	1	1	Transmission or Reception lock up

Table 15-2: Error Table

Information on the error table:

When the code violation received is 00 on the TS 8 and 9 of a byte, the error signalled is a CRC error in reception as it is not possible to distinguish this violation from the EOD symbol. Any other code violation received is signalled by a code violation in reception.

15.3.7.2 Interrupt control

An error is signalled by an interrupt if the user defines it. Any interrupt that would have been generated after the detection of an error is deleted.

The interrupt sources are listed below:

LA_RESP	:	Lost arbitration in the RTR bit (Response)				
EOM	:	End of message				
LA	:	Lost arbitration				
FT	:	Failed transmit (refer to ERR0, ERR1, ERR2 for status)				
FR	:	Failed receive (refer to ERR0, ERR1, ERR2 for status)				
These sources generate the INT0 interrupt.						

TBE	:	Transmit buffer empty
		This source generates the INT1 interrupt.
RDA	:	Received data available
		This source generates the INT2 interrupt.

- EOM interrupt

The EOM interrupt appears at the end of the acknowledgement field if no error has occurred in the frame. Otherwise, it appears as soon as an error is detected. This permits, in particular to detect errors that could occur in the identification field and to synchronise on it.

This interrupt is generated on INT0.

It can be disabled in the $\ensuremath{\mathsf{INT_ENABLE_REG}}$ register by the EOME bit.

It can also be masked by VEMK bit in MKOL register.

- LA interrupt

The LA interrupt appears at the end of the byte where the collision occurred even if the UART has automatically switched to the reception mode in the current Time Slot.

This interrupt is also generated on INTO.

This interrupt is signalled in the REG-STAT register by the LA bit.

It can be disabled in the INT_ENABLE_REG register by the LAE bit.

- LA_RESP interrupt

The LA_RESP interrupt appears when the UART performs a read frame and when the collision occurred on the RTR bit. That means that response is in progress. The UART has automatically switched to the reception mode to receive that response.

This interrupt is also generated on the INT0 pin.

This interrupt is signalled in the REG-STAT register by the LA_RESP bit.

It can be also disabled in the INT_ENABLE_REG register by the LAE bit.

- TBE interrupt

The TBE interrupt appears at the start of the 9th TS of a new byte before the old RK0_REG or IFR_REG register has been loaded in the transmit/receive shift register.

This interrupt is generated on INT1.

It can be disabled in the INT_ENABLE_REG register by the TBEE bit.

It can also be masked by VTMK bit in MKOL register.

It signifies that a byte must be loaded into the RK0_REG or IFR_REG register, but can be ignored if the microcontroller has no more bytes to transmit. In this case, it sets the LAST-BYTE bit in the control register CTRL_REG for the transmission of the CRC.

- RDA interrupt

The RDA interrupt appears at the start of the 9th TS of the current byte before the RECEP_REG register has been loaded by the transmit/receive shift register.

This interrupt is generated on INT2.

It can be disabled in the INT_ENABLE_REG register by the bit RDAE.

It can also be masked by VRMK bit in MKOL register.

It signifies that the byte contained in the RECEP_REG register must be read.

- Case of an in frame response:

The user can choose to perform or not the in frame response using the IFR bit in the control register CTRL_REG.

If IFR = 0, the component cannot perform the in frame response.

- If IFR = 1, the component is able to respond in the frame under conditions (see the transmission characteristics of rank 16). The interrupts are generated following two manners:
- If IT12 = 0, the interrupts are generated byte after byte. The comparison of the identifier field is made by UART.
- If IT12 = 1, the interrupts are generated byte after byte except during the second byte of the identifier where one RDA interrupt appears at the end of the 12th bit of the VAN identi fier field. This allows the microcontroller to make the comparison itself. In this case, the UART supplies the byte for the address comparison and helps the microcontroller to search for the byte to be transmitted in the in frame response...

0000	IDEN2
4 bits	4 bits

...after the RDA interrupt at the 12th bit, so as to be able to add to an address to point on the table of bytes to be transmitted without needing to mask the 4 most significant bits of this byte.

- FT interrupt

The FT interrupt appears after a physical violation, a format error (acknowledge error in transmission) or a transmission lock-up (when there is no write access to the transmission register or to the control register between the transmission of two consecutive bytes). In case of a transmission lock-up, the UART does not complete the frame with the two bytes of CRC and stops just after the last byte loaded.

The bits ERR2, ERR1 and ERR0 signal the error in the status register STAT_REG. It is generated on INT0.

It can be disabled in the INT_ENABLE_REG register by the FTE bit.

- FR interrupt

The FR interrupt appears after a code violation, a CRC error or a format error (acknowledgement error in reception) or a reception lock-up (when there is no read access to the reception register between the reception of two consecutive bytes). In case of a reception lock-up, the UART does not receive the rest of the frame and stops just after the last byte.

The bits ERR2, ERR1 and ERR0 signal the error in the status register STAT_REG. It is generated on INT0.

It can be disabled in the INT_ENABLE_REG register by the FRE bit.

15.4 VAN UART Registers

The VAN UART consists of the following registers.

Table 15-4: VAN UART Registers

Address		OVAROL			Manipulatable bit unit			
Address	Register NAME	SYMBOL	After Reset	R/W	1bit	8bit	16bit	
F800H	Rank 0 Register	RK0_REG	FFH	R/W	0	0	х	
F801H	In Frame Transmit Register	IFR_REG	FFH	R/W	0	0	х	
F802H	Control Register	CTRL_REG	00H	R/W	0	0	х	
F803H	Configuration Register	CONF_REG	08H	R/W	0	0	х	
F804H	Diagnosis Control Register	DIAG_CTRL_REG	17H	R/W	0	0	х	
F805H	Mask1 Register	MSK1_MSB_REG	00H	R/W	0	0	х	
F806H	Mask1 Register	MSK1_LSB_REG	00H	R/W	0	0	х	
F807H	Acceptance Code 1	AC1_MSB_REG	00H	R/W	0	0	х	
F808H	Acceptance Code 1	AC1_LSB_REG	AC1_LSB_REG 00H		0	0	х	
F809H	Mask2 Register	MSK2_MSB_REG	00H	R/W	0	0	х	
F80AH	Mask2 Register	MSK2_LSB_REG	00H	R/W	0	0	х	
F80BH	Acceptance Code	AC2_MSB_REG	AC2_MSB_REG 00H		0	0	х	
F80CH	Acceptance Code	AC2_LSB_REG	B_REG 00H		0	0	х	
F80DH	Acceptance Code	AC3_MSB_REG	00H	R/W	0	0	х	
F80EH	Acceptance Code	AC3_LSB_REG	00H	R/W	0	0	х	
F80FH	Acceptance Code	AC4_MSB_REG	00H	R/W	0	0	х	
F810H	Acceptance Code	AC4_LSB_REG	00H	R/W	0	0	х	
F811H	Status Register	STAT_REG	08H	R	0	0	х	
F812H	Receive Register	REC_REG	FFH	R	0	0	х	
F813H	Diagnosis Status Register	DIAG_STAT_REG	00H	R	0	0	х	
F820H	Interrupt Enable Register	INT_ENABLE_REG	00H	R/W	0	0	х	

15.4.1 Rank0 Transmission Register (RK0_REG)

The rank0 transmission register is loaded by the microcontroller to trigger a transmit request. RK0_REG is set with a 1-bit or 8-bit manipulation instruction.

RESET input set this register to FFH.

Figure 15-6: Rank0 Transmission Register Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
RK0_REG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	F800H	FFH	R/W

It is also loaded each time the INT1 interrupt is generated, except if the microcontroller has no more bytes to transmit. In this case, it sets, instead, the LAST-BYTE bit in the control register CTRL_REG.

For a standard transmission (rank0 or rank1), the microcontroller has up to one byte duration to load this register.

For the in frame response, it has up to one byte duration if the IT12 bit is set to 0 or up to only 4 TS if the IT12 bit is set to 1.

The loading limit is 14/16 of the last TS of the byte. If this limit is no met, the component will detect a lock up error and will signal it.

The transmission is done MSB first (TX7 is transmitted first).

15.4.2 In Frame Response Register (IFR_REG)

The IFR Transmit Register is written when the user wish to transmit an In Frame Response (IFR). IFR_REG is set with a 1-bit or 8-bit manipulation instruction.

RESET input set this register to FFH.

Figure 15-7: Frame Responce Register Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
IFR_REG	IFR7	IFR6	IFR5	IFR4	IFR3	IFR2	IFR1	IFR0	F801H	FFH	R/W

The VAN UART will receive the identification field (12 bits), compares it with the Acceptance Codes and start the transmission by the 16th bit of the frame. This kind of transmission is named «rank16 frame».

No IFR is transmitted if this register is not written.

The application software should only write data bytes in this register (28 maximum) and not address bytes. These datas correspond to the datas to be answered in the IFR. This software must specify the last byte of data in the CTRL_REG register.

The device will transmit an In Frame Response only if the identification field that was received on the VAN bus matches with one of the Acceptance Codes.

Every byte transmitted generates a INT1 interrupt corresponding to the TBE status (Transmit Buffer Empty) meaning that the IFR_REG register was loaded in the shift register. A writing in this register resets the internal TBE flag.

- Case of lost arbitration during the identification field of a rank0 frame

The following picture shows an arbitration during the identification field of a rank0 frame. That means the VAN UART has first tried to transmit a rank0 frame. Nevertherless, at the same moment, another VAN node is also communicating with a higher priority identification field. The VAN UART looses the arbitration and goes into the receive mode.

It can happen that this frame was also a request frame for the VAN UART.

In order to handle these cases, the application software has to write in both registers (RK0 and IFR) to prevent from this kind of arbitration. The VAN UART will then select automatically the right register. If a lost arbitration has occured, the IFR_REG is selected otherwise the RK0_REG is chosen.

NEC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

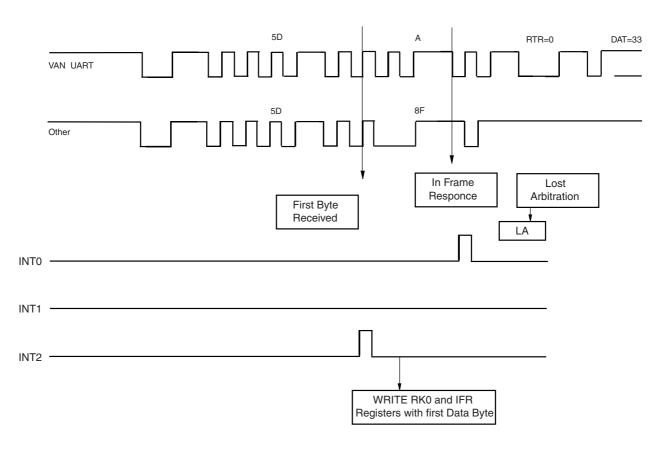


Figure 15-8: Frame Responce Register Function

15.4.3 Control Register (CTRL_REG)

The Control Register is used to control the VAN UART during the transmisision or to initiate a RESET.

CTRL_REG is set with a 1-bit or 8-bit manipulation instruction.

RESET input set this register to 00H.

Figure 15-9: Control Register Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
CTRL_REG	0	0	0	0	STOP- TR	ACK- REQ	LAST- BYTE	SOFT- RESET	F802H	00H	R/W

Note:

The bits of this register are <u>"SET ONLY type</u>" bits. They are set by the application software and <u>resetted automatically by the VAN UART</u>. Writing 0 in these bits will have no effect.

STOP-TR: Stop Transmit

Table 15-5: Stop Transmit

STOP-TR	Stop Transmit
0	No influence
1	Stop the transmission in progress

It can be used in any type of transmission.

ACK-REQ: Acknowledge Request

Table 15-6: Acknowledge Request

ACK-REQ	Acknowledge Request
0	No influence
1	Transmit request of an acknowledge bit

The microcontroller decodes the value of the RAK bit (bit 2 of the 2nd byte of the frame). According to this value, it will choose to set the ACK-REQ bit in the control register CTRL-REG or not. Note that ACK-REQ occupies the same position as RAK in the byte.

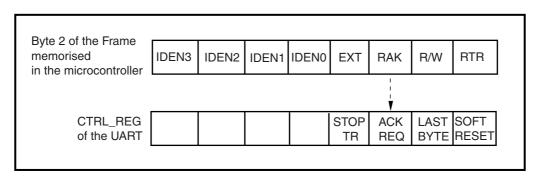
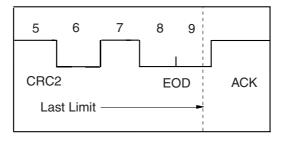
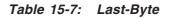
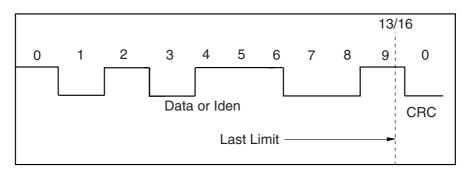



Figure 15-10: Control Register Block Diagram

Therefore, a mask with 04h of the 2nd byte needs to be made and written in the control register.


Figure 15-11: Control Register Function

The last limit for setting the ACK-REQ is 13/16 of the 2nd TS of the EOD symbol.


Following the results of the frame (identifier recognised and correct CRC), the acknowledge bit may be transmitted.

LAST-BYTE:

LAST-BYTE	Last transmission Byte
0	No influence
1	Sign to the VAN UART that the current byte is the last one

Figure 15-12: Last-Byte

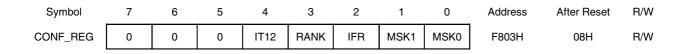
The UART places the 2 CRC bytes after it. This may occur during a write frame or a read frame: in the case of a write frame, the last byte of data is signalled after the last data is transmitted. In the case of a read frame, the last byte is signalled after loading the 2nd identifier. The LAST-BYTE bit must be activated, as, if the response is missing, the CRC will be automatically set by the UART following the identifier n°2.

SOFT-RESET: Software reset

Table	15-8.	Software	Reset
Iabic	15-0.	Sonware	nesel

SOFT-RESET	Soft Reset
0	No influence
1	Software reset with the initialisation of the VAN UART

This bit should be used if a major problem is detected during the operation of the VAN UART, or if it is incorrectly used. The result is the same as a hardware reset. The VAN UART must be reconfigured.


15.4.4 Configuration Register (CONF_REG)

The Configuration Register is used to configure the interrupt generation, the UART mode and response and the mask function.

CONF_REG is set with a 1-bit or 8-bit manipulation instruction.

RESET input set this register to 08H.

Figure 15-13: Configuration Register (CONF_REG) Format

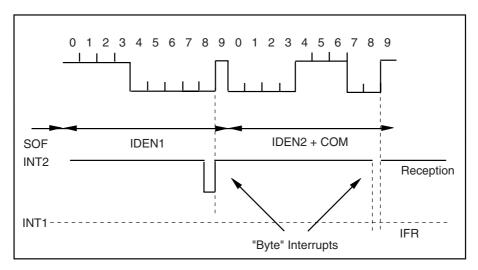

IT12: Enable / Disable interrupt on the 12th bit of the identifier field.

Table 15-9:	Enable / Disable i	interrupt on the	e 12th bit of t	he identifier field
		menupt on m		

IT12	Interrupt on the 12 th bit of the identifier field
0	Disables the interrupt on the 12th bit of the identifier field. The UART only supplies «byte» interrupts during a frame.
1	Enables the interrupt on the 12th bit of the identifier field. This allows the microcontroler to receive the whole identifier and to compare it if necessary.

Case where IT12 = 0

Figure 15-14: Case where IT12 = 0

Case where IT12 = 1

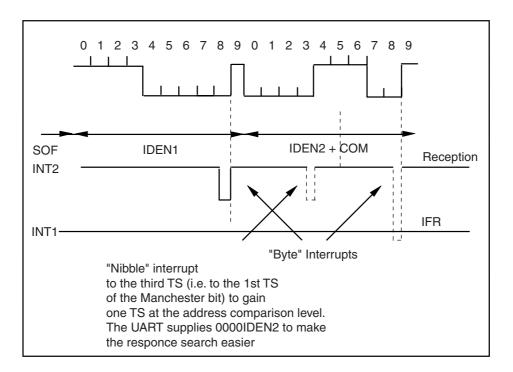


Figure 15-15: Case where IT12 = 1

RANK: Rank 0 / Rank 1 mode

Table 15-10: Rank 0 / Rank 1 mode

RANK	VAN UART Mode Selection
0	VAN UART in autonomous mode
1	VAN UART in synchronous mode

In autonomous mode, a quartz clock is compulsory for the generation of the SOF symbol. The precision needed is +/-1%.

Remark: On initialisation, the UART is set in synchronous mode and disables the in frame response.

IFR: Enable / Disable In Frame Response

Table 15-11: Enable / Disable In Frame Response

IFR	In Frame Response
0	Disables the in frame response
1	Enables the in frame response

NEC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

MSK1, MSK0: Mask Enable / Disable

Table 15-12: Mask Enable / Disable

MSK1	MSK0	Function
0	0	Masks 1 and 2 activated (all identifiers filtered)
0	1	Mask1 inhibited
1	0	Mask2 inhibited
1	1	Masks 1 and 2 inhibited (all identifiers accepted)

MSK1 and MSK0 combinations allow enabling or disabling all or part of the mask mechanism applied on the identification field described further on.

15.4.5 Diagnosis Control Register (DIAG_CTRL_REG)

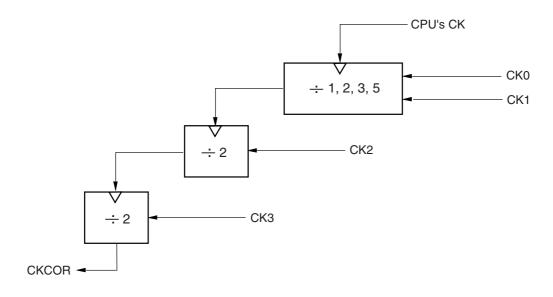
The Diagnosis Control Register allows to configure the bus speed, the communication mode and diagnostic functions.

DIAG_CTRL_REG is set with a 1-bit or 8-bit manipulation instruction.

RESET input set this register to 17H.

Figure 15-16: Diagnosis Control Register (DIAG_CTRL_REG) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
DIAG_CT RL_REG	СКЗ	CK2	CK1	СК0	DIAG- TOP	ENAB_E MECB	DIA1	DIA0	F804H	17H	R/W


CK3, CK2, CK1 and CK0: Prescaler

The prescaler is used to fix the division ratio between the quartz clock and the speed of the bus. This prescaler is defined in 4 bits.

The least significant bits CK3 and CK2 are used to pre-divide by a ratio of 1,2,3 or 5. So, the UART can operate with quartz frequencies other than to the powers of 2.

This pre-divider by 3 or 5 permits an operation at "round" speeds in terms of Kbits/s or KTS/s with "non binary" frequencies such as 3, 5, 6 MHz.

Quartz (MHz)	1	2	3	4	5	6	8	
Div	Ratio	Network speed (KTS)							
0000	1	62.5	125		250			500	
0001	2	31.25	62.5		125			250	
0010	3			62.5			125		
0011	5					62.5			
0100	2	31.25	62.5		125			250	
0101	4	15.625	31.25		62.5			125	
0110	6			31.25			62.5		
0111	10					31.25			
1000	2	31.25	62.5		125			250	
1001	4	15.625	31.25		62.5			125	
1010	6			31.25			62.5		
1011	10					31.25			
1100	4	15.625	31.25		62.5			125	
1101	8	7.81	15.625		31.25			62.5	
1110	12			15.625			31.25		
1111	20					15.625			

Table 15-13: Prescaler - Network Speeds as a Function of the Quartz Clock and the ChosenDivision Ratio

DIAG-TOP: Synchronous diagnosis clock

Table 15-14: Synchronous Diagnosis Clock
--

DIAG-TOP	Synchronous diagnosis clock selection
0	No pulse on the internal DIAG-CLOCK signal
1	Pulse on the internal DIAG-CLOCK signal

The pulse on the internal DIAG-CLOCK signal is used for the synchronous diagnosis clock (see Information on the characteristics of the clock DIAG-CLOCK in the paragraph describing the diagnosis function).

EN-EMECB: Enable the transmit diagnosis

Table 15-15:	Enable the	Transmit	Diagnosis
--------------	------------	----------	-----------

EN-EMECB	Transmit diagnostic
0	Enables the transmission diagnosis
1	Disables the transmission diagnosis

Due to the diagnosis set-up problems in transmission, this bit permits this part of the diagnosis to be disabled or enabled.

DIA1, DIA0: Choice of communication mode

DIA1	DIA0	Communication mode
0	0	Forced operation on RXD0
0	1	Forced operation on RXD1
1	0	Forced operation on RXD2
1	1	Automatic operation

Table 15-16: Choice of Communication Mode

The 2 least significant bits DIA1 and DIA0 allow the user to choose the communication mode.

15.4.6 Mask1 registers (MSK1_MSB_REG, MSK1_LSB_REG)

These 2 registers allow to compare the 12 bits of the VAN identification field plus the EXT bit. <u>MSK1_MSB_REG</u>, MSK1_LSB_REG is set with a 1-bit or 8-bit manipulation instruction. RESET input sets these registers to 00H.

Figure 15-18-1: Mask1 register MSK1_MSB_REG Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
MSK_MSB_REG	B11	B10	B9	B8	B7	B6	B5	B4	F805H	00H	R/W

Figure 15-18-2:	Mask1 register MSK1_LSB_REC	Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
MSK_LSB_REG	B3	B2	B1	B0	Ext	0	0	0	F806H	00H	R/W

Writing «0» enables the comparison of the corresponding bit.

Writing «1» disables the comparison of the corresponding bit that becomes a «don't care bit».

15.4.7 Acceptance Code 1 registers (AC1_MSB_REG, AC1_LSB_REG)

These 2 registers allow to choose the code acceptance which is the value of the identification field that the user wish to match with. They work together with the MSK1 registers. AC1_MSB_REG, AC1_LSB_REG is set with a 1-bit or 8-bit manipulation instruction. RESET input sets these registers to 00H.

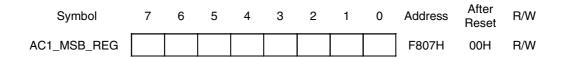


Figure 15-19-2: Acceptance Code 1 register AC1_LSB_REG

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
AC1_LSB_REG									F808H	00H	R/W

The behaviour of the receive interrupt (INT2) according this comparison is described in the paragraph «Receive Interrupt Behaviour».

15.4.8 Mask2 registers (MSK2_MSB_REG, MSK2_LSB_REG)

These 2 registers allow to compare the 12 bits of the VAN identification field plus the EXT bit. <u>MSK1_MSB_REG</u>, MSK1_LSB_REG is set with a 1-bit or 8-bit manipulation instruction. RESET input sets these registers to 00H.

Figure 15-20-1: Mask2 register MSK2_MSB_REG Format
--

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
MSK2_MSB _REG	B11	B10	B9	B8	В7	B6	B5	B4	F809H	00H	R/W

	Figure 15-20-2:	Mask2	register	MSK2_LSB_RE	G Format
--	-----------------	-------	----------	-------------	----------

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
MSK2_LSB _REG	B3	B2	B1	B0	Ext	0	0	0	F80AH	00H	R/W

Writing «0» enables the comparison of the corresponding bit.

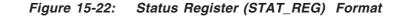
Writing «1» disables the comparison of the corresponding bit that becomes a «don't care bit».

15.4.9 Acceptance Code 2, 3 and 4 Registers (AC2_MSB_REG, AC2_LSB_REG, AC3_MSB_REG, AC3_LSB_REG, AC4_MSB_REG, AC4_LSB_REG)

These 6 registers allow to choose the code acceptance which is the value of the identification field that the user wish to match with. They work together with the MSK2 registers. AC2_MSB_REG, AC2_LSB_REG, AC3_MSB_REG, AC3_LSB_REG, AC4_MSB_REG, AC4_LSB_REG are set with a 1-bit or 8-bit manipulation instruction. RESET input sets these registers to 00H.

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
AC2_MSB_REG	B11	B10	B9	B8	B7	B6	B5	B4	F80BH	00H	R/W
		<u> </u>			<u>.</u>						
Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
AC2_LSB_REG	B3	B2	B1	B0	Ext	0	0	0	F80CH	00H	R/W
Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
AC3_MSB_REG	B11	B10	B9	B8	B7	B6	B5	B4	F80DH	00H	R/W
Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
AC3_LSB_REG	B3	B2	B1	B0	Ext	0	0	0	F80EH	00H	R/W
	L								J	After	
Symbol	7	6	5	4	3	2	1	0	Address	Reset	R/W
AC4_MSB_REG	B11	B10	B9	B8	B7	B6	B5	B4	F80FH	00H	R/W
Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
AC4_LSB_REG	B3	B2	B1	B0	Ext	0	0	0	F810H	00H	R/W

Figure 15-21: Acceptance Code 2, 3 and 4 Registers Format


The behaviour of the receive interrupt (INT2) according this comparison is described in the paragraph «Receive Interrupt Behaviour».

15.4.10 Status Register (STAT_REG)

This register allows to control a lost arbitration, the end of message, the acknowledge and the error type during a transmission or a reception.

STAT_REG can be read with a 1-bit or an 8-bit manipulation instruction.

RESET input sets this register to 08H.

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
STAT_REG	0	LA_R ESP	EOM	LA	ACK	ERR 2	ERR 1	ERR 0	F811H	08H	R

LA RESP, LA: Lost arbitration information

Table	15-17:	LA	RESP.	LA
labio				

LA_RESP	Lost Arbitration information
0	Arbitration is not lost during RTR bit
1	Arbitration lost during the RTR bit of the command field. It is considered as a lost arbitration due to a response.

LA	Lost Arbitration information
0	Arbitration is not lost
1	Arbitration lost not in the RTR bit of the command field

The UART automatically goes into reception after loosing arbitration during a collision.

These 2 kinds of collision may be signalled either by interrupt (INT0), if enabled by the user (LAE bit of the INT_ENABLE_REG register), or by reading these 2 bits in the status register STAT_REG. It is worthwhile noting that reading the status register causes all the bits to be reset to 0 (except ACK, which is set to 1).

EOM: End of message

Table 1	5-18:	EOM
---------	-------	-----

EOM	End of Message
0	End of Message as not given under a.) or b.).
1	 a.) If the frame is correct, the EOM flag is set after the EOD symbol and the ERR2, ERR1, ERR0 bits show 000. b.) If the frame is not correct, the EOM flag is also set when the error is detected and the ERR2, ERR1, ERR0 bits show this error.

The EOM flag is set when a VAN frame is transmitted or received correctly or incorrectly. These 2 kinds of EOM may be signalled either by interrupt (INT0), if enabled by the user (EOME bit of the INT_ENABLE_REG register), or by reading the EOM bit in the status register STAT_REG.

During an EOM interrupt (INT0), the microcontroller can read:

- LA: Signals a possible collision with lost arbitration in the current frame. The application software should memorise this information to retry the transmission of this frame.
- LA_RESP:Indicates a lost arbitration during the RTR bit. This lost arbitration is due to a response.
- ACK: Indicates the value of the acknowledge bit:
 - 0: positive
 - 1: no acknowledge
 - The ACK bit is described in the paragraph "Control of the acknowledge bit ".
- Err: Signals the type of transmit or receive error.

The ERRx bits are described in the paragraph "Error control" where the bit combina tion are given.

15.4.11 Receive register (REC_REG)

This register is used as receive register of a reception. <u>STAT_REG</u> can be read with a 1-bit or an 8-bit manipulation instruction. <u>RESET</u> input sets this register to FFH.

Figure 15-23:	Receive	register (F	REC_REG)	Format
---------------	---------	-------------	----------	--------

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
REC_REG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	F812H	FFH	R

The receive register is read by the microcontroller each time the RDA interrupt (INT2) is generated by the UART indicating that a new byte is received.

The reading limit of the receive register is 13/16 of the last TS of the byte or 13/16 of the third TS of the second byte of identifier in case of IT12 is set. If this limit is not met, the component will detect an overrun and will signal a lock up error.

The reception is done MSB first (RX7 is received first).

Receive interrupt behaviour :

The RDA receive interrupt (INT2) is generated only if the received VAN identifier matches with one of the identifiers written in the ACx registers. The AC1 registers work with the MSK1 mask registers and the AC2, AC3 and AC4 registers work with the MSK2 mask registers.

Since the VAN identifier is built with 12 bits, it is received over 2 bytes. Three cases can occur : * The received identifier does not match at all. The VAN UART does not produce any interrupt.

* The first byte matches but not the second one. The VAN UART generates the first receive interrupt (INT2) but since the second identifier byte does not match, the UART will wait for the end of the current frame to generate the EOM interrupt (INT0).

* The whole received identifier matches. The VAN UART generates all the receive interrups and the EOM interrupt.

15.4.12 Diagnosis Status Register (DIAG_STAT_REG)

This register is used for the diagnose of the receive lines. DIAG_STAT_REG can be read with a 1-bit or an 8-bit manipulation instruction. RESET input sets this register to 00H.

Figure 15-24: Diagnosis Status Register (DIAG_STAT_REG) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
DIAG_STAT _REG	0	0	0	0	0	SC	SB	SA	F813H	00H	R

The bits SA and SB indicate the line chosen by the diagnosis circuit.

SB	SA	Line chosen
0	0	Differential mode (Rx0VAN) No fault
0	1	DATAB mode (Rx2VAN) Fault on DATA
1	0	DATA mode (Rx1VAN) Fault on DATAB
1	1	Major Error

Table 15-19: The bits SA and SB

To perform this diagnosis, the circuit needs the synchronous diagnosis clock (SDC).

The synchronous diagnosis circuit is necessary to go back to the nominal mode, which is the differential mode.

If no fault is detected between two edges of this clock, the circuit goes back to the nominal mode (line Rx0VAN). This delay of one synchronous diagnosis clock period, is used to solve bad contact problems (on connectors for example). Thus, it is equal to a few milliseconds or even a few dozen milliseconds. Anyway, this is very large comparing to the TS clock (duration of TS). To generate it, the user must set DIAG-TOP to 1 in the diagnosis control register DIAG_CTRL_REG.

Table 15-20: The bit SC

SC	VAN UART comparator comparison
1	Discrepancy between the 3 comparator Rx0VAN, Rx1VAN and Rx2VAN during the reception.
0	No discrepancy between the 3 comparator Rx0VAN, Rx1VAN and Rx2VAN during the reception.

In normal operation, the SC bit equals 0, the 3 comparators give an identical result.

NEC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

15.4.13 Interrupt enable register (INT_ENABLE_REG)

This register allows to enable/disable the interrupt sources of the VAN UART. INT_ENABLE_REG is set with a 1-bit or an 8-bit manipulation instruction. RESET input sets this register to 00H.

Figure 15-25: Interrupt enable register (INT_ENABLE_REG) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
INT_ENA BLE_REG	GIE	RDA E	TBE E	FTE	FRE	LAE	EOM E	0	F820H	00H	R/W

Table 15-21: Interrupt enable register (INT_ENABLE_REG) (1/2)

GIE: Global Interrupt Enable

GIE	Global Interrupt enable
0	Disables all the interrupt sources
1	Enables interrupt sources which can be disabled one by one with the following bits

RDAE: RDA Enable

RDAE	Receive interrupt
0	Receive interrupt disabled
1	Receive interrupt enabled

TBEE: TBE Enable

TBEE	Transmit interrupt
0	Transmit interrupt disabled
1	Transmit interrupt enabled

FTE: FT Enable

FTE	Fail transmit interrupt
0	Failed transmit interrupt disabled
1	Failed transmit interrupt enabled

Table 15-21: Interrupt enable register (INT_ENABLE_REG) (2/2)

This interrupt will coincide with an EOM interrupt, as an error will cause a premature end of message.

FRE: FR Enable

FRE	Fail receive interrupt
0	Failed receive interrupt disabled
1	Failed receive interrupt enabled

This interrupt will coincide with an EOM interrupt, as an error will cause a premature end of message.

LAE: LA Enable

LAE	Lost arbitration interrupt
0	Lost arbitration interrupt disabled
1	Lost arbitration interrupt enabled

EOME: EOM Enable

EOME	End of Message interrupt
0	End of Message interrupt disabled
1	End of Message interrupt enabled

This interrupt occurs in the case of an end of message, i.e. after the acknowledge field or during an error (premature end of message).

15.4.14 VAN clock selection register (UDLCCL)

This SFR register enables the clock supply to the VAN UART. UDLCCL is set with a 1-bit or an 8-bit manipulation instruction.

RESET input sets this register to 00H.

Figure 15-26: VAN clock selection register (UDLCCL) Format

Symbol	7	6	5	4	3	2	1	0	Addres s	After Reset	R/W
UDLCCL	UDLCKEN	0	0	0	0	0	0	0	FF78H	00H	R/W

Table 15-22: VAN clock selection register (UDLCCL)

UDLCKEN	VAN UDL clock control
0	Disable VAN clock supply
1	Enable VAN clock supply

Caution : The VAN UART clock is disable at RESET. Application software must enable it in order to handle VAN communication.

15.5 VAN UART initialisation

- 1) Enable the clock via UDLCCL SFR register.
- 2) Configure the component:
 - a) Choose the UART mode of operation owing to the RANK bit in the configuration register
 - b) Enable or disable the In Frame Response using the IFR bit in the same register
 - c) Enable or disable the generation of the IT12 interrupt using the IT12 bit in the same register
 - d) Enable or disable the identifier filtering mechanism using the MSK1 and MSK0 bits in the same register
 - e) Program the MSKx and ACx registers if filtering is enabled.
- 3) Program the prescaler to choose the network communication speed.
- 4) Enable the interrupts for the micro and the VAN UART.

[Memo]

Chapter 16 LCD Controller/Driver

16.1 LCD Controller/Driver Functions

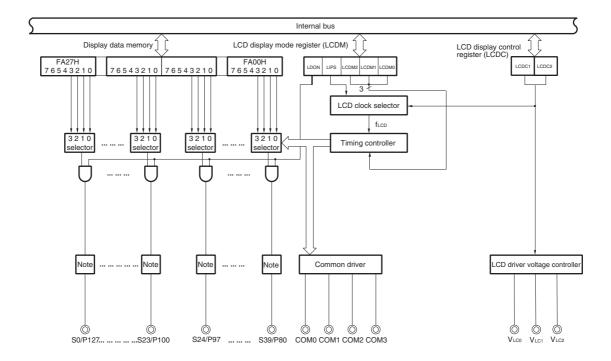
The functions of the LCD controller/driver incorporated in the μ PD1615A subseries are shown below.

- (1) Automatic output of segment signals and common signals is possible by automatic writing of the display data memory.
- (2) Any of five display modes can be selected.
 - Static
 - 1/2 duty (1/2 bias)
 - 1/3 duty (1/2 bias)
 - 1/3 duty (1/3 bias)
 - 1/4 duty (1/3 bias)
- (3) Any of four frame frequencies can be selected in each display mode.
- (4) Maximum of 40 segment signal outputs (S0 to S39); 4 common signal outputs (COM0 to COM3). The prt function register (PF) has to be set to LCD mode to allow the segment signal output. This LCD mode can be set bit-wise.

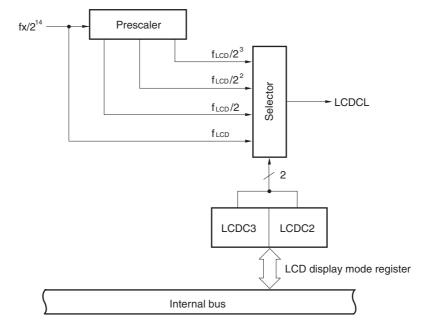
The maximum number of displayable pixels in each display mode is shown in Table 16-1.

Bias Method	Time division	Common Signals Used	Maximum Number of Pixels			
-	Static	COM0 (COM1, 2, 3)	40 (40 segments x 1 common)			
1/2	2	COM0, COM1	80 (40 segments x 2 commons)			
1/2	3	COM0 - COM2				
1/0	3		120 (40 segments x 3 commons)			
1/3	4	COM0 - COM3	160 (40 segments x 4 commons)			

Table 16-1: Maximum Number of Display Pixels


16.2 LCD Controller/Driver Configuration

The LCD controller/driver is composed of the following hardware.



Item	Configuration
Display outputs	Segment signals : 40 Segment signal input/output port dual function : 40 Common signals : 4 (COM0 to COM3)
Control registers	LCD display mode register (LCDM) LCD display control register (LCDC)

Note: Segment driver

Figure 16-2: LCD Clock Select Circuit Block Diagram

- **Remarks:** 1. LCDCL : LCD clock
 - 2. fLDC : LCD clock frequency

ΝΕC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

16.3 LCD Controller/Driver Control Registers

The LCD controller/driver is controlled by the following two registers.

- LCD display mode register (LCDM)
- LCD display control register (LCDC)

(1) LCD display mode register (LCDM)

This register sets display operation enabling/ disabling, the LCD driving power and the LCD display mode.

LCDM is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets LCDM to 00H.

		Figu	ure 16-3	: LCD	Display	Mode I	Register	r Format			
Symbol	7	6	5	4	3	2	1	0	Address	AfterReset	R/W
LCDM	LCDON	0	0	LIPS	0	LCDM2	LCDM1	LCDM0	FFB0H	00H	R/W

LCDON	LCD Display Enable/Disable
0	Display off
1	Display on

LIPS	LCD driving power supply selection				
0	Does not supply power to LCD				
1	Supplies power to LCD from Vod pin				

LCDM2 LCDM1		LCDM0	Selects display mode of LCD controller/driver					
		LCDIVIO	Time division	Bias mode				
0	0	0	4	1/3				
0	0	1	3	1/3				
0	1	0	2	1/2				
0	1	1	3	1/2				
1	0	0	Static display mode					
Other than above		ove	Setting prohibited					

		Frame frequency (Hz)										
LCDC3	LCDC2		fx=4.0) MHz		fx=8.0 MHz						
		Static	1/2	1/3	1/4	Static	1/2	1/3	1/4			
0	0	244	122	81.4	61	488	244	162.8	122			
0	1	122	61	40.7	30.5	244	122	81.4	61			
1	0	61	30.5	20.3	15.3	122	61	40.7	30.5			
1	1	30.5	15.3	10.2	7.6	61	30.5	20.3	15.3			

Table 16-3: Frame Frequencies (Hz)

Remark: 1. Figures in parentheses apply to operation with fx = 4.0 MHz or fx = 8.0 MHz.

(2) LCD display clock control register (LCDC)

This register sets the LCD clock. LCDC is set with a 1-bit or 8-bit memory manipulation instruction. RESET input sets LCDC to 00H.

Figure 16-4: LCD Display Clock Control Register Format

Symbol	7	6	5	4	3	2	1	0	Address	AfterReset	R/W
LCDC	0	0	0	0	LCDC3	LCDC2	0	0	FFB2H	00H	R/W

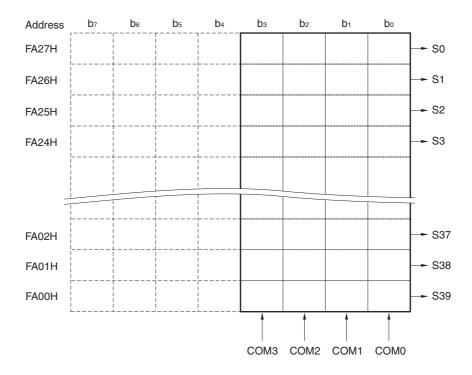
LCDC3	LCDC2	Selection of LCD clock
0	0	fx/2 ¹⁷
0	1	fx/2 ¹⁶
1	0	fx/2 ¹⁵
1	0	fx/2 ¹⁴

16.4 LCD Controller/Driver Settings

LCD controller/driver settings should be performed as shown below. When the LCD controller/driver is used, the watch timer should be set to the operational state beforehand.

- <1> Set the initial value in the display data memory (FA00H to FA27H).
- <2> Set the pins to be used as segment outputs in the port function registers (PF8 to PF12).
- <3> Set the display mode, operating mode in the LCD display mode register (LCDM), and the LCD clock in the LCD clock control register (LCDC).

Next, set data in the display data memory according to the display contents.


16.5 LCD Display Data Memory

The LCD display data memory is mapped onto addresses FA00H to FA27H. The data stored in the LCD display data memory can be displayed on an LCD panel by the LCD controller/driver.

Figure 16-5 shows the relationship between the LCD display data memory contents and the segment outputs/common outputs.

Any area not used for display can be used as normal RAM.

Caution: The higher 4 bits of the LCD display data memory do not incorporate memory. Be sure to set them to 0.

16.6 Common Signals and Segment Signals

An individual pixel on an LCD panel lights when the potential difference of the corresponding common signal and segment signal reaches or exceeds a given voltage (the LCD drive voltage VLCD). As an LCD panel deteriorates if a DC voltage is applied in the common signals and segment signals, it is driven by AC voltage.

(1) Common signals

For common signals, the selection timing order is as shown in Table 16-4 according to the number of time divisions set, and operations are repeated with these as the cycle. In the static display mode, the same signal is output to COM0 through COM3.

With 2-time-division operation, pins COM2 and COM3 are left open, and with 3-time-division operation, the COM3 pin is left open.

COM signal Time division	COM0	COM1	COM2	СОМЗ
Static	t t		↓	
2-time division	4		Open	Open
3-time division	4		•	Open
4-time division	ł			

Table 16-4:COM Signals

(2) Segment signals

Segment signals correspond to a 40-byte LCD display data memory. Each display data memory bit 0, bit 1, bit 2, and bit 3 is read in synchronization with the COM0, COM1, COM2 and COM3 timings respectively, and if the value of the bit is 1, it is converted to the selection voltage. If the value of the bit is 0, it is converted to the non-selection voltage and output to a segment pin (S0 to S39).

Consequently, it is necessary to check what combination of front surface electrodes (corresponding to the segment signals) and rear surface electrodes (corresponding to the common signals) of the LCD display to be used form the display pattern, and then write bit data corresponding on a one-to-one basis with the pattern to be displayed.

In addition, because LCD display data memory bits 1 and 2 are not used with the static display mode, bits 2 and 3 are not used with the 2-time-division method, and bit 3 is not used with the 3-time-division method, these can be used for other than display purposes.

Bits 4 to 7 are fixed at 0.

(3) Common signal and segment signal output waveforms

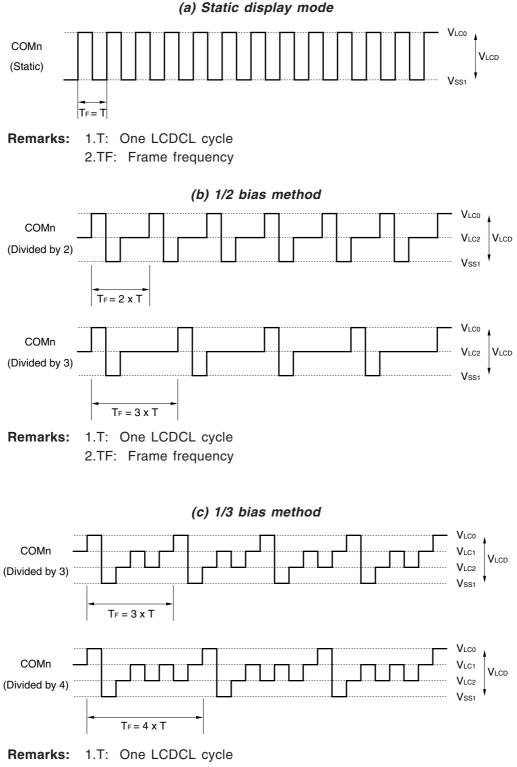
The voltages shown in Table 16-5 are output in the common signals and segment signals. The \pm VLCD ON voltage is only produced when the common signal and segment signal are both at the selection voltage; other combinations produce the OFF voltage.

Table 16-5: LCD Drive Voltages

a) Static display mode

Segment	Select	Non-select	
Common	VSS1, VLC0	VLC0, VSS1	
VLC0, VSS1	-VLCD, +VLCD	0 V, 0 V	

(b) 1/2 bias method


	Segment	Select	Non-select	
Common		VSS1, VLC0	VLC0, VSS1	
Select level	VLC0, VSS1	-VLCD, +VLCD	0 V, 0 V	
Non-select level	VLC1 = VLC2	-1/2 VLCD, +1/2 VLCD	+1/2 VLCD, -1/2 VLCD	

(c) 1/3 bias method

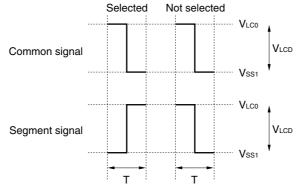
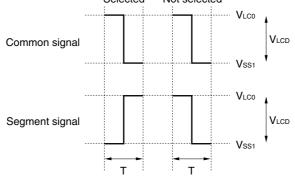
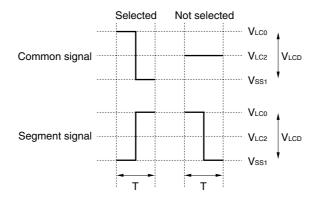
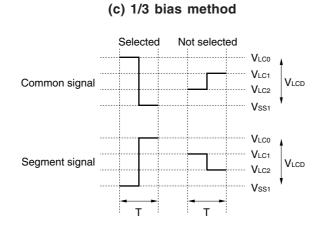

	Segment	Select	Non-select
Common		VSS1, VLC0	VLC1, VLC2
Select level	VLC0, VSS1	-VLCD, +VLCD	-1/3 VLCD, +1/3 VLCD
Non-select level	VLC2, VLC1	-1/3 VLCD, +1/3 VLCD	-1/3 VLCD, +1/3 VLCD

Figure 16-6 shows the common signal waveform, and Figure 16-7 shows the common signal and segment signal voltages and phases.


Figure 16-6: Common Signal Waveform

2.TF: Frame frequency


Figure 16-7: Common Signal and Static Signal Voltages and Phases


(a) Static display mode

Remark: T : One LCDCL cycle

(b) 1/2 bias method

Remark: T : One LCDCL cycle

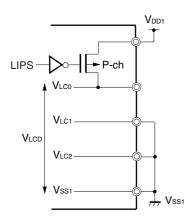
Remark: T : One LCDCL cycle

16.7 Supply of LCD Drive Voltages VLC0, VLC1, VLC2

The split resistors makes it possible to produce LCD drive voltages appropriate to the various bias methods shown in Table 16-6 without using external split resistors.

Table 16-6: LCD Drive Voltages (with On-Chip Split Resistor)connected externally

Bias Method LCD Drive Voltage	No bias (static mode)	1/2 bias	1/3 bias
VLC0	VLCD	VLCD	VLCD
VLC1	2/3 VLCD		2/3 VLCD
VLC2	1/3 VLCD	1/2 VLCD	1/3 VLCD

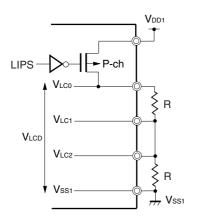

An example of supply of the LCD drive voltage from off-chip is shown in Figure 16-9. Stepless LCD drive voltages can be supplied by means of variable resistor r.

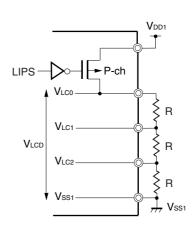
Note: The 1615A Subseries has no split resistors inside. The split resistors have to be set externally for the different LCD voltages.

Figure 16-8: LCD Drive Power Supply Connection Examples (with External Split Resistor)

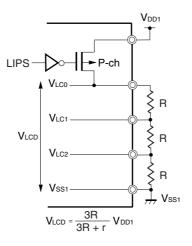
(a) Static display mode Note

 (Example with VDD1 = 5 V, VLCD = 5 V)




Note: LIPS should always be set to 1 (including in standby mode).

(b) 1/2 bias method
 (Example with VDD1 = 5 V, VLCD = 5 V)


(c) 1/3 bias method

(Example with VDD1 = 5 V, VLCD = 5 V)

Caution: The LCD split resistors have to be set externally.

Figure 16-9: Example of LCD Drive Voltage Supply from Off-Chip

Caution: The LCD split resistors have to be set externally.

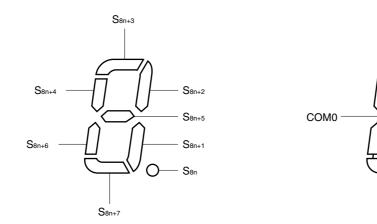
16.8 Display Modes

16.8.1 Static display example

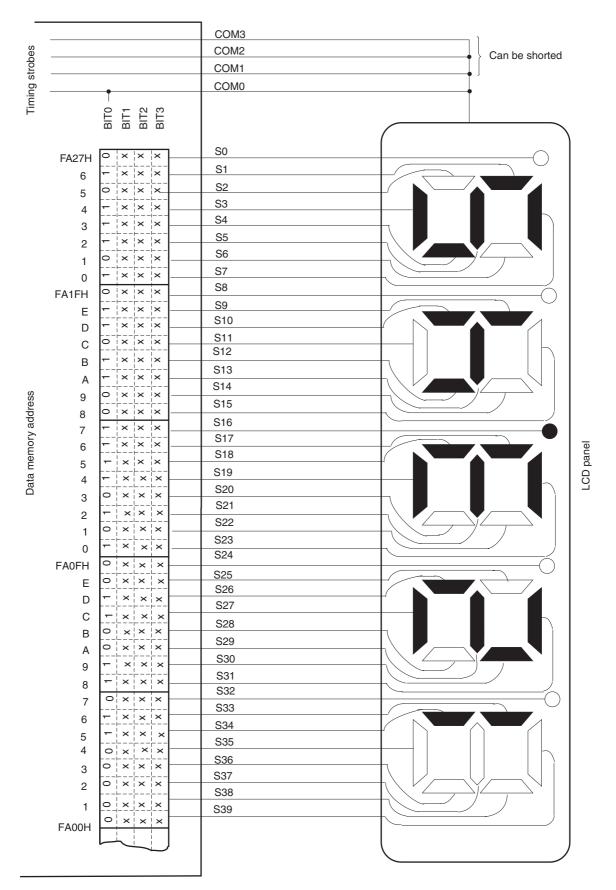
Figure 16-11 shows the connection of a static type 5-digit LCD panel with the display pattern shown in Figure 16-10 with segment (S0 to S39) and common (COM0) signals. The display example is "123.45," and the display data memory contents (addresses FA68H to FA27H) correspond to this. An explanation is given here taking the example of the third digit "3." (\exists .). In accordance with the display pattern in Figure 16-10, selection and non-selection voltages must be output to pins S16 through S23 as shown in Table 16-7 at the COM0 common signal timing.

Table 16-7:	Selection and	Non-Selection	Voltages (COM0))
-------------	---------------	---------------	-----------------	---

Segment Common	S16	S17	S18	S19	S20	S21	S22	S23
COM0	S	S	S	S	NS	S	NS	S


S: Selection, NS: Non-selection

From this, it can be seen that 10101111 must be prepared in the BIT0 bits of the display data memory corresponding to S16 to S23.


The LCD drive waveforms for S19, S20, and COM0 are shown in Figure 16-12. When S19 is at the selection voltage at the timing for selection with COM0, it can be seen that the +VLCD/-VLCD AC square wave, which is the LCD illumination (ON) level, is generated.

Shorting the COM0 through COM3 lines increases the current drive capability because the same waveform as COM0 is output to COM1 through COM3.

Figure 16-10: Static LCD Display Pattern and Electrode Connections

n = 0 to 4

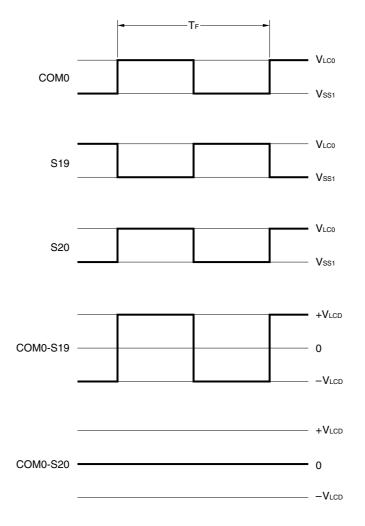
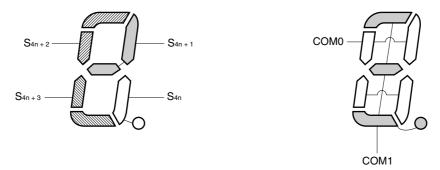


Figure 16-12: Static LCD Drive Waveform Examples

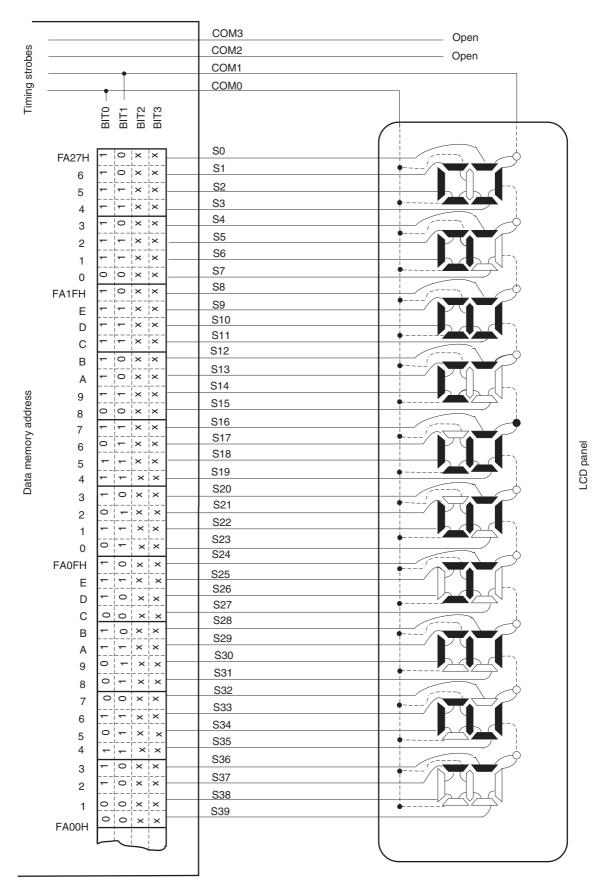
16.8.2 2-time-division display example

Figure 16-14 shows the connection of a 2-time-division type 10-digit LCD panel with the display pattern shown in Figure 16-13 with segment signals (S0 to S39) and common signals (COM0, COM1). The display example is "123456.7890," and the display data memory contents correspond to this. An explanation is given here taking the example of the eighth digit "3" (\exists). In accordance with the display pattern in Figure 16-13, selection and non-selection voltages must be output to pins S28 through S31 as shown in Table 16-8 at the COM0 and COM1 common signal timings.

Segment Common	S28	S29	S30	S31
COM0	S	S	NS	NS
COM1	NS	S	S	S


Table 16-8: Selection and Non-Selection Voltages (COM0, COM1)

S: Selection, NS: Non-selection


From this, it can be seen that, for example, xx10 must be prepared in the display data memory corresponding to S31.

Examples of the LCD drive waveforms between S31 and the common signals are shown in Figure 16-15. When S31 is at the selection voltage at the COM1 selection timing, it can be seen that the +VLCD/-VLCD AC square wave, which is the LCD illumination (ON) level, is generated.

Figure 16-13: 2-Time-Division LCD Display Pattern and Electrode Connections

n = 0 to 9

Remark: In bits marked X, any data can be stored because this is a 2-time-division display.

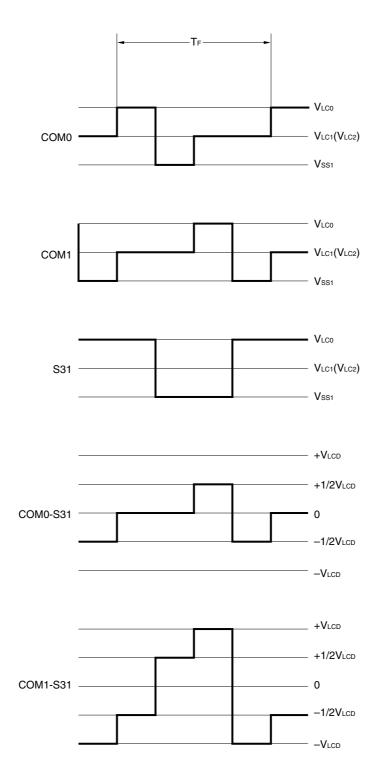
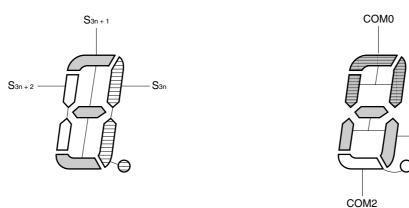


Figure 16-15: 2-Time-Division LCD Drive Waveform Examples (1/2 Bias Method)

16.8.3 3-time-division display example

Figure 16-17 shows the connection of a 3-time-division type 13-digit LCD panel with the display pattern shown in Figure 16-16 with segment signals (S0 to S38) and common signals (COM0 to COM2). The display example is "123456.7890123," and the display data memory contents correspond to this. An explanation is given here taking the example of the eighth digit "6." () \leq . In accordance with the display pattern in Figure 16-16, selection and non-selection voltages must be output to pins S21 through S23 as shown in Table 16-9 at the COM0 to COM2 common signal timings.

Segment Common	S21	S22	S23
COM0	NS	S	S
COM1	S	S	S
COM2	S	S	-


Table 16-9: Selection and Non-Selection Voltages (COM0 to COM2)

S: Selection, NS: Non-selection

From this, it can be seen that x110 must be prepared in the display data memory (address FA12H) corresponding to S21.

Examples of the LCD drive waveforms between S21 and the common signals are shown in Figure 16-18 (1/2 bias method) and Figure 16-19 (1/3 bias method). When S21 is at the selection voltage at the COM1 selection timing, and S21 is at the selection voltage at the COM2 selection timing, it can be seen that the +VLCD/–VLCD AC square wave, which is the LCD illumination (ON) level, is generated.

Figure 16-16: 3-Time-Division LCD Display Pattern and Electrode Connections

n = 0 to 12

COM1

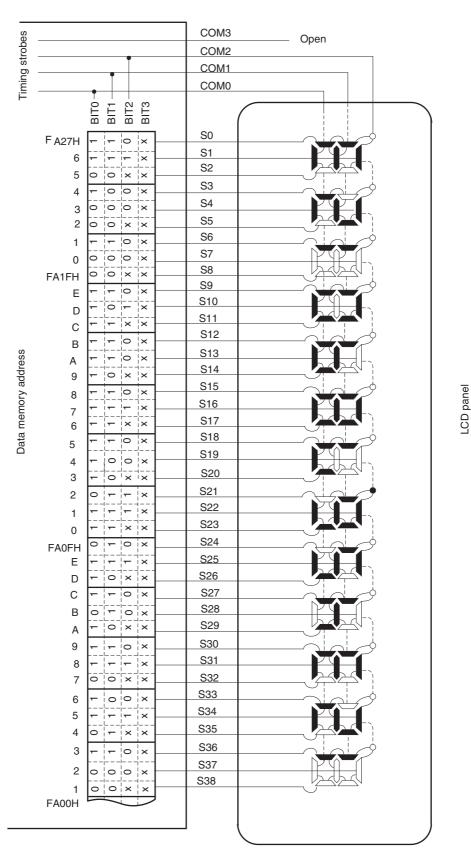
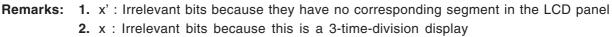



Figure 16-17: 3-Time-Division LCD Panel Connection Example

TF - VLC0 COM0 VLC1(VLC2) - Vss1 - VLC0 COM1 - VLC1(VLC2) - Vssı VLCO VLC1(VLC2) COM2 Vss1 - VLC0 - VLC1(VLC2) S21 Vss1 -+VLCD -+1/2VLCD COM0-S21 - 0 -VLCD +VLCD -+1/2VLCD COM1-S21 0 -1/2VLCD -+Vlcd -+1/2VLCD COM2-S21 - 0 -1/2VLCD -VLCD

Figure 16-18: 3-Time-Division LCD Drive Waveform Examples (1/2 Bias Method)

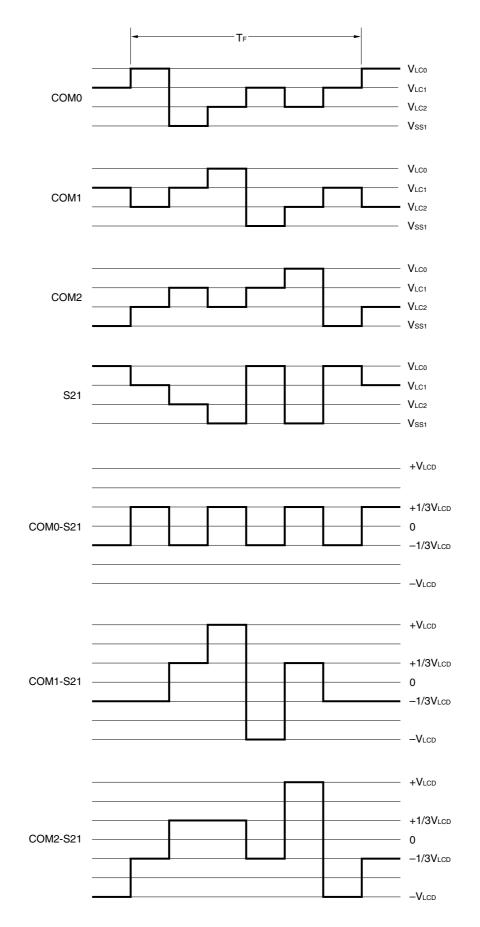


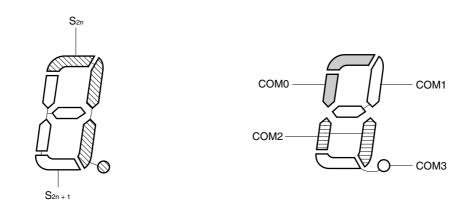
Figure 16-19: 3-Time-Division LCD Drive Waveform Examples (1/3 Bias Method)

16.8.4 4-time-division display example

Figure 16-21 shows the connection of a 4-time-division type 20-digit LCD panel with the display pattern shown in Figure 16-20 with segment signals (S0 to S39) and common signals (COM0 to COM3). The display example is "123456.78901234567890," and the display data memory contents correspond to this.

An explanation is given here taking the example of the 15th digit "6." (5.). In accordance with the display pattern in Figure 16-20, selection and non-selection voltages must be output to pins S28 and S29 as shown in Table 16-10 at the COM0 to COM3 common signal timings.

~		
Segment Common	S28	S29
COM0	S	S
COM1	NS	S
COM2	S	S
COM3	S	S


Table 16-10: Selection and Non-Selection Voltages (COM0 to COM3)

S: Selection, NS: Non-selection

From this, it can be seen that 1101 must be prepared in the display data memory (address FA0BH) corresponding to S28.

Examples of the LCD drive waveforms between S28 and the COM0 and COM1 signals are shown in Figure 16-22 (for the sake of simplicity, waveforms for COM2 and COM3 have been omitted). When S28 is at the selection voltage at the COM0 selection timing, it can be seen that the +VLCD/-VLCD AC square wave, which is the LCD illumination (ON) level, is generated.

Figure 16-20: 4-Time-Division LCD Display Pattern and Electrode Connections

n = 0 to 18

LCD panel

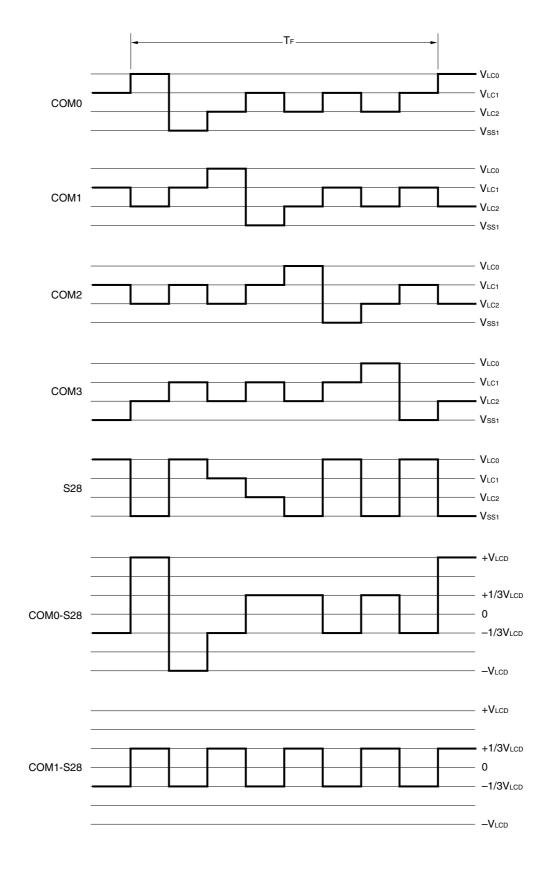


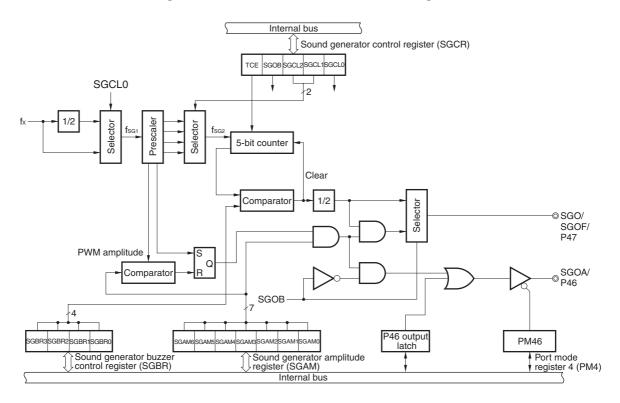
Figure 16-22: 4-Time-Division LCD Drive Waveform Examples (1/3 Bias Method)

[Memo]

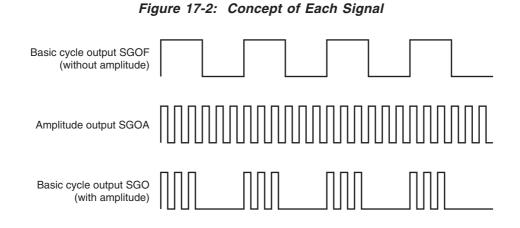
Chapter 17 Sound Generator

17.1 Sound Generator Function

The sound generator has the function to sound the buzzer from an external speaker, and the following two signals are output.


(1) Basic cycle output signal (with/without amplitude)

A buzzer signal with a variable frequency in a range of 0.25 to 7.3 kHz (at fx = 8.00 MHz) can be output. The amplitude of the basic cycle output signal can be varied by ANDing the basic cycle output signal with the 7-bit-resolution PWM signal, to enable control of the buzzer sound volume.


(2) Amplitude output signal

A PWM signal with a 7-bit resolution for variable amplitude can be independently output.

Figure 17-1 shows the sound generator block diagram and Figure 17-2 shows the concept of each signal.

Figure 17-1: Sound Generator Block Diagram

17.2 Sound Generator Configuration

The sound generator consists of the following hardware.

Item	Configuration
Counter	8 bits x 1, 5 bits x 1
SG output	SGO/SGOF (with/without append bit of basic cycle output) SGOA (amplitude output)
Control register	Sound generator control register (SGCR) Sound generator buzzer control register (SGBR) Sound generator amplitude register (SGAM)

Table 17-1: Sound Generator Configuration

17.3 Sound Generator Control Registers

The following three types of registers are used to control the sound generator.

- Sound generator control register (SGCR)
- Sound generator buzzer control register (SGBR)
- Sound generator amplitude control register (SGAM)

(1)Sound generator control register (SGCR)

SGCR is a register which sets up the following four types.

- Controls sound generator output
- Selects output of sound generator
- · Selects sound generator input frequency fsg1
- Selects 5-bit counter input frequency fsg2

 $\frac{\text{SGCR}}{\text{RESET}} \text{ is set with a 1-bit or 8-bit memory manipulation instruction.} \\ \hline \text{RESET} \text{ input clears SGCR to 00H.} \\ \hline$

Figure 17-3 shows the SGCR format.

Figure 17-3: Sound Generator Control Register (SGCR) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
SGCR	TCE	0	0	0	SGOB	SGCL2	SGCL1	SGCL0	FF66H	00H	R/W

TCE	Sound Generator Output Selection
0	Timer operation stopped SGOF/SGO and SGOA for low-level output
1	Sound generator operation SGOF/SGO and SGOA for output

Caution: Before setting the TCE bit, set all the other bits.

Remark: SGOF: Basic cycle signal (without amplitude) SGO: Basic cycle signal (with amplitude) SGOA: Amplitude signal

SGOB	Sound Generator Output Selection
0	Selects SGOF and SGOA outputs
1	Selects SGO and PCL outputs

0 0 fSG2 = fSG1/2 ⁵ 0 1 fSG2 = fSG1/2 ⁶	SGCL2	SGCL1	5-Bit Counter Input Frequency fSG2 Selection
0 1 $fSG2 = fSG1/2^6$	0	0	$fSG2 = fSG1/2^5$
	0	1	$fSG2 = fSG1/2^6$
1 0 $fSG2 = fSG1/2^7$	1	0	$fSG2 = fSG1/2^7$
1 1 $fSG2 = fSG1/2^8$	1	1	$fSG2 = fSG1/2^8$

SGCL0	Sound Generator Input Frequency Selection
0	$fSG1 = fX/2^7$
1	$fSG1 = fX/2^8$

Cautions: 1. When rewriting SGCR to other data, stop the timer operation (TCE = 0) beforehand. 2. Bits 4 to 6 must be set to 0. The sound generator output frequency fsg can be calculated by the following expression.

 $f_{SG} = 2 (SGCL0 - SGCL1 - 2 \times SGCL2 - 7) \times \{f_x/(SGBR + 17)\}$

Substitute set 0 or 1 to SGCL0 to SGCL2 in the above expression. Substitute a decimal value to SGBR. Where fx = 8 MHz, SGCL0 to SGCL2 is (1, 0, 0), and SGBR0 to SGBR3 is (1, 1, 1, 1), SGBR = 15. Therefore,

 $f_{SG} = 2 (1 - 0 - 2 \times 0 - 7) \times \{fx/(15 + 17)\}$ = 3.906 kHz

(2) Sound generator buzzer control register (SGBR)

SGBR is a register that sets the basic frequency of the sound generator output signal. SGBR is set with a 1-bit or 8-bit memory manipulation instruction. RESET input clears SGBR to 00H.

Figure 17-4 shows the SGBR format.

Figure 17-4: Sound Generator Buzzer Control Register (SGBR) Format

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
SGBR	0	0	0	0	SGBR3	SGBR2	SGBR1	SGBR0	FF68H	00H	R/W

Cautions: 1. When rewriting SGBR to other data, stop the timer operation (TCE = 0) beforehand. 2. Bits 4 to 7 must be set to 0.

		SG	iBR		SGCL2,1 (Hz)				
SGCL0		4-bit cor	mparator		00	01	10	11	
	0	0	0	0	7352.9	3676.5	1838.2	919.1	
	0	0	0	1	6944.4	3472.2	1736.1	868.1	
	0	0	1	0	6578.9	3289.5	1644.7	822.4	
	0	0	1	1	6250.0	3125.0	1562.5	781.3	
	0	1	0	0	5952.4	2976.2	1488.1	744.0	
	0	1	0	1	5681.8	2840.9	1420.5	710.2	
	0	1	1	0	5434.8	2717.4	1358.7	679.3	
	0	1	1	1	5208.3	2604.2	1302.1	651.0	
0	1	0	0	0	5000.0	2500.0	1250.0	625.0	
	1	0	0	1	4807.7	2403.8	1201.9	601.0	
	1	0	1	0	4629.6	2314.8	1157.4	578.7	
	1	0	1	1	4464.3	2232.1	1116.1	558.0	
	1	1	0	0	4310.3	2155.2	1077.6	538.8	
	1	1	0	1	4166.7	2083.3	1041.7	520.8	
	1	1	1	0	4032.3	2016.1	1008.1	504.0	
	1	1	1	1	3906.3	1953.1	976.6	488.3	
	0	0	0	0	3676.5	1838.2	919.1	459.6	
	0	0	0	1	3472.2	1736.1	868.1	434.0	
	0	0	1	0	3289.5	1644.7	822.4	411.2	
	0	0	1	1	3125.0	1562.5	781.3	390.6	
	0	1	0	0	2976.2	1488.1	744.0	372.0	
	0	1	0	1	2840.9	1420.5	710.2	355.1	
	0	1	1	0	2717.4	1358.7	679.3	339.7	
1	0	1	1	1	2604.2	1302.1	651.0	325.5	
'	1	0	0	0	2500.0	1250.0	625.0	312.5	
	1	0	0	1	2403.8	1201.9	601.0	300.5	
	1	0	1	0	2314.8	1157.4	578.7	289.4	
	1	0	1	1	2232.1	1116.1	558.0	279.0	
	1	1	0	0	2155.2	1077.6	538.8	269.4	
	1	1	0	1	2083.3	1041.7	520.8	260.4	
	1	1	1	0	2016.1	1008.1	504.0	252.0	
	1	1	1	1	1953.1	976.6	488.3	244.1	

Figure 17-5: Sound Generator Frequency Selection

(3) Sound generator amplitude register (SGAM)

SGAM is a register that sets the amplitude of the sound generator output signal. <u>SGAM</u> is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears SGAM to 00H.

Figure 17-6 shows the SGAM format.

ΝΕC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A

SGAM6 SGAM5 SGAM4 SGAM3 SGAM2 SGAM1 SGAM0 Amplitude 0 1 2/128 0 0 0 0 0 1 1 1 2/128 0 0 0 0 1 1 0 3/128 0 0 0 0 1 1 1 4/128 0 0 0 0 1 1 0 1	-								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GAM	0	SGAM6	SGAM5	SGAM4	SGAM3	SGAM2	SGAM1	SGAM0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·		-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SGAM6	SGAM5	SGAM4	SGAM3	SGAM2	SGAM1	SGAMO	Amplitude
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1		0		10/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1	0	1	0	11/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1	0	1	1	12/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1	1	0	0	13/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1	1	0	1	14/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1	1	1	0	15/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1	1	1	1	16/128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	1	0	0	0	0	17/128
0 0 1 0 0 1 1 20/128 0 0 1 0 1 0 0 21/128 0 0 1 0 1 0 0 21/128 0 0 1 0 1 0 1 22/128 0 0 1 0 1 1 0 23/128 0 0 1 0 1 1 1 24/128 0 0 1 1 0 0 25/128 0 0 1 1 0 0 26/128 0 0 1 1 0 1 0 27/128		0	0	1	0	0	0	1	18/128
0 0 1 0 1 0 0 21/128 0 0 1 0 1 0 1 22/128 0 0 1 0 1 0 1 22/128 0 0 1 0 1 1 0 23/128 0 0 1 0 1 1 1 24/128 0 0 1 1 0 0 25/128 0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0	1	0	0	1	0	19/128
0 0 1 0 1 0 1 22/128 0 0 1 0 1 1 0 23/128 0 0 1 0 1 1 1 24/128 0 0 1 1 0 0 25/128 0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0	1	0	0	1	1	20/128
0 0 1 0 1 1 0 23/128 0 0 1 0 1 1 1 24/128 0 0 1 1 0 0 25/128 0 0 1 1 0 0 25/128 0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0	1	0	1	0	0	21/128
0 0 1 0 1 1 1 24/128 0 0 1 1 0 0 0 25/128 0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0	1	0	1	0	1	22/128
0 0 1 0 1 1 1 24/128 0 0 1 1 0 0 0 25/128 0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0	1	0	1	1	0	23/128
0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0		0		1	1	24/128
0 0 1 1 0 0 1 26/128 0 0 1 1 0 1 0 27/128		0	0	1	1	0	0	0	25/128
0 0 1 1 0 1 0 27/128									
			0						28/128

Figure 17-6: Sound Generator Amplitude Register (SGAM) Format

2 1

29/128

30/128

31/128

f

128/128

Address After Reset R/W

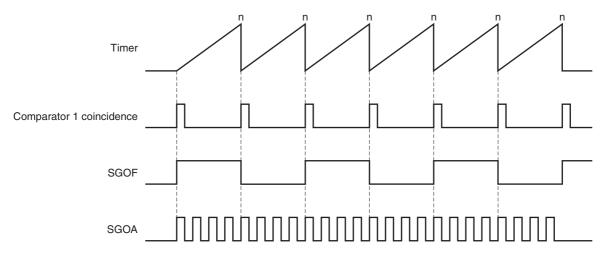
R/W

Cautions: 1. When rewriting the contents of SGAM, the timer operation does not need to be stopped. However, note that a high level may be output for one period due to rewrite timing.

f

2. Bit 7 must be set to 0.

Symbol


17.4 Sound Generator Operations

17.4.1 To output basic cycle signal SGOF (without amplitude)

Select SGOF output by setting bit 3 (SGOB) of the sound generator control register (SGCR) to "0". The basic cycle signal with a frequency specified by the SGCL0 to SGCL2 and SGBR0 to SGBR3 is output.

At the same time, the amplitude signal with an amplitude specified by the SGAM0 to SGAM6 is output from the SGOA pin.

17.4.2 To output basic cycle signal SGO (with amplitude)

Select SGO output by setting bit 3 (SGOB) of the sound generator control register (SGCR) to "1". The basic cycle signal with a frequency specified by the SGCL0 to SGCL2 and SGBR0 to SGBR3 is output.

When SGO output is selected, the SGOA pin can be used as a PCL output (clock output) or I/O port pin.

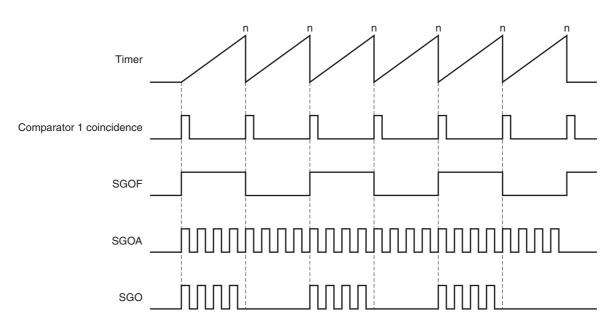


Figure 17-8: Sound Generator Output Operation Timing with Amplitude

[Memo]

Chapter 18 Interrupt Functions

18.1 Interrupt Function Types

The following three types of interrupt functions are used.

(1) Non-maskable interrupt

This interrupt is acknowledged unconditionally even in a disabled state. It does not undergo interrupt priority control and is given top priority over all other interrupt requests.

It generates a standby release signal.

The non-maskable interrupt has one source of interrupt request from the watchdog timer.

(2) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into a high interrupt priority group and a low interrupt priority group by setting the priority specify flag register (PR0L, PR0H, and PR1L).

Multiple high priority interrupts can be applied to low priority interrupts. If two or more interrupts with the same priority are simultaneously generated, each interrupts has a predetermined priority (see Table 18-1).

A standby release signal is generated.

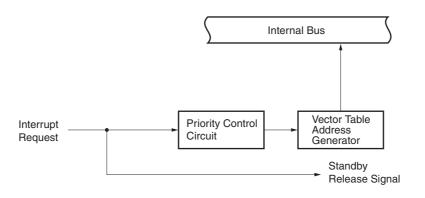
The maskable interrupt has seven sources of external interrupt requests and fifteen sources of internal interrupt requests.

(3) Software interrupt

This is a vectored interrupt to be generated by executing the BRK instruction. It is acknowledged even in a disabled state. The software interrupt does not undergo interrupt priority control.

18.2 Interrupt Sources and Configuration

There are total of 24 non-maskable, maskable, and software interrupts in the interrupt sources.


Table 18-1: Interrupt Source List

Interrupt type	Priority (default)		Interrupt request source	Vector code address	Basic struct ure type	
Resetting	-	RESET	Reset input	0000H		
Non- maskable	-	INTWDT	Watchdog timer overflow (when non-maskable interrupt is selected)	0004H	(A)	
	0	INTWDT	Watchdog timer overflow (when interval timer is selected)	000411		
	1	INTVE	INTVE \rightarrow VAN-End of Message	0006H	(B)	
	2	INTVT	INTVT \rightarrow VAN-Emission	0008H	. ,	
	3	INTVR	INTVR \rightarrow VAN-Reception	000AH		
	4	INTP0		000CH		
Maskable	5	INTP1	External interrupt pin input edge detection	000EH	(C)	
	6	INTP2		0010H		
	7	INTTM00	Agreement between TM00 and CR00 (when compare register is specified) TI01 valid edge detection (when capture register is specified)	0012H		
	8	INTTM01	Agreement between TM00 and CR01 (when compare register is specified) TI00 valid edge detection (when capture register is specified)	0014H		
	9	INTTM50	Agreement between TM50 and CR50	0016H		
	10	INTTM51	Agreement between TM51 and CR51	0018H	(B)	
	11	INTWTI	Watch timer interval interrupt	001AH		
	12	INTWT	Watch interrupt	001CH		
	13	INTCSI3	SIO30 transfer completion	001EH		
	14	INTSER	UART0 reception error occurrence	0020H		
	15	INTSR	UART0 reception completion	0022H		
	16	INTST	0024H			
	17	INTAD	A/D conversion end	0026H		
Software	-	BRK	Execution of BRK instruction	003EH	(D)	

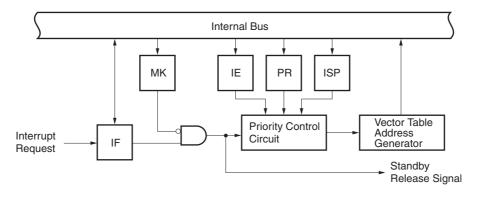
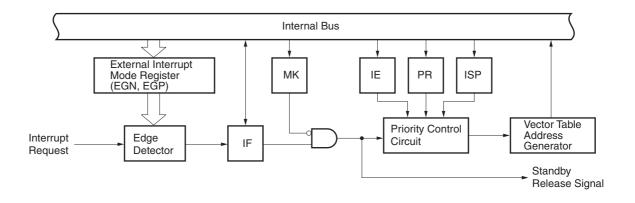

Notes: 1. Default priorities are intended for two or more simultaneously generated maskable interrupt requests. 0 is the highest priority and 26 is the lowest priority.
 2. Basic configuration types (A) to (D) correspond to (A) to (D) of Figure 18-1.

Figure 18-1: Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt


(B) Internal maskable interrupt

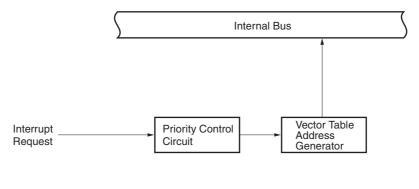

- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : Inservice priority flag
- MK : Interrupt mask flag
- PR : Priority specify flag

Figure 18-1: Basic Configuration of Interrupt Function (2/2)

(C) External maskable interrupt (except INTP0)

(D) Software interrupt

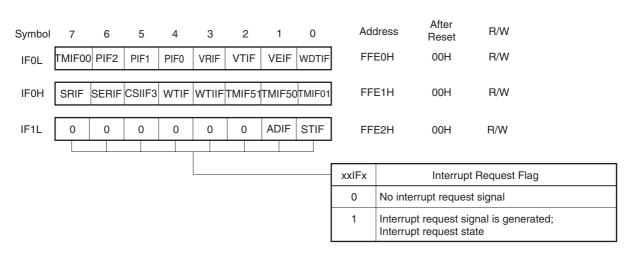
- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : Inservice priority flag
- MK : Interrupt mask flag
- PR : Priority specify flag

18.3 Interrupt Function Control Registers

The following six types of registers are used to control the interrupt functions.

- Interrupt request flag register (IF0L, IF0H, IF1L)
- Interrupt mask flag register (MK0L, MK0H, MK1L)
- Priority specify flag register (PR0L, PR0H, PR1L)
- External interrupt mode register (EGP, EGN)
- Program status word (PSW)

Table 18-2 gives a listing of interrupt request flags, interrupt mask flags, and priority specify flags corresponding to interrupt request sources.

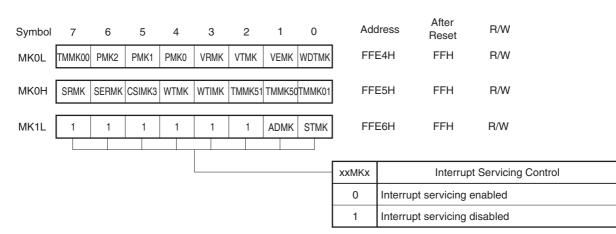

Table 18-2:	Various Flags Corresponding to Interrupt Request Sources

Interrupt Request Signal Name	Interrupt Request Flag	Interrupt Mask Flag	Priority Specify Flag	
INTWDT	WDTIF	WDTMK	WDTPR	
INTVE	VEIF	VEMK	VEPR	
INTVT	VTIF	VTMK	VTPR	
INTVR	VRIF	VRMK	VRPR	
INTP0	PIF0	PMK0	PPR0	
INTP1	PIF1	PMK1	PPR1	
INTP2	PIF2	PMK2	PPR2	
INTTM00	0 TMIF00 TMMK00		TMPR00	
INTTM01	INTTM01 TMIF01 TMMK01		TMPR01	
INTM50	INTM50 TMIF50 TMMK50		TMPR50	
INTM51	NTM51 TMIF51 TMMK51		TMPR51	
INTWTI	WTIIF	WTIMK	WTIPR	
INTWT	WTIF	WTMK	WTPR	
INTCSI3	INTCSI3 CSIIF3		CSIPR3	
INTSER	SERIF	SERMK	SERPR	
INTSR	SRIF	SRMK	SRPR	
INTST	STIF	STMK	STPR	
INTAD	ADIF	ADMK	ADPR	

(1) Interrupt request flag registers (IF0L, IF0H, IF1L)

The interrupt request flag is set to 1 when the corresponding interrupt request is generated or an instruction is executed. It is cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon application of RESET input.

IF0L, IF0H and IF1L are set with a 1-bit or 8-bit memory manipulation instruction. If IF0L and IF0H are used as a 16-bit register IF0, use a 16-bit memory manipulation instruction for the setting. RESET input sets these registers to 00H.

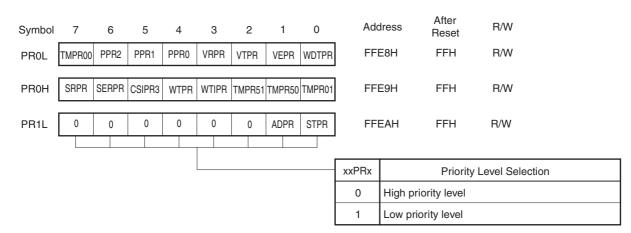

Figure 18-2: Interrupt Request Flag Register Format

- Cautions: 1. WDTIF flag is R/W enabled only when a watchdog timer is used as an interval timer. If used in the watchdog timer mode 1, set WDTIF flag to 0.
 - 2. Set always 0 in IF1L bit 2 to bit 7.

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L)

The interrupt mask flag is used to enable/disable the corresponding maskable interrupt service and to set standby clear enable/disable.

MK0L, MK0H and MK1L are set with a 1-bit or 8-bit memory manipulation instruction. If IF0L and IF0H are used as a 16-bit register MK0, use a 16-bit memory manipulation instruction for the setting. RESET input sets these registers to FFH.


Figure 18-3: Interrupt Mask Flag Register Format

Cautions: 1. If WDTMK flag is read when a watchdog timer is used as a non-maskable interrupt, MK0 value becomes undefined.

2. Set always 1 in MK1L bit 2 to bit 7.

(3) Priority specify flag registers (PR0L, PR0H, PR1L)

The priority specify flag is used to set the corresponding maskable interrupt priority orders. PR0L, PR0H and PR1L are set with a 1-bit or 8-bit memory manipulation instruction. If IF0L and IF0H are used as a 16-bit register PR0, use a 16-bit memory manipulation instruction for the setting. RESET input sets these registers to FFH.

Figure 18-4: Priority Specify Flag Register Format

Cautions: 1. When a watchdog timer is used as a non-maskable interrupt, set 1 in WDTPR flag. 2. Set always 1 in PR1L bit 2 to bit 7.

(4) External interrupt rising edge enable register (EGP), external interrupt falling edge enable register (EGN)

EGP and EGN specify the valid edge to be detected on pins P00 to P02.

EGP and EGN can be read or written to with a 1-bit or 8-bit memory manipulation instruction. These registers are set to 00H when the $\overrightarrow{\text{RESET}}$ signal is output.

Figure 18-5: Formats of External Interrupt Rising Edge Enable Register and External Interrupt Falling Edge Enable Register

Symbol	7	6	5	4	3	2	1	0	Address	On Reset	R/W
EGP	0	0	0	0	0	EGP2	EGP1	EGP0	FF48H	00H	R/W
Symbol	7	6	5	4	3	2	1	0	Address	On Reset	R/W
EGN	0	0	0	0	0	EGN2	EGN1	EGN0	FF49H	00H	R/W

EGPn	EGNn	Valid edge of INTPn pin (n = 0 4)
0	0	Interrupt disable
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

(5) Program status word (PSW)

The program status word is a register to hold the instruction execution result and the current status for interrupt request. The IE flag to set maskable interrupt enable/disable and the ISP flag to control multiple interrupt servicing are mapped.

Besides 8-bit unit read/write, this register can carry out operations with a bit manipulation instruction and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, and when the BRK instruction is executed, the contents of PSW automatically is saved into a stack and the IE flag is reset to 0. If a maskable interrupt request is acknowledged contents of the priority specify flag of the acknowledged interrupt are transferred to the ISP flag. The acknowledged contents of PSW is also saved into the stack with the PUSH PSW instruction. It is reset from the stack with the RETI, RETB, and POP PSW instructions.

RESET input sets PSW to 02H.

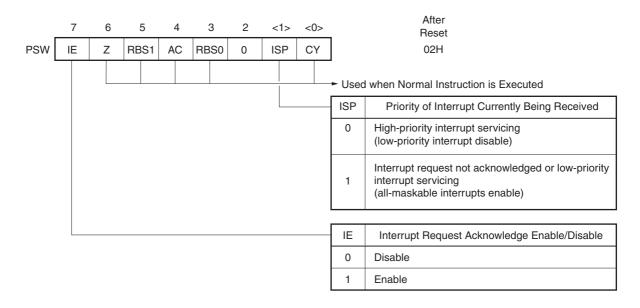
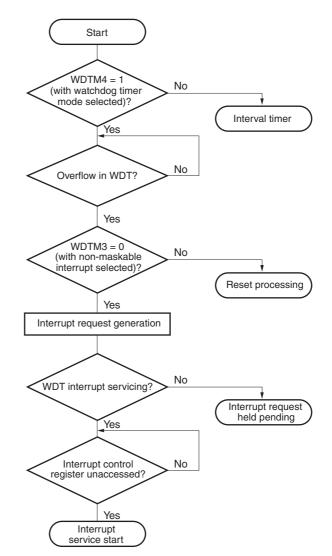


Figure 18-6: Program Status Word Format


18.4 Interrupt Servicing Operations

18.4.1 Non-maskable interrupt request acknowledge operation

A non-maskable interrupt request is unconditionally acknowledged even if in an interrupt request acknowledge disable state. It does not undergo interrupt priority control and has highest priority over all other interrupts.

If a non-maskable interrupt request is acknowledged, the acknowledged interrupt is saved in the stacks, PSW and PC, in that order, the IE and ISP flags are reset to 0, and the vector table contents are loaded into PC and branched.

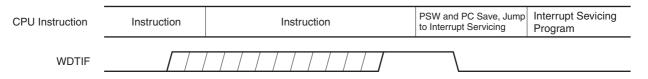
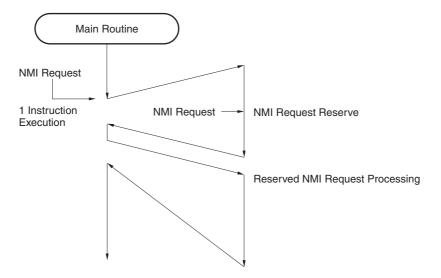

A new non-maskable interrupt request generated during execution of a non-maskable interrupt servicing program is acknowledged after the current execution of the non-maskable interrupt servicing program is terminated (following RETI instruction execution) and one main routine instruction is executed. If a new non-maskable interrupt request is generated twice or more during non-maskable interrupt service program execution, only one non-maskable interrupt request is acknowledged after termination of the non-maskable interrupt service program execution.

Figure 18-7: Flowchart from Non-Maskable Interrupt Generation to Acknowledge

WDTM: Watchdog timer mode register WDT: Watchdog timer



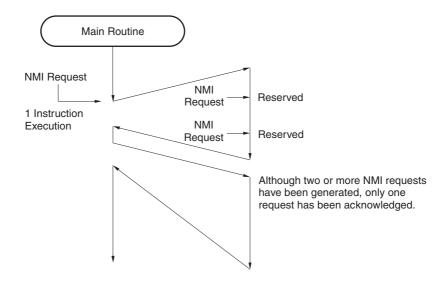

WDTIF: Watchdog timer interrupt request flag

Figure 18-9: Non-Maskable Interrupt Request Acknowledge Operation

(a) If a new non-maskable interrupt request is generated during non-maskable interrupt servicing program execution

(b) If two non-maskable interrupt requests are generated during non-maskable interrupt servicing program execution

18.4.2 Maskable interrupt request acknowledge operation

A maskable interrupt request becomes acknowledgeable when an interrupt request flag is set to 1 and the interrupt mask (MK) flag is cleared to 0. A vectored interrupt request is acknowledged in an interrupt enable state (with IE flag set to 1). However, a low-priority interrupt request is not acknowledged during high-priority interrupt service (with ISP flag reset to 0).

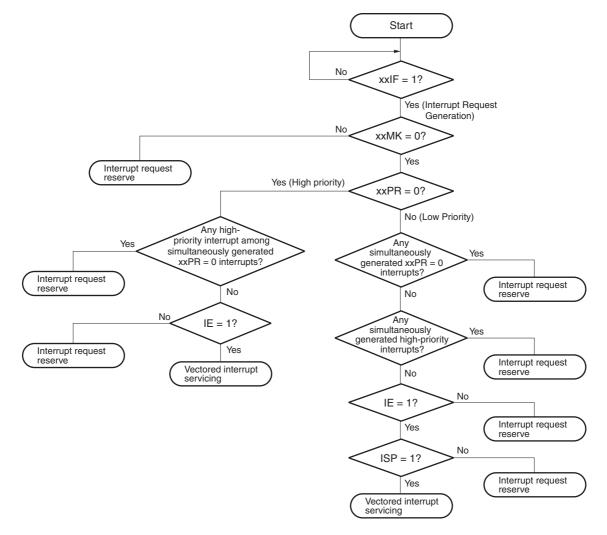
Wait times maskable interrupt request generation to interrupt servicing are as follows.

Table 18-3: Times from Maskable Interrupt Request Generation to Interrupt Service

	Minimum Time	Maximum Time ^{Note}		
When xxPRx = 0	7 clocks	32 clocks		
When xxPRx = 1	8 clocks	33 clocks		

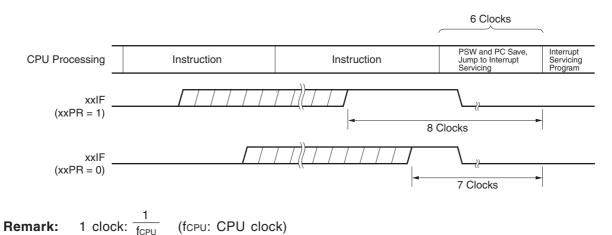
Note: If an interrupt request is generated just before a divide instruction, the wait time is maximized.

Remark: 1 clock: $\frac{1}{f_{CPU}}$ (fcPu: CPU clock)

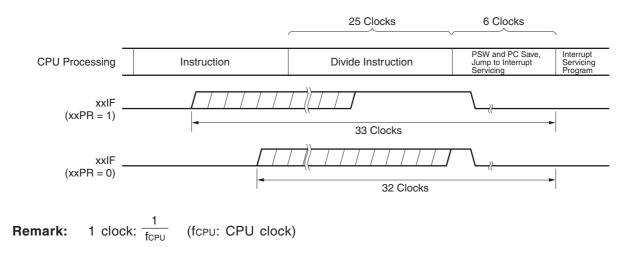

If two or more maskable interrupt requests are generated simultaneously, the request specified for higher priority with the priority specify flag is acknowledged first. If two or more requests are specified for the same priority with the priority specify flag, the interrupt request with the higher default priority is acknowledged first.

Any reserved interrupt requests are acknowledged when they become acknowledgeable.

Figure 18-10 shows interrupt request acknowledge algorithms.


When a maskable interrupt request is acknowledged, the contents of program status word (PSW) and program counter (PC) are saved to stacks, in this order. Then, the IE flag is reset (to 0), and the value of the acknowledged interrupt priority specify flag is transferred to the ISP flag. Further, the vector table data determined for each interrupt request is loaded into PC and branched.

Return from the interrupt is possible with the RETI instruction.


Figure 18-10: Interrupt Request Acknowledge Processing Algorithm

- xxIF : Interrupt request flag
- xxMK : Interrupt mask flag
- xxPR : Priority specify flag
- IE : Flag to control maskable interrupt request acknowledge
- ISP : Flag to indicate the priority of interrupt being serviced (0 = an interrupt with higher priority is being serviced, 1 = interrupt request is not acknowledged or an interrupt with lower priority is being serviced)

Figure 18-11: Interrupt Request Acknowledge Timing (Minimum Time)

18.4.3 Software interrupt request acknowledge operation

A software interrupt request is acknowledged by BRK instruction execution. Software interrupt cannot be disabled.

If a software interrupt is acknowledged, the contents of program status word (PSW) and program counter (PC) are saved to stacks, in this order. Then the IE flag is reset (to 0), and the contents of the vector tables (003EH and 003FH) are loaded into PC and branched.

Return from the software interrupt is possible with the RETB instruction.

Caution: Do not use the RETI instruction for returning from the software interrupt.

18.4.4 Multiple interrupt servicing

A multiple interrupt consists in acknowledging another interrupt during the execution of the interrupt. A multiple interrupt is generated only in the interrupt request acknowledge enable state (IE = 1) (except non-maskable interrupt). As soon as an interrupt request is acknowledged, it enters the acknowledge disable state (IE = 0). Therefore, in order to enable a multiple interrupt, it is necessary to set the interrupt enable state by setting the IE flag (1) with the EI instruction during interrupt servicing.

Even in an interrupt enabled state, a multiple interrupt may not be enabled. However, it is controlled according to the interrupt priority. There are two priorities, the default priority and the programmable priority. The multiple interrupt is controlled by the programmable priority control.

If an interrupt request with the same or higher priority than that of the interrupt being serviced is generated, it is acknowledged as a multiple interrupt. In the case of an interrupt with a priority lower than that of the interrupt being processed, it is not acknowledged as a multiple interrupt.

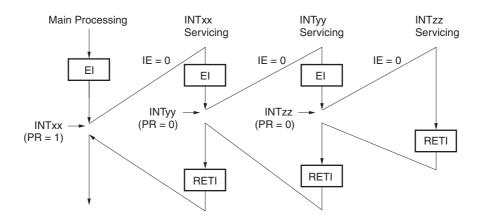
Interrupt request not acknowledged as a multiple interrupt due to interrupt disable or a low priority is reserved and acknowledged following one instruction execution of the main processing after the completion of the interrupt being serviced.

During non-maskable interrupt servicing, multiple interrupts are not enabled.

Table 18-4 shows an interrupt request enabled for multiple interrupt during interrupt servicing, and Figure 18-13 shows multiple interrupt examples.

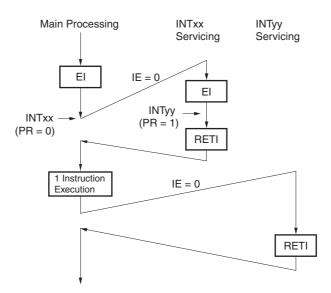
Table 18-4: Interrupt Request Enabled for Multiple Interrupt during Interrupt Servicing

Multip	le Interrupt Request	Non-maskable InterruptRequest	Maskable Interrupt Request			
			xxPR = 0		xxPR = 1	
Interrupt being Serviced			IE = 1	IE = 0	IE = 1	IE = 0
Non-maskable interrup	D	D	D	D	D	
Maskable interrupt	ISP = 0	E	Е	D	D	D
	ISP = 1	Е	Е	D	Е	D
Software interrupt	E	Е	D	E	D	


Remarks: 1. E: Multiple interrupt enable

- 2. D: Multiple interrupt disable
- 3. ISP and IE are the flags contained in PSW
 - ISP = 0: An interrupt with higher priority is being serviced
 - ISP = 1: An interrupt request is not accepted or an interrupt with lower priority is being serviced
 - IE = 0: Interrupt request acknowledge is disabled
 - IE = 1: Interrupt request acknowledge is enabled
- 4. xxPR is a flag contained in PR0L, PR0H, and PRIL
 - xxPR = 0: Higher priority level

xxPR = 1: Lower priority level


Figure 18-13: Multiple Interrupt Example (1/2)

Example 1. Two multiple interrupts generated

During interrupt INTxx servicing, two interrupt requests, INTyy and INTzz are acknowledged, and a multiple interrupt is generated. An EI instruction is issued before each interrupt request acknowledge, and the interrupt request acknowledge enable state is set.

Example 2. Multiple interrupt is not generated by priority control

The interrupt request INTyy generated during interrupt INTxx servicing is not acknowledged because the interrupt priority is lower than that of INTxx, and a multiple interrupt is not generated. INTyy request is retained and acknowledged after execution of 1 instruction execution of the main processing.

- PR = 0 : Higher priority level
- PR = 1 : Lower priority level
- IE = 0 : Interrupt request acknowledge disable

Main Processing INTxx INTyy Servicing Servicing IE = 0ΕI INTyy INTxx (PR = 0)(PR = 0)RETI IE = 01 Instruction Execution RETI

Figure 18-13: Multiple Interrupt Example (2/2)

Example 3. A multiple interrupt is not generated because interrupts are not enabled

Because interrupts are not enabled in interrupt INTxx servicing (an EI instruction is not issued), interrupt request INTyy is not acknowledged, and a multiple interrupt is not generated. The INTyy request is reserved and acknowledged after 1 instruction execution of the main processing.

- PR = 0 : Higher priority level
- IE = 0 : Interrupt request acknowledge disable

18.4.5 Interrupt request reserve

Some instructions may reserve the acknowledge of an instruction request until the completion of the execution of the next instruction even if the interupt request is generated during the execution. The following shows such instructions (interrupt request reserve instruction).

- MOV PSW, #byte
- MOV A, PSW
- MOV PSW, A
- MOV1 PSW.bit, CY
- MOV1 CY, PSW.bit
- AND1 CY, PSW.bit
- OR1 CY, PSW.bit
- XOR1 CY, PSW.bit
- SET1/CLR1 PSW.bit
- RETB
- RETI
- PUSH PSW
- POP PSW
- BT PSW.bit, \$addr16
- BF PSW.bit, \$addr16
- BTCLRPSW.bit, \$addr16
- EI
- DI
- Manipulate instructions for IF0L, IF0H, IF1L, MK0L, MK0H, MK1L, PR0L, PR0H, PR1L, INTM0, INTM1 registers
- Caution: BRK instruction is not an interrupt request reserve instruction described above. However, in a software interrupt started by the execution of BRK instruction, the IE flag is cleared to 0. Therefore, interrupt requests are not acknowledged even when a maskable interrupt request is issued during the execution of the BRK instruction. However, non-maskable interrupt requests are acknowledged.

Figure 18-14 shows the interrupt request hold timing.

CPU processing	Instruction N	Save PSW and PC, Jump to interrupt service	Interrupt service program
xxIF			

- Remarks: 1. Instruction N: Instruction that holds interrupts requests
 - 2. Instruction M: Instructions other than interrupt request pending instruction
 - 3. The xxPR (priority level) values do not affect the operation of xxIF (interrupt request).

[Memo]

Chapter 19 Standby Function

19.1 Standby Function and Configuration

19.1.1 Standby function

The standby function is designed to decrease power consumption of the system. The following two modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. The HALT mode is intended to stop the CPU operation clock. System clock oscillator continues oscillation. In this mode, current consumption cannot be decreased as in the STOP mode. The HALT mode is valid to restart immediately upon interrupt request and to carry out intermittent operations such as watch applications.

(2) STOP mode

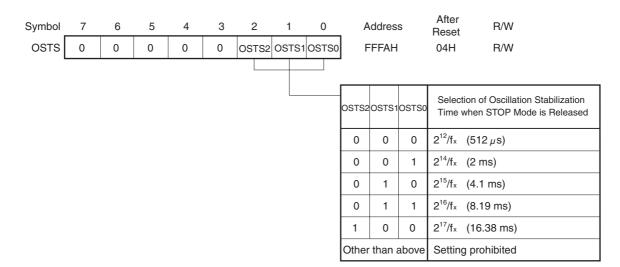
STOP instruction execution sets the STOP mode. In the STOP mode, the main system clock oscillator stops and the whole system stops. CPU current consumption can be considerably decreased.

Data memory low-voltage hold (down to $V_{DD} = 2.0 \text{ V}$) is possible. Thus, the STOP mode is effective to hold data memory contents with ultra-low current consumption. Because this mode can be cleared upon interrupt request, it enables intermittent operations to be carried out.

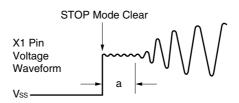
However, because a wait time is necessary to secure an oscillation stabilization time after the STOP mode is cleared, select the HALT mode if it is necessary to start processing immediately upon interrupt request.

In any mode, all the contents of the register, flag, and data memory just before standby mode setting are held. The input/output port output latch and output buffer statuses are also held.

- Cautions: 1. The STOP mode can be used only when the system operates with the main system clock (subsystem clock oscillation cannot be stopped). The HALT mode can be used with either the main system clock or the subsystem clock.
 - 2. When proceeding to the STOP mode, be sure to stop the peripheral hardware operation and execute the STOP instruction.
 - 3. The following sequence is recommended for power consumption reduction of the A/D converter when the standby function is used: first clear bit 7 (CS) to 0 to stop the A/D conversion operation, and then execute the HALT or STOP instruction.


19.1.2 Standby function control register

A wait time after the STOP mode is cleared upon interrupt request till the oscillation stabilizes is controlled with the oscillation stabilization time select register (OSTS).


OSTS is set with an 8-bit memory manipulation instruction.

RESET input sets OSTS to 04H. However, it takes 2¹⁷/fx until the STOP mode is cleared by RESET input.

Figure 19-1: Oscillation Stabilization Time Select Register Format

Caution: The wait time after STOP mode clear does not include the time (see "a" in the illustration below) from STOP mode clear to clock oscillation start, regardless of clearance by RESET input or by interrupt generation.

Remarks: 1. fx: Main system clock oscillation frequency2. Values in parentheses apply to operating at fx = 8.00 MHz

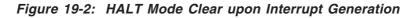
19.2 Standby Function Operations

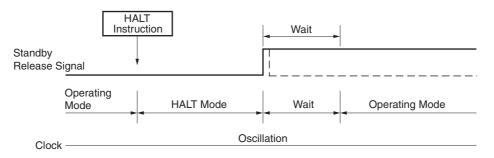
19.2.1 HALT mode

(1) HALT mode set and operating status

The HALT mode is set by executing the HALT instruction. It can be set with the main system clock or the subsystem clock. The operating status in the HALT mode is described below.

HALT mode setting	HALT execution during main	HALT execution during	
	system clock operation	subsystem clock operation	
Item		(Main system clock stops)	
Clock generator	Both main and subsystem clocks to the CPU stops	can be oscillated / Clock supply	
CPU	Operation stops		
Port (output latch)	Status before HALT mode setting	is held	
16-bit timer /event counter (TM0)	Operable	Operation stops	
8-bit timer event counter (TM50/TM51)	Operable	Operable when TI50 or TI51 is selected as count clock	
Watch timer	Operable	Operable when fxt is selected as count clock	
Watchdog timer	Operable	Operation stops	
A/D converter	Operation stops		
Serial I/F - SIO3	Operable	Operable at external SCK	
Serial I/F - UART	Operable	Operation stops	
VAN	Operable	Operation stops	
Sound generator	Operable	Operation stops	
External interrupt (INTP0 to INTP2)	Operable		
LCD	Operable	Operation stops	


Table 19-1: HALT Mode Operating Status


(2) HALT mode clear

The HALT mode can be cleared with the following four types of sources.

(a) Clear upon unmasked interrupt request

An unmasked interrupt request is used to clear the HALT mode. If interrupt acknowledge is enabled, vectored interrupt service is carried out. If disabled, the next address instruction is executed.

- **Remarks: 1.** The broken line indicates the case when the interrupt request which has cleared the standby status is acknowledged.
 - 2. Wait time will be as follows:
 - When vectored interrupt service is carried out: 8 to 9 clocks
 - When vectored interrupt service is not carried out: 2 to 3 clocks

(b) Clear upon non-maskable interrupt request

The HALT mode is cleared and vectored interrupt service is carried out whether interrupt acknowledge is enabled or disabled.

(c) Clear upon RESET input

As is the case with normal reset operation, a program is executed after branch to the reset vector address.

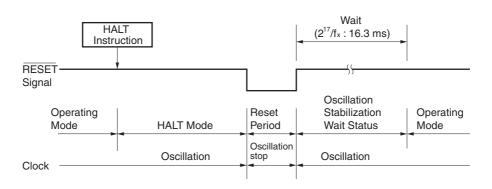


Figure 19-3: HALT Mode Release by RESET Input

Remarks: 1. fx: Main system clock oscillation frequency2. Values in parentheses apply to operation at fx = 8.0 MHz

Release Source	MKxx	PRxx	IE	ISP	Operation	
	0	0	0	х	Next address instruction execution	
	0	0	1	х	Interrupt service execution	
Maskable interrupt	0	1	0	1	Next address instruction execution	
request	0	1	х	0	Next address instruction executio	
	0	1	1	1	Interrupt service execution	
	1	х	х	х	HALT mode hold	
Non-maskable interrupt request	-	-	х	х	Interrupt service execution	
RESET input	-	-	х	х	Reset processing	

Table 19-2:	Operation	after HALT	Mode	Release
-------------	-----------	------------	------	---------

x: Don't care.

19.2.2 STOP mode

(1) STOP mode set and operating status

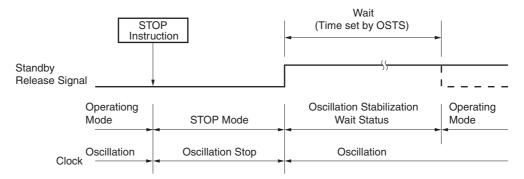
The STOP mode is set by executing the STOP instruction. It can be set only with the main system clock.

- Cautions: 1. When the STOP mode is set, the X2 pin is internally connected to V_{DD} via a pullup resistor to minimize leakage current at the crystal oscillator. Thus, do not use the STOP mode in a system where an external clock is used for the main system clock.
 - 2. Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction. After the wait set using the oscillation stabilization time select register (OSTS), the operating mode is set.

The operating status in the STOP mode is described below.

STOP mode setting	With subsystem clock	Without subsystem clock	
Item			
Clock generator	Only main system clock stops oscill	ation	
CPU	Operation stops		
Port (output latch)	Status before STOP mode setting is	s held	
16-bit timer /event counter (TM0)	Operation stops		
8-bit timer event counter 5 and 6	Operable when TI50 or TI51 are se	lected as count clock	
Watch timer	Operable when fxt is selected as count clock Operation stops		
Watchdog timer	Operation stops		
A/D converter	Operation stops		
Serial I/F - SIO3	Operable at external SCK		
Serial I/F - UART	Operation stops		
VAN	Operation stops		
Sound generator	Operation stops		
External interrupt (INTP0 to INTP2)	Operable		
LCD	Operation stops		

Table 19-3: STOP Mode Operating Status


(2) STOP mode release

The STOP mode can be cleared with the following three types of sources.

(a) Release by unmasked interrupt request

An unmasked interrupt request is used to release the STOP mode. If interrupt acknowledge is enabled after the lapse of oscillation stabilization time, vectored interrupt service is carried out. If interrupt acknowledge is disabled, the next address instruction is executed.

Remark: The broken line indicates the case when the interrupt request which has cleared the standby status is acknowledged.

(b) Release by RESET input

The STOP mode is cleared and after the lapse of oscillation stabilization time, reset operation is carried out.

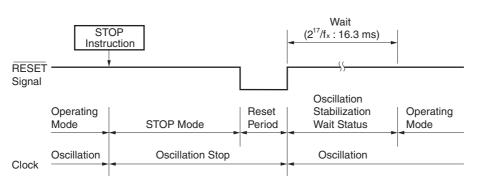


Figure 19-5: Release by STOP Mode RESET Input

Remarks 1. fx: Main system clock oscillation frequency2. Values in parentheses apply to operation at fx = 5.0 MHz

Table 19-4:	Operation a	after STOP	Mode Release
	operation a		mode neicuse

Release Source	MKxx	PRxx	IE	ISP	Operation	
	0	0	0	х	Next address instruction execution	
	0	0	1	х	Interrupt service execution	
Maskable interrupt	0	1	0	1	Next address instruction execution	
request	0	1	х	0	Next address instruction execution	
	0	1	1	1	Interrupt service execution	
	1	х	х	х	STOP mode hold	
Non-maskable interrupt request	-	-	х	х	Interrupt service execution	
RESET input	-	-	х	х	Reset processing	

x: Don't care.

[Memo]

Chapter 20 Reset Function

20.1 Reset Function

The following two operations are available to generate the reset signal.

- (1) External reset input with RESET pin
- (2) Internal reset by watchdog timer overrun time detection

External reset and internal reset have no functional differences. In both cases, program execution starts at the address at 0000H and 0001H by $\overline{\text{RESET}}$ input.

When a low level is input to the RESET pin or the watchdog timer overflows, a reset is applied and each hardware is set to the status as shown in Table 20-1. Each pin has high impedance during reset input or during oscillation stabilization time just after reset clear.

When a high level is input to the $\overrightarrow{\text{RESET}}$ input, the reset is cleared and program execution starts after the lapse of oscillation stabilization time (2¹⁷/fx). The reset applied by watchdog timer overflow is automatically cleared after a reset and program execution starts after the lapse of oscillation stabilization time (2¹⁷/fx) (see Figure 20-2 to 20-4).

- Cautions: 1. For an external reset, input a low level for 10 μ s or more to the RESET pin.
 - 2. During reset input, main system clock oscillation remains stopped but subsystem clock oscillation continues.
 - 3. When the STOP mode is cleared by reset, the STOP mode contents are held during reset input. However, the port pin becomes high-impedance.

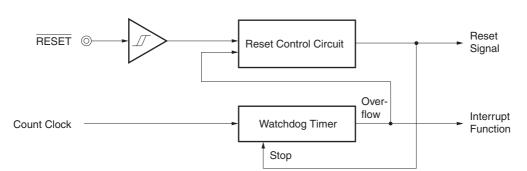
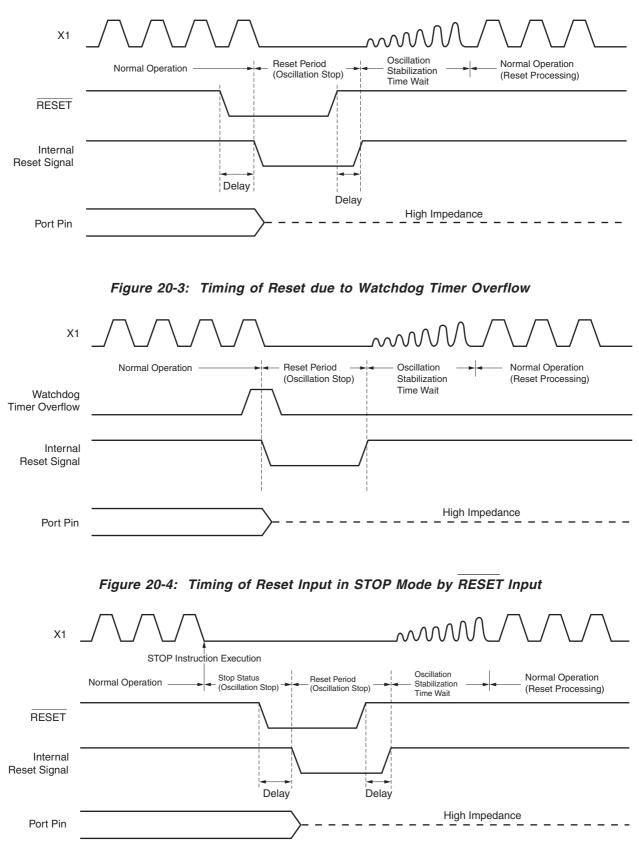



Figure 20-1: Block Diagram of Reset Function

	Hardware	Status after Reset
Program counter (PC)	The contents of reset vector tables (0000H and 0001H) are set	
Stack pointer (SP)		Undefined
Program status word	(PSW)	02H
RAM	Data memory	Undefined) Note 2
RAM	General register	Undefined) Note 2
Port (Output latch)	Ports 0, 4, 8 to 12 (P0, P4, P8 to P12)	00H
Port mode register (P	M0, PM4, PM8 to PM12)	FFH
Port function register	(PF8 to PF12)	00H
Processor clock contr	ol register (PCC)	04H
Memory size switchin	g register (IMS)	CFH
Internal expansion RA	M size switching register (IXS)	0CH
Oscillation stabilizatio	n time select register (OSTS)	04H
	Timer register (TM0)	0000H
	Capture/compare register (CR00, CR01)	0000H
16-bit timer/event	Prescaler selection register (PRM0)	00H
counter 0	Mode control register (TMC0)	00H
	Capture/compare control register 0 (CRC0)	00H
	Output control register (TOC0)	00H
	Timer register (TM50, TM51)	00H
8-bit timer/event	Compare register (CR50, CR51)	00H
counters 50 and 51	Clock select register (TLC50, TLC51)	00H
	Mode control register (TMC50, TMC51)	04H
Watch timer	Mode register (WTM)	00H
Watabdog timor	Clock selection register (WDCS)	00H
Watchdog timer	Mode register (WDTM)	00H
PCL clock output	Clock output selection register (CKS)	00H
	Control register (SGCR)	00H
Sound generator	Amplitude control register (SGAM)	00H
	Buzzer control register (SGBC)	00H

Table 20-1: Hardware Status after Reset (1/2)

- **Notes: 1.** During reset input or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remains unchanged after reset.
 - 2. The post-reset status is held in the standby mode.

	Hardware			
	Operating mode register 0 (CSIM30)	00H		
	Shift register 0 (CSIO30)	00H		
	Operating mode register 1 (CSIM31)	00H		
	Shift register 1 (CSIO31)	00H		
Serial interface	Asynchronous mode register (ASIM0)	00H		
	Asynchronous status register (ASIS0)	00H		
	Baudrate generator control register (BRGC0)	00H		
	Transmit shift register (TXS0)	FFH		
	Receive buffer register (RXB0)	ГГП		
	Mode register (ADM1)	00H		
	Conversion result register (ADCR1)	00H		
A/D converter	Input select register (ADS1)	00H		
	Power fail comparator mode (PFM)	00H		
	Power fail threshold register (PFT)	00H		
LCD controller/driver	Mode register (LCDM)	00H		
LCD controller/driver	Control register (LCDC)	00H		
	Request flag register (IF0L, IF0H, IF1L)	00H		
Interrupt	Mask flag register (MK0L, MK0H, MK1L)	FFH		
	Priority specify flag register (PR0L, PR0H, PR1L)	FFH		
	External interrupt rising edge register (EGP)	00H		
	External interrupt falling edge register (EGN)	00H		
VAN	UDL clock control register (UDLCCL)	00H		

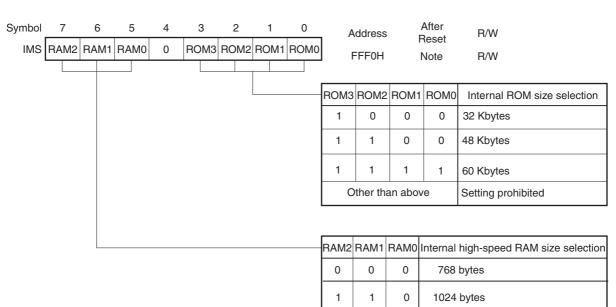
Table 20-1: Hardware Status after Reset (2/2)

[Memo]

Chapter 21 µPD16F15A

The μ PD16F15A replaces the internal mask ROM of the μ PD1615A(A) series with flash memory to which a program can be written, deleted and overwritten while mounted on the substrate. Table 21-1 lists the differences among the μ PD16F15A and the mask ROM versions.

Table 21-1: Differences among µPD16F15A and Mask ROM Versions


Item	μPD16F15A	Mask ROM Versions
IC pin	None	Available
VPP pin	Available	None
Electrical characteristics	See data sheet of each product	

Caution: Flash memory versions and mask ROM versions differ in their noise tolerance and noise emission. If replacing flash memory versions with mask ROM versions when changing from test production to mass production, be sure to perform sufficient evaluation with CS versions (not ES versions) of mask ROM versions.

21.1 Memory Size Switching Register (IMS)

This register specifies the internal memory size by using the memory size switching register (IMS), so that the same memory map as on the mask ROM version can be achieved. IMS is set with an 8-bit memory manipulation instruction.

RESET input sets this register to CFH.

Figure 21-1: Memory Size Switching Register Format

Note: The values after reset depend on the product (See Table 21-2).

Table 21-2: Values of the Memory Size Switching Register for the Different Devices

Other than above

Setting prohibited

Part Number	Value
μPD1615A(A)	CFH
μPD1615B(A)	ССН
μPD1615F(A)	08H
μPD1616F(A)	08H
μPD16F15A	CFH

Caution: When the µPD1615A(A), µPD1615B(A), µPD1615F(A), µPD1616F(A), and the µPD16F15A are used, be sure to set the value of the IMS register as given in the Table 21-2.

21.2 Internal Extension RAM Size Switching Register

The μ PD16F15A allow users to define its internal expansion RAM size by using the internal expansion RAM size switching register (IXS), so that the same memory mapping as that of a mask ROM version with a different internal extension RAM is possible.

The IXS is set by an 8-bit memory manipulation instruction.

RESET signal input sets IXS to 0CH.

Caution: When the μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), and the μPD16F15A are used, be sure to set the value specified in the Table 21-3 to IXS. Other settings are prohibited.

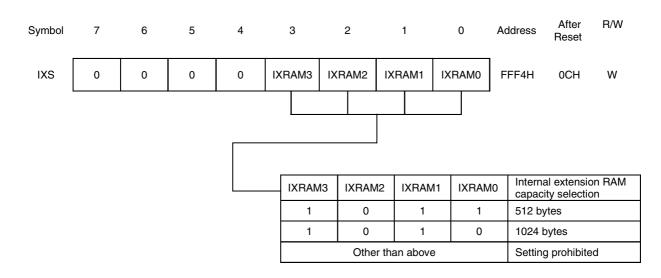


Figure 21-2: Internal Extension RAM Size Switching Register Format

The value whitch is set in the IXS that has the identical memory map to the mask ROM versions is given in the Table 21-3.

Table 21-3:	Examples of internal	Extension RAM Size	Switching Register Settings
-------------	----------------------	--------------------	-----------------------------

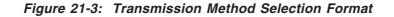
Relevant Mask ROM Version	IXS Setting
μPD1615A(A)	0AH
μPD1615B(A)	0BH
μPD1615F(A)	0BH
μPD1616F(A)	0BH
μPD16F15A	0AH

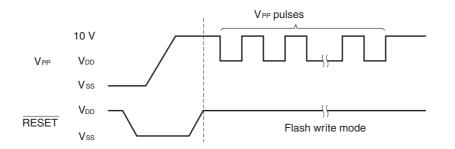
Caution: When the μ PD1615A(A), μ PD1615B(A), μ PD1615F(A), μ PD1616F(A), and the μ PD16F15A are used, be sure to set the value of the IXS register as given in the Table 21-3.

21.3 Flash memory programming

On-board writing of flash memory (with device mounted on target system) is supported.

On-board writing is done after connecting a dedicated flash writer to the host machine and target system. Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to the Flash Programmer.


21.3.1 Selection of transmission method


Writing to flash memory is performed using Flashpro and serial communication. Select the transmission method for writing from Table 21-4. For the selection of the transmission method, a format like the one shown in Figure 21-3 is used. The transmission methods are selected with the VPP pulse numbers shown in Table 21-4.

Transmission Method	Number of Channels	Pin Used	Number of VPP Pulses
3-wire serial I/O	1	SI3/P127 SO3/P126 SCK3/P125	0
Pseudo 3-wire serial I/O	1	P40 (Serial clock input) P41(Serial data input) P42(Serial data input)	12
UART	1	RxD0/P123 TxD0/P124	8

Table 21-4: Transmission Method List

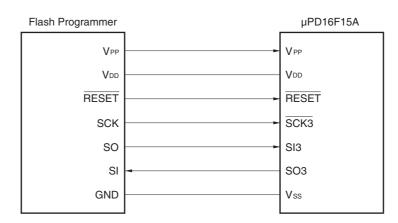
- Cautions: 1. Be sure to select the number of VPP pulses shown in Table 25-3 for the transmission method.
 - 2. If performing write operations to flash memory with the UART transmission method, set the main system clock oscillation frequency to 4 MHz or higher.

21.3.2 Initialization of the programming mode

When VPP reaches up to 10 V with RESET terminal activated, on-board programming mode becomes available.

After release of RESET, the programming mode is selected by the number of VPP pulses.

21.3.3 Flash memory programming function


Flash memory writing is performed through command and data transmit/receive operations using the selected transmission method. The main functions are listed in Table 21-5.

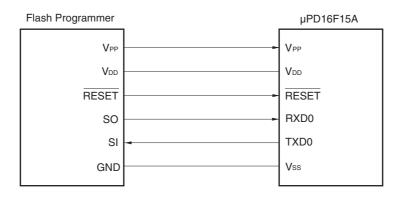

Function	Description
Reset	Detects write stop and transmission synchronization.
Batch verify	Compares entire memory contents and input data.
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs writing to flash memory according to write start address and number of write data (bytes).
Continuous write	Performs successive write operations using the data input with high-speed write operation.
Status	Checks the current operation mode and operation end.
Oscillation frequency setting	Inputs the resonator oscillation frequency information.
Delete time setting	Inputs the memory delete time.
Baud rate setting	Sets the transmission rate when the UART method is used.
Silicon signature read	Outputs the device name, memory capacity, and device block information.

Table 21-5: Main Functions of Flash Memory Programming

21.3.4 Flash programmer connection

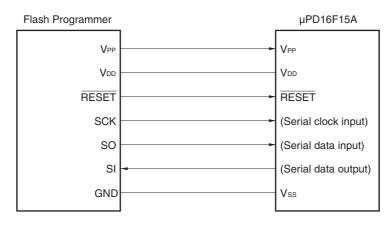

Connection of Flash programmer and μ PD16F15A differs depending on communication method (3-wire serial I/O, UART). Each case of connection shows in Figures 21-4, 21-5 and 21-6.

Figure 21-5: Flash Programmer Connection Using UART Method

VPP: 10.3 V applied from the on-board programming tool.

RESET: A RESET is generated and the device is set to the on-board programming mode.

System clock: The CPU clock for the device may be supplied by the on-board program tool. Alternatively the crystal or ceramic oscillator on the target H/W can be used in the on-board programming mode. The external system clock has to be connected with the X1 pin on the device.

VDD:The power supply for the device may be supplied by the on-board program tool. Alternatively
the power supply on the target H/W can be used in the on-board programming mode.GND:Ground level Vss.

- SCK: Serial clock generated by the on-board programming tool.
- SI: Serial data sent by the on-board programming tool.
- SO: Serial data sent by the device.
- RxD0: Serial data sent by the on-board programming tool.
- TxD0: Serial data sent by the device.

21.3.5 Flash programming precautions

- Please make sure that the signals used by the on-board programming tool do not conflict with other devices on the target H/W.
- A read functionality is not supported because of software protection. Only a verify operation of the whole Flash EPROM is supported. In verify mode data from start address to final address (EFFFH) has to be supplied by the programming tool. The device compares each data with on-chip flash content and replies with a signal for O.K. or not O.K.

[Memo]

Chapter 22 Instruction Set

This chapter describes each instruction set of the μ PD1615A subseries as list table. For details of its operation and operation code, refer to the separate document "78K/0 series USER'S MANUAL - Instruction (U12326E)."

22.1 Legends Used in Operation List

22.1.1 Operand identifiers and description methods

Operands are described in "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and symbols, #, !, \$ and [] are key words and must be described as they are. Each symbol has the following meaning.

- # : Immediate data specification
- ! : Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #, !, \$, and [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 22-1:	Operand	Identifiers	and	Description	Methods
-------------	---------	-------------	-----	-------------	---------

Identifier	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7),
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special-function register symbol ^{Note}
sfrp	Special-function register symbol (16-bit manipulatable register even addresses only)Note
saddr	FE20H-FF1FH Immediate data or labels
saddrp	FE20H-FF1FH Immediate data or labels (even address only)
addr16	0000H-FFFFH Immediate data or labels
	(Only even addresses for 16-bit data transfer instructions)
addr11	0800H-0FFFH Immediate data or labels
addr5	0040H-007FH Immediate data or labels (even address only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
RBn	RB0 to RB3

Note: Addresses from FFD0H to FFDFH cannot be accessed with these operands.

Remark: For special-function register symbols, refer to "Table 3-3: Special-Function Register List".

22.1.2 Description of "operation" column

2.1.2 L	Jes	scription of "operation" column
А	:	A register; 8-bit accumulator
Х	:	X register
В	:	B register
С	:	C register
D	:	D register
Е	:	E register
Н	:	H register
L	:	L register
AX	:	AX register pair; 16-bit accumulator
BC	:	BC register pair
DE	:	DE register pair
HL	:	HL register pair
PC	:	Program counter
SP	:	Stack pointer
PSW	:	Program status word
CY	:	Carry flag
AC	:	Auxiliary carry flag
Z	:	Zero flag
RBS	:	Register bank select flag
IE	:	Interrupt request enable flag
NMIS	:	Non-maskable interrupt servicing flag
()	:	Memory contents indicated by address or register contents in parentheses
XH, XL	. :	Higher 8 bits and lower 8 bits of 16-bit register
\wedge	:	Logical product (AND)
\vee	:	Logical sum (OR)
\forall	:	Exclusive logical sum (exclusive OR)
	:	Inverted data
addr16	3:	16-bit immediate data or label

jdisp8 : Signed 8-bit data (displacement value)

22.1.3 Description of "flag operation" column

- (Blank): Not affected
- 0 : Cleared to 0
- 1 : Set to 1
- X : Set/cleared according to the result
- R : Previously saved value is restored

22.2 Operation List

Instruction Mnemonic		Onerrende	Duti	С	lock	Quanting		Flag	g
Group	Operands	Byte	Note 1	Note 2	Operation	Z	AC	CY	
		r, #byte	2	4	_	$r \leftarrow byte$			
		saddr, #byte	3	6	7	$(saddr) \leftarrow byte$			-
		sfr, #byte	3	-	7	$sfr \leftarrow byte$			
		A, r Note 3	1	2	_	$A \leftarrow r$			
		r, A Note 3	1	2	-	$r \leftarrow A$			
		A, saddr	2	4	5	$A \leftarrow (saddr)$			
		saddr, A	2	4	5	$(saddr) \leftarrow A$			
		A, sfr	2	-	5	$A \gets sfr$			
		sfr, A	2	-	5	$sfr \leftarrow A$			
		A, !addr16	3	8	9 + n	$A \leftarrow (addr16)$			
		!addr16, A	3	8	9 + m	$(addr16) \leftarrow A$			
	MOV	PSW, #byte	3	-	7	$PSW \leftarrow byte$	x	х	х
		A, PSW	2	-	5	A ← PSW			
		PSW, A	2	-	5	$PSW \gets A$	x	х	х
		A, [DE]	1	4	5 + n	$A \leftarrow (DE)$			
8-bit data transfer		[DE], A	1	4	5 + m	$(DE) \gets A$			
transier		A, [HL]	1	4	5 + n	$A \leftarrow (HL)$			
		[HL], A	1	4	5 + m	$(HL) \leftarrow A$			
		A, [HL + byte]	2	8	9 + n	$A \leftarrow (HL + byte)$			
		[HL + byte], A	2	8	9 + m	$(HL + byte) \leftarrow A$			
		A, [HL + B]	1	6	7 + n	$A \leftarrow (HL + B)$			
		[HL + B], A	1	6	7 + m	$(HL + B) \leftarrow A$			
		A, [HL + C]	1	6	7 + n	$A \leftarrow (HL + C)$			
		[HL + C], A	1	6	7 + m	$(HL+C) \gets A$			
		A, r Note 3	1	2	_	$A \leftrightarrow r$			
		A, saddr	2	4	6	$A \leftrightarrow (saddr)$			
		A, sfr	2	-	6	$A \leftrightarrow (sfr)$			
		A, !addr16	3	8	10 + n + m	$A \leftrightarrow (addr16)$			
	хсн	A, [DE]	1	4	6 + n + m	$A \leftrightarrow (DE)$			
		A, [HL]	1	4	6 + n + m	$A \leftrightarrow (HL)$			
		A, [HL + byte]	2	8	10+n+m	$A \leftrightarrow (HL + byte)$			
		A, [HL + B]	2	8	10+n+m	$A \leftrightarrow (HL + B)$			
		A, [HL + C]	2	8	10 + n + m	$A \leftrightarrow (HL + C)$			

- Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access
 2. When an area except the internal high-speed RAM area is accessed.
 3. Except "r = A"
- **Remarks: 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Instruction Group Mnemonic		Quanta	Dute	C	lock	Quanting	F		3
		Operands	Byte	Note 1	Note 2	Operation	Z	AC	CY
		rp, #word	3	6	_	$rp \leftarrow word$			
		saddrp, #word	4	8	10	$(saddrp) \leftarrow word$			
		sfrp, #word	4	_	10	$sfrp \leftarrow word$			
		AX, saddrp	2	6	8	$AX \leftarrow (saddrp)$			
10 1-11 -1 - 1-		saddrp, AX	2	6	8	$(saddrp) \leftarrow AX$			
16-bit data transfer	моум	AX, sfrp	2	_	8	$AX \leftarrow sfrp$			
		sfrp, AX	2	_	8	$sfrp \leftarrow AX$			
		AX, rp Note 3	1	4	_	$AX \leftarrow rp$			
		rp, AX Note 3	1	4	_	$rp \leftarrow AX$			
		AX, !addr16	3	10	12 + 2n	$AX \leftarrow (addr16)$			
		!addr16, AX	3	10	12 + 2m	$(addr16) \leftarrow AX$			
	хснw	AX, rp Note 3	1	4	_	AX imes rp			
	ADD	A, #byte	2	4	-	A, CY \leftarrow A + byte	x	х	х
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte	x	х	х
		A, r Note 4	2	4	_	A, CY \leftarrow A + r	x	х	х
		r, A	2	4	_	$r,CY\leftarrowr+A$	x	х	х
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr)	x	х	х
	ADD	A, !addr16	3	8	9 + n	A, CY \leftarrow A + (addr16)	x	х	х
		A, [HL]	1	4	5 + n	$A,CY\leftarrowA+(HL)$	x	х	х
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A + (HL + byte)	х	х	х
		A, [HL + B]	2	8	9 + n	$A,CY\leftarrowA+(HL+B)$	x	х	х
8-bit		A, [HL + C]	2	8	9 + n	$A,CY\leftarrowA+(HL+C)$	x	х	х
operation		A, #byte	2	4	_	A, CY \leftarrow A + byte + CY	x	х	х
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte + CY	x	х	x
		A, r Note 4	2	4	_	$A,CY\leftarrowA+r+CY$	x	х	х
		r, A	2	4	_	$r,CY \gets r + A + CY$	x	х	х
	ADDC	A, saddr	2	4	5	A, CY \leftarrow A + (saddr) + CY	x	х	х
		A, !addr16	3	8	9 + n	A, CY \leftarrow A + (addr16) + CY	x	х	х
		A, [HL]	1	4	5 + n	$A,CY \leftarrow A + (HL) + CY$	x	х	х
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A + (HL + byte) + CY	x	х	х
		A, [HL + B]	2	8	9 + n	$A,CY\leftarrowA+(HL+B)+CY$	x	х	х
		A, [HL + C]	2	8	9 + n	$A,CY \leftarrow A + (HL + C) + CY$	x	х	х

Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access2. When an area except the internal high-speed RAM area is accessed

- 3. Only when rp = BC, DE or HL
- 4. Except "r = A"
- **Remarks: 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Instruction Group Mnemonic	Onerrende	Durte	C	lock	Onerstien		Flag		
Group	IVINEMONIC	Operands	Byte	Note 1	Note 2	Operation	Z	AC	CY
		A, #byte	2	4	_	A, CY \leftarrow A – byte	x	х	х
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) – byte	x	х	х
		A, r Note 3	2	4	_	A, $CY \leftarrow A - r$	x	х	х
		r, A	2	4	_	$r,CY\leftarrowr-A$	x	х	х
	0.115	A, saddr	2	4	5	A, CY \leftarrow A – (saddr)	x	х	х
	SUB	A, !addr16	3	8	9 + n	A, CY \leftarrow A – (addr16)	x	х	х
		A, [HL]	1	4	5 + n	A, CY \leftarrow A – (HL)	x	х	х
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A – (HL + byte)	x	х	х
		A, [HL + B]	2	8	9 + n	A, CY \leftarrow A – (HL + B)	x	х	х
		A, [HL + C]	2	8	9 + n	A, CY \leftarrow A – (HL + C)	x	х	х
		A, #byte	2	4	-	A, CY \leftarrow A – byte – CY	x	х	х
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) – byte – CY	x	х	х
	SUBC	A, r Note 3	2	4	_	$A,CY\leftarrowA-r-CY$	x	х	х
		r, A	2	4	_	$r,CY\leftarrowr-A-CY$	x	х	х
8-bit		A, saddr	2	4	5	A, $CY \leftarrow A - (saddr) - CY$	x	х	х
operation		A, !addr16	3	8	9 + n	A, CY \leftarrow A – (addr16) – CY	x	х	х
		A, [HL]	1	4	5 + n	$A,CY\leftarrowA-(HL)-CY$	x	х	х
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A – (HL + byte) – CY	x	х	х
		A, [HL + B]	2	8	9 + n	$A,CY\leftarrowA-(HL+B)-CY$	x	х	х
		A, [HL + C]	2	8	9 + n	$A,CY\leftarrowA-(HL+C)-CY$	x	х	х
		A, #byte	2	4	_	$A \leftarrow A \land byte$	x		
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \land byte$	x		
		A, r Note 3	2	4	_	$A \leftarrow A \wedge r$	x		
		r, A	2	4	_	$r \leftarrow r \land A$	x		
	AND	A, saddr	2	4	5	$A \leftarrow A \land (saddr)$	x		
	AND	A, !addr16	3	8	9 + n	$A \leftarrow A \land (addr16)$	x		
		A, [HL]	1	4	5 + n	$A \leftarrow A \land [HL]$	x		
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \land [HL + byte]$	x		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \land [HL + B]$	x		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \land [HL + C]$	x		

<sup>Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access
2. When an area except the internal high-speed RAM area is accessed
3. Except "r = A"</sup>

- **Remarks: 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.

			Duta	C	lock			Flag	g
Group	Operands	Byte	Note 1	Note 2	Operation	Ζ	AC	CY	
		A, #byte	2	4	-	$A \leftarrow A \lor$ byte	x		
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \lor byte$	х		
		A, r Note 3	2	4	_	$A \leftarrow A \lor r$	х		
		r, A	2	4	_	$r \leftarrow r \lor A$	x		
		A, saddr	2	4	5	$A \leftarrow A \lor (saddr)$	х		
	OR	A, !addr16	3	8	9 + n	$A \leftarrow A \lor (addr16)$	х		
		A, [HL]	1	4	5 + n	$A \leftarrow A \lor (HL)$	х		
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \lor (HL + byte)$	x		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \lor (HL + B)$	x		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \lor (HL + C)$	x		
		A, #byte	2	4	-	$A \leftarrow A \forall$ byte	x		
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \forall byte$	x		
		A, r Note 3	2	4	-	$A \leftarrow A \forall r$	х		
	XOR	r, A	2	4	-	$r \leftarrow r \forall A$	x		
8-bit		A, saddr	2	4	5	$A \leftarrow A \forall$ (saddr)	х		
operation		A, !addr16	3	8	9 + n	$A \leftarrow A \forall$ (addr16)	х		
		A, [HL]	1	4	5 + n	$A \leftarrow A \not \lor (HL)$	x		
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \forall (HL + byte)$	x		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \not \leftarrow (HL + B)$	x		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \not \lor (HL + C)$	х		
		A, #byte	2	4	-	A – byte	x	х	х
		saddr, #byte	3	6	8	(saddr) - byte	х	х	х
		A, r Note 3	2	4	-	A – r	х	х	х
		r, A	2	4	-	r – A	х	х	х
	СМР	A, saddr	2	4	5	A – (saddr)	x	х	х
	CIVIP	A, !addr16	3	8	9 + n	A – (addr16)	x	х	х
		A, [HL]	1	4	5 + n	A – (HL)	х	х	х
		A, [HL + byte]	2	8	9 + n	A – (HL + byte)	x	х	х
		A, [HL + B]	2	8	9 + n	A – (HL + B)	x	х	х
		A, [HL + C]	2	8	9 + n	A – (HL + C)	х	х	х

Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access
2. When an area except the internal high-speed RAM area is accessed
2. Except for a diagonal data accessed

- 3. Except "r = A"
- **Remarks:** 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.

NEC

Instruction Group	Mnemonic	Operands	Byte			Operation			
	ADDW	AX, #word	3	6	-	AX, CY \leftarrow AX + word	x	х	x
	SUBW	AX, #word	3	6	-	AX, CY \leftarrow AX – word	x	х	х
Group A 16-bit operation 2 Multiply/ divide I Increment/ decrement I I Rotate F F Rotate F BCD adjust A	CMPW	AX, #word	3	6	_	AX – word	x	х	х
Multiply/	MULU	Х	2	16	_	$AX \gets A \times X$			
divide	DIVUW	С	2	25	_	AX (Quotient), C (Remainder) \leftarrow AX \div C			-
		r	1	2	_	r ← r + 1	x	х	
	INC	saddr	2	4	6	$(saddr) \leftarrow (saddr) + 1$	x	х	-
Increment/	550	r	1	2	_	$r \leftarrow r - 1$	x	х	
decrement	DEC	saddr	2	4	6	$(saddr) \leftarrow (saddr) - 1$	x	х	
	INCW	rp	1	4	_	$rp \leftarrow rp + 1$			
	DECW	rp	1	4	_	$rp \leftarrow rp - 1$			
	ROR	A, 1	1	2	_	(CY, $A_7 \leftarrow A_0$, $A_{m-1} \leftarrow A_m$) x 1 time			х
	ROL	A, 1	1	2	_	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \ge 1$ time			х
	RORC	A, 1	1	2	_	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \ge 1$ time			х
Rotate	ROLC	A, 1	1	2	_	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$ time			х
	ROR4	[HL]	2	10	12 + n + m	$A_{3-0} \leftarrow (HL)_{3-0}, (HL)_{7-4} \leftarrow A_{3-0}, (HL)_{3-0} \leftarrow (HL)_{7-4}$			
	ROL4	[HL]	2	10	12+n+m	$A_{3-0} \leftarrow (HL)_{7-4}, (HL)_{3-0} \leftarrow A_{3-0}, \\ (HL)_{7-4} \leftarrow (HL)_{3-0}$			
BCD	ADJBA		2	4	_	Decimal Adjust Accumulator after Addition	x	x	x
adjust	ADJBS		2	4	_	Decimal Adjust Accumulator after Subtract	x	x	x
		CY, saddr.bit	3	6	7	$CY \leftarrow (saddr.bit)$			х
		CY, sfr.bit	3	_	7	$CY \leftarrow sfr.bit$			х
		CY, A.bit	2	4	_	$CY \leftarrow A.bit$			х
		CY, PSW.bit	3	_	7	$CY \leftarrow PSW.bit$			х
Bit	MOVE	CY, [HL].bit	2	6	7 + n	$CY \leftarrow (HL).bit$			х
manıpu- late	MOV1	saddr.bit, CY	3	6	8	(saddr.bit) ← CY			
		sfr.bit, CY	3	_	8	$sfr.bit \leftarrow CY$			
		A.bit, CY	2	4	-	A.bit ← CY			
		PSW.bit, CY	3	-	8	PSW.bit ← CY	x	х	
		[HL].bit, CY	2	6	8 + n + m	(HL).bit ← CY			

Notes:1. When the internal high-speed RAM area is accessed or instruction with no data access2. When an area except the internal high-speed RAM area is accessed

- **Remarks: 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Instruction Group	Magnessie	Onerende	Duto	Clock				Flag		
	Mnemonic	Operands	Byte	Note 1	Note 2	Operation	Z	AC	CY	
		CY, saddr.bit	3	6	7	$CY \leftarrow CY \land (saddr.bit)$			х	
	AND1	CY, sfr.bit	3	-	7	$CY \leftarrow CY \land sfr.bit$			х	
		CY, A.bit	2	4	-	$CY \leftarrow CY \land A.bit$			х	
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \land PSW.bit$			х	
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \land (HL).bit$			х	
		CY, saddr.bit	3	6	7	$CY \leftarrow CY \lor (saddr.bit)$			х	
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \lor sfr.bit$			х	
	OR1	CY, A.bit	2	4	-	$CY \leftarrow CY \lor A.bit$			х	
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \lor PSW.bit$			х	
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \lor (HL).bit$			х	
	XOR1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \forall$ (saddr.bit)			х	
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \forall sfr.bit$			х	
Bit		CY, A.bit	2	4	_	$CY \leftarrow CY \forall A.bit$			х	
manipu-		CY, PSW. bit	3	-	7	$CY \leftarrow CY \forall PSW.bit$			х	
late		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \forall (HL).bit$			х	
	SET1	saddr.bit	2	4	6	$(saddr.bit) \leftarrow 1$				
		sfr.bit	3	-	8	sfr.bit ← 1				
		A.bit	2	4	-	A.bit ← 1				
		PSW.bit	2	-	6	$PSW.bit \leftarrow 1$	х	х	х	
		[HL].bit	2	6	8 + n + m	(HL).bit \leftarrow 1				
	CLR1	saddr.bit	2	4	6	$(saddr.bit) \leftarrow 0$				
		sfr.bit	3	-	8	sfr.bit $\leftarrow 0$				
		A.bit	2	4	-	A.bit $\leftarrow 0$				
		PSW.bit	2	-	6	$PSW.bit \gets 0$	х	х	х	
		[HL].bit	2	6	8 + n + m	(HL).bit $\leftarrow 0$				
	SET1	CY	1	2	-	CY ← 1			1	
	CLR1	CY	1	2	-	$CY \leftarrow 0$			0	
	NOT1	CY	1	2	-	$CY \leftarrow \overline{CY}$			х	

- Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access2. When an area except the internal high-speed RAM area is accessed
- **Remarks: 1.** One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Instruction Group	Mnemonic	Ongregate	Durte	Clock		Onerstien		Flag	J
		Operands	Byte	Note 1	Note 2	Operation	Z	AC	CY
Call/return	CALL	!addr16	3	7	_	$(SP-1) \leftarrow (PC+3)_{H}, (SP-2) \leftarrow (PC+3)_{L},$ PC \leftarrow addr16, SP \leftarrow SP - 2			
	CALLF	!addr11	2	5	-	$\begin{array}{l} (SP-1) \leftarrow (PC+2) \mbox{\tiny H}, \ (SP-2) \leftarrow (PC+2) \\ PC_{15-11} \leftarrow 00001, \ PC_{10-0} \leftarrow addr11, \\ SP \leftarrow SP-2 \end{array}$.,		
	CALLT	[addr5]	1	6	_	$\begin{array}{l} (SP-1) \leftarrow (PC+1)_{H,} \; (SP-2) \leftarrow (PC+1) \\ PC_{H} \leftarrow (0000000, \; addr5+1), \\ PC_{L} \leftarrow (0000000, \; addr5), \\ SP \leftarrow SP-2 \end{array}$,		
	BRK			6	-	$\begin{array}{l} (SP-1) \leftarrow PSW, (SP-2) \leftarrow (PC+1)_{H}, \\ (SP-3) \leftarrow (PC+1)_{L}, PC_{H} \leftarrow (003FH), \\ PC_{L} \leftarrow (003EH), SP \leftarrow SP-3, IE \leftarrow 0 \end{array}$			
	RET		1	6	-	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP), \\ SP \leftarrow SP + 2$			
	RETI	1	6	_	$\begin{array}{l} PC_{H} \leftarrow (SP+1), PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ NMIS \leftarrow 0 \end{array}$	R	R	R	
	RETB		1	6	_	$\begin{array}{l} PC_{H} \leftarrow (SP+1), PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP+2), SP \leftarrow SP+3 \end{array}$	R	R	R
		PSW	1	2	-	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
	PUSH	rp	1	4	_	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L, SP \leftarrow SP - 2$			
Stack		PSW	1	2	_	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R	R
manipu- late	POP	rp	1	4	_	$rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$			
		SP, AX	2	-	8	$SP \leftarrow AX$			
		AX, SP	2	-	8	$AX \leftarrow SP$			
Uncondi-	BR	!addr16	3	6	_	PC ← addr16			
tional branch		\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8$			
		AX	2	8	_	$PC_{H} \leftarrow A, PC_{L} \leftarrow X$			
	вс	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$			
Conditional	BNC	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$			
branch .	BZ	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$			
	BNZ	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$			

Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access2. When an area except the internal high-speed RAM area is accessed

- **Remarks: 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.

Instruction Group Mnemonic		Operands	Byte	yte		Operation			
	вт	saddr.bit,\$addr16	3	8	9	$PC \leftarrow PC + 3 + jdisp8 if(saddr.bit) = 1$			_
		sfr.bit, \$addr16	4	_	11	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1			
		A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1			
		PSW.bit, \$addr16	3	_	9	$PC \leftarrow PC + 3 + jdisp8$ if PSW.bit = 1			
		[HL].bit, \$addr16	3	10	11 + n	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 1			_
		saddr.bit,\$addr16	4	10	11	$PC \leftarrow PC + 4 + jdisp8 if(saddr.bit) = 0$			
		sfr.bit, \$addr16	4	_	11	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 0			
	BF	A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 0			
		PSW.bit, \$addr16	4	_	11	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0			
		[HL].bit, \$addr16	3	10	11 + n	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 0			
Conditional branch	BTCLR	saddr.bit, \$addr16	4	10	12	PC ← PC + 4 + jdisp8 if(saddr.bit) = 1 then reset(saddr.bit)			
		sfr.bit, \$addr16	$6 \qquad 4 \qquad - \qquad 12 \qquad \begin{array}{c} PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1 \\ then \text{ reset sfr.bit} \end{array}$						
		A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1 then reset A.bit			
		PSW.bit, \$addr16	4	-	12	$PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 1 then reset PSW.bit	x	x	x
		[HL].bit, \$addr16	3	10	12 + n + m	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 1 then reset (HL).bit			
	DBNZ	B, \$addr16	2	6	_	B ← B – 1, then PC ← PC + 2 + jdisp8 if B \neq 0			
		C, \$addr16	C,\$addr16 2 6 -		_	C ← C −1, then PC ← PC + 2 + jdisp8 if C \neq 0			
		saddr.\$addr16	3	8	10	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if(saddr) $\neq 0$			
	SEL	RBn	2	4	-	RBS1, 0 ← n			
	NOP		1	2	_	No Operation			
CPU	EI		2	_	6	$IE \leftarrow 1(Enable Interrupt)$			
control	DI		2	_	6	$IE \leftarrow 0(Disable Interrupt)$			
	HALT		2	6	_	Set HALT Mode			
	STOP		2	6	_	Set STOP Mode			

Notes: 1. When the internal high-speed RAM area is accessed or instruction with no data access2. When an area except the internal high-speed RAM area is accessed

- **Remarks:** 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the PCC register.
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

22.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand										[HL + byte]			
First Operand	#byte	A	r ^{Note}	sfr	saddr	laddr16	PSW	[DE]	[HL]	[HL+B] [HL+C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	SUB	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	SUB		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													мш
С													DIVUW

Note: Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNote						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note: Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand First Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call/instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
Compound instruction					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

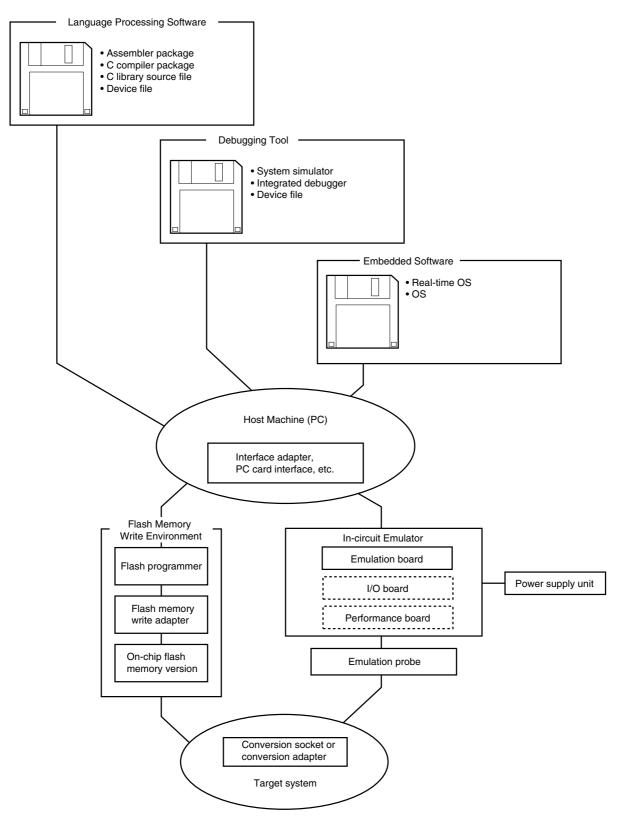
Appendix A Development Tools

The following development tools are available for the development of systems that employ the μ PD1615A subseries.

• Support for PC98-NX series

Unless otherwise specified, products compatible with IBM PC/ATTM computers are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT computers.

• Windows


Unless otherwise specified, "Windows" means the following OSs.

- Windows 95
- Windows NTTM Ver 4.0
- Windows 2000

Figure A-1 shows the development tool configuration.

Figure A-1: Development Tool Configuration

When using the in-circuit emulator IE-78K0-NS-A

Remark: Items in broken line boxes differ according to the development environment. See B.3.1 Hardware.

A.1 Language Processing Software

RA78K/0 Assembler Package	This assembler converts programs written in mnemonics into an object code executable with a microcomputer. Further, this assembler is provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler is used in combination with an optional device file. < Precaution when using RA78K/0 in PC environment> This assembler package is a DOS-based application. It can also be used in Win-
	dows, however, by using the Project Manager (included in assembler package) on
	Windows.
CC78K/0 C Compiler Package	This compiler converts programs written in C language into object code executable with a microcomputer.
	This compiler is used in combination with an optional assembler package and device file.
	<precaution 0="" cc78k="" environment="" in="" pc="" using="" when=""></precaution>
	This C compiler package is a DOS-based application. It can also be used in Win-
	dows, however, by using the Project Manager (included in assembler package) on
	Windows.
Device File	This file contains information peculiar to the device.
	This device file should be used in combination with an optional tool (RA78K/0,
	CC78K/0, SM78K0, ID78K0-NS, and ID78K0).
	Corresponding OS and host machine differ depending on the tool to be used with.
CC78K/0-L	This is a source file of functions configuring the object library included in the C
C Library Source File	compiler package (CC78K/0).
	It is required to match the object library included in C compiler package to the
	customer's specifications.

IAR Software

A78000	Assembler package used for the 78K0 series
ICC78000	C compiler package used for the 78K0 series
XLINK	Linker package used for the 78K0 series

A.2 Flash Memory Writing Tools

FlashMASTER Flashpro III (part number: FL-PR3, PG-FP3) Flash Programmer	Flash programmer dedicated to microcontrollers with on-chip flash memory.
FA-80GC	Flash memory writing adapter used connected to the Flash Programmer
Flash Memory Writing Adapter	• FA-80GC : 64-pin plastic QFP (GC-8BT type)

Note: Under development

Remark: FL-PR2, FL-PR3, FA-64CW, FA-64GC, and FA-64GK are products of Naito Densei Machida Mfg. Co., Ltd.

Phone: (044) 822-3813 Naito Densei Machida Mfg. Co., Ltd.

A.3 Debugging Tools

A.3.1 Hardware

(1) When using the in-circuit emulator IE-78K0-NS-A

IE-780K0-NS-A In-Circuit Emulator	In-circuit emulator serves to debug hardware and software when developing application systems using the 78K/0 Series product. It corresponds to integrated debugger ID78K0-NS. This emulator is used in combination with power supply unit, emulation probe, and interface adapter which is required to connect this emulator to the host machine.
IE-70000-MC-PS-B Power Supply Unit	This adapter is used for supplying power from a receptacle of 100-V to 240-V AC.
IE-70000-98-IF-C Interface Adapter	This adapter is required when using the PC-9800 series computer (except notebook type) as the IE-78K0-NS-A host machine (C bus compatible).
IE-70000-CD-IF-A PC Card Interface	This is PC card and interface cable required when using notebook type computer as the IE-78K0-NS-A host machine (PCMCIA socket compatible).
IE-70000-PC-IF-C Interface Adapter	This adapter is required when using the IBM PC compatible computers as the IE- 78K0-NS-A host machine (ISA bus compatible).
IE-70000-PCI-IF-A Interface Adapter	This adapter is required when using a computer with PCI bus as the IE-78K0-NS-A host machine.
IE-78K0-NS-P04 Emulation Board	This board emulates the operations of the peripheral hardware peculiar to a device. It should be used in combination with an in-circuit emulator.
IE-1615-NS-EM4 Probe Board	This probe is used to connect the in-circuit emulator to a target system.
NP-80GC-TQ Emulation Probe	This probe is used to connect the in-circuit emulator to a target system and is designed for use with 80-pin plastic QFP (GC-8BT type).
NQPACK080SB HQPACK080SB YQPACK080SB YQSOCKET080SBF	This conversion socket connects the NP-80GC-TQ to a target system board designed for a 80-pin plastic QFP (GC-8BT type).

(2) Socket Details

NQPACK080SB	Socket for soldering on the target
YQPACK080SB	Adapter socket for connecting the probe to the NQPACK080SB
HQPACK080SB	Lid socket for connecting the device to the NQPACK080SB
YQSOCKET080SBF	Height adapter between the YQPACK080SB and the probe

SM78K0	This system simulator is used to perform debugging at C source level or assembler level while simulating the operation of the target system on a host machine. This simulator runs on Windows. Use of the SM78K0 allows the execution of application logical testing and performance testing on an independent basis from hardware development without having to use an in-circuit emulator, thereby providing higher development efficiency and software quality.
System Simulator	The SM78K0 should be used in combination with the optional device file.
ID78K0-NS Integrated Debugger (supporting in-circuit emulator IE-78K0- NS-A)	This debugger is a control program to debug 78K/0 Series microcontrollers. It adopts a graphical user interface, which is equivalent visually and operationally to Windows or OSF/Motif™. It also has an enhanced debugging function for C language programs, and thus trace results can be displayed on screen in C-language level by using the windows integration function which links a trace result with its source program, disassembled display, and memory display. In addition, by incorporating function modules such as task debugger and system performance analyzer, the efficiency of debugging programs, which run on real-time OSs can be improved. It should be used in combination with the optional device file.

NEC

Appendix B Embedded Software

For efficient development and maintenance of the μ PD1615A Subseries, the following embedded software products are available.

B.1 Real-Time OS

RX78K/0	 RX78K/0 is a real-time OS conforming to the ITRON specifications. Tool (configurator) for generating nucleus of RX78K/0 and plural information tables is supplied. Used in combination with an optional assembler package (RA78K/0) and device file. <precaution 0="" environment="" in="" pc="" rx78k="" using="" when=""></precaution>
Real-time OS	The real-time OS is a DOS-based application. It should be used in the DOS Prompt when using in Windows.

Caution: When purchasing the RX78K/0, fill in the purchase application form in advance and sign the user agreement.

MX78K0 OS	MX78K0 is an OS for ITRON specification subsets. A nucleus for the MX78K0 is also included as a companion product. This manages tasks, events, and time. In the task management, determining the task execution order and switching from task to the next task are performed. < Precaution when using MX78K0 in PC environment> The MX78K0 is a DOS-based application. It should be used in the DOS Prompt when using in Windows.
--------------	--

Appendix C Register Index

C.1 Register Index (In Alphabetical Order with Respect to Register Names)

[A]

A/D conversion result register 1 (ADCR1) ... 187
A/D converter mode register (ADM1) ... 189
Analog input channel specification register (ADS1) ... 190
Asynchronous serial interface mode register (ASIM0) ... 213, 214, 217, 218
Asynchronous serial interface status register (ASIS0) ... 215, 219

[B]

Baud rate generator control register (BRGC0) ... 215, 217, 220

[C]

Capture/compare control register (CRC0) ... 119, 121, 122, 123, 125, 127, 129, 130, 136 Capture/compare register 00 (CR00) ... 111, 130 Capture/compare register 01 (CR01) ... 112, 131 Clock output selection register (CKS) ... 182, 183

[D]

D/A converter mode register (DAM0) ... 200

[E]

8-bit compare register 50 (CR50) ... 148, 160
8-bit compare register 51 (CR51) ... 148, 160
8-bit counter 50 (TM50) ... 147, 148, 149, 158
8-bit counter 51 (TM51) ... 147, 148, 149, 158
8-bit timer mode control register 50 (TMC50) ... 152, 154
8-bit timer mode control register 51 (TMC51) ... 153, 154
External interrupt falling edge register (EGN) ... 314
External interrupt rising edge register (EGP) ... 314

[1]

Interrupt mask flag register 0H (MK0H) ... 312, 315 Interrupt mask flag register 0H (MK0H) ... 312, 315 Interrupt mask flag register 0L (MK0L) ... 312, 315 Interrupt mask flag register 1L (MK1L) ... 312, 315 Interrupt request flag register 0H (IF0H) ... 311, 314 Interrupt request flag register 0L (IF0L) ... 311, 314

[L]

LCD display mode register (LCDM) ... 273 LCD display control register (LCDC) ... 274

M]

Memory size switching register (IMS) ... 342

[0]

Oscillation stabilization time selection register (OSTS) ... 331

[P]

Port 0 (P0) ... 87 Port 1 (P1) ... 89 Port 4 (P4) ... 90 Port 8 (P8) ... 91 Port 9 (P9) ... 92 Port 10 (P10) ... 93 Port 11 (P11) ... 94 Port 12 (P12) ... 95 Port function register 8 (PF8) ... 96, 98 Port function register 9 (PF9) ... 96, 98 Port function register 10 (PF10) ... 96, 98 Port function register 11 (PF11) ... 96, 98 Port function register 12 (PF12) ... 96, 98, 117, 184 Port mode register 0 (PM0) ... 90, 91, 113, 154 Port mode register 4 (PM4) ... 90, 91 Port mode register 8 (PM8) ... 90, 91 Port mode register 9 (PM9) ... 90, 91 Port mode register 10 (PM10) ... 90, 91 Port mode register 11 (PM11) ... 90, 91 Port mode register 12 (PM12) ... 90, 91, 119, 124, 184 Power-fail compare mode register (PFM) ... 191 Power-fail compare threshold value register (PFT) ... 191 Prescaler selection register (PRM0) ... 119, 123 Priority specify flag register 0H (PR0H) ... 313 Pirority specify flag register 0L (PR0L) ... 313 Priority specify flag register 1L (PR1L) ... 313 Processor clock control register (PCC) ... 103 Program status word (PSW) ... 315

[R]

Receive buffer register (RXB0) ... 212 Receive shift register (RXS0) ... 212

[S]

Serial I/O shift register 3 (SIO3) ... 204, 205, 209
Serial operation mode register 3 (CSIM3) ... 206, 207, 208
16-bit timer mode control register (TMC0) ... 119, 120, 122, 123, 125, 127, 130, 136
16-bit timer output control register (TOC0) ... 119, 122, 127, 133
16-bit timer register (TM0) ... 115, 116
Sound generator control register (SGCR) ... 300
Sound generator buzzer control register (SGBR) ... 301
Sound generator amplitude register (SAR) ... 303

[T]

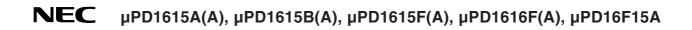
Timer clock selection register 50 (TCL50) ... 150 Timer clock selection register 51 (TCL51) ... 151 Transmit shift register (TXS0) ... 212

[V]

VAN UART Rank0 Transmission Register (RK0_REG) ... 245 VAN UART In Frame Response Register (IFR_REG) ... 246, 247 VAN UART Control Register (CTRL REG) ... 248, 249 VAN UART Configuration Register (CONF REG) ... 251 VAN UART Diagnosis Control Register (DIAG_CTRL_REG) ... 254 VAN UART Mask1 register (MSK1_MSB_REG) ... 257 VAN UART Mask2 register (MSK2 MSB REG) ... 259 VAN UART Mask1 register (MSK1_LSB_REG) ... 257 VAN UART Mask2 register (MSK2_LSB_REG) ... 259 VAN UART Acceptance Code 1 register (AC1 MSB REG) ... 258 VAN UART Acceptance Code 1 register (AC1_LSB_REG) ... 258 VAN UART Acceptance Code 2 Register (AC2 MSB REG) ... 260 VAN UART Acceptance Code 2 Register (AC2_LSB_REG) ... 260 VAN UART Acceptance Code 3 Register (AC3_MSB_REG) ... 260 VAN UART Acceptance Code 3 Register (AC3_LSB_REG) ... 260 VAN UART Acceptance Code 4 Register (AC4_MSB_REG) ... 260 VAN UART Acceptance Code 4 Register (AC4_LSB_REG) ... 260 VAN UART Receive register (REC REG) ... 263 VAN UART Diagnosis Status Register (DIAG STAT REG) ... 264 VAN UART Interrupt enable register (INT_ENABLE_REG) ... 265 VAN clock selection register (UDLCCL) ... 267 VAN UART Status Register (STAT REG) ... 261

[W]

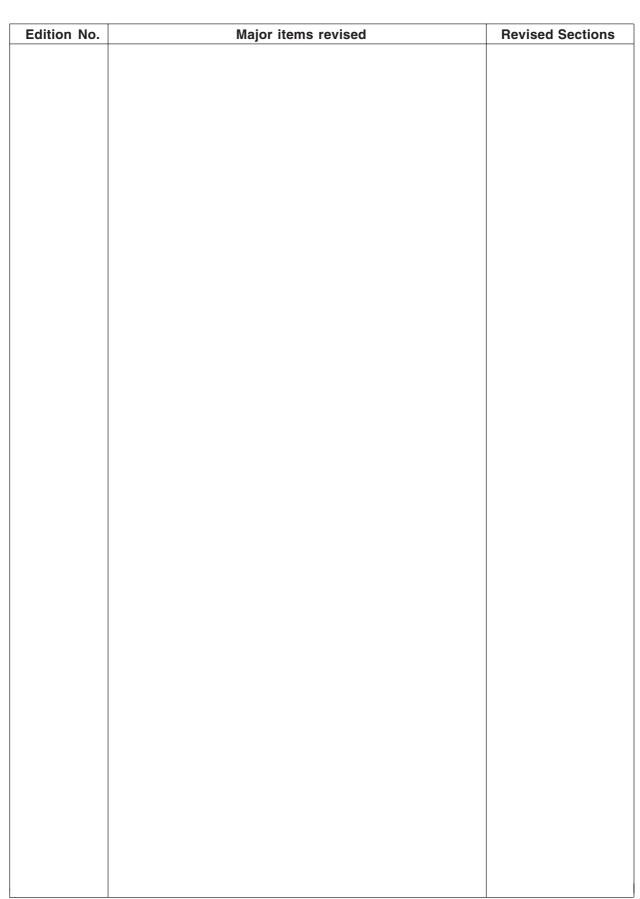
Watch timer mode control register (WTM) ... 170 Watchdog timer clock selection register (WDCS) ... 176, 177 Watchdog timer mode register (WDTM) ... 174, 177


C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)

ADCR1	:	A/D conversion result register 1
ADM1	:	A/D converter mode register
ADS1	:	Analog input channel specification register
ASIMO	÷	Asynchronous serial interface mode register
ASISO	÷	Asynchronous serial interface status register
BRGC0	-	Baud rate generator control register
CKS	:	Clock output selection register
CR00	÷	Capture/compare register 00
CR01	:	Capture/compare register 01
CR50		8-bit compare register 50
CR51	:	8-bit compare register 51
CRC0		Capture/compare control register
CSIM30		Serial operation mode register 0
DAM0	:	D/A converter mode register
EGN	:	External interrupt falling edge enable register
EGP	:	External interrupt rising edge enable register
IF0H	:	Interrupt request flag register 0H
IFOL	:	Interrupt request flag register 0L
IF1L	:	Interrupt request flag register 1L
IMS	:	Memory size switching register
IXS	:	Internal extension RAM size switching register
LCDC	:	LCD display control register
LCDM	:	LCD display mode register
MK0H	:	Interrupt mask flag register 0H
MK0L	:	Interrupt mask flag register 0L
MK1L	:	Interrupt mask flag register 1L
OSTS	:	Oscillation stabilization time selection register
		0

5.0		
P0	:	Port 0
P1	-	Port 1
P4		Port 4
P8	-	Port 8
P9	:	Port 9
P10	:	Port 10
P11	:	Port 11
P12	:	Port 12
PCC	:	Processor clock contrtol register
PF8	:	Port function register 8
PF9	:	Port function register 9
PF10	:	Port function register 10
PF11	:	Port function register 11
PF12	:	Port function register 12
PFM	:	Power-fail compare mode register
PFT	:	Power-fail compare threshold value register
PM0	:	Port mode register 0
PM4	:	Port mode register 4
PM8	:	Port mode register 8
PM9	:	Port mode register 9
PM10	:	Port mode register 10
PM11	:	Port mode register 11
PM12	:	Port mode register 12
PR0H	:	Priority specify flag register 0H
PR0L	:	Priority specify flag register 0L
PR1L	:	Priority specify flag register 1L
PRM0	:	Prescaler mode register 0
PSW	:	Program status word
RXB0	:	Receive buffer register
RXS0	:	Receive shift register
		5

NEC μPD1615A(A), μPD1615B(A), μPD1615F(A), μPD1616F(A), μPD16F15A


SAR	:	Successive approximation register		
SGAM	:	Sound generator amplitude register		
SGBC	:	Sound generator buzzer control register		
SGCR	:	Sound generator control register		
SIO30	:	Serial I/O shift register 30		
TCL50	:	Timer clock selection register 50		
TCL51	:	Timer clock selection register 51		
TM0	:	16-bit timer register 0		
TM50	:	8-bit counter 50		
TM51	:	8-bit counter 51		
TMC0	:	16-bit timer mode control register 0		
TMC50	:	8-bit timer mode control register 50		
TMC51	:	8-bit timer mode control register 51		
TOC0	:	16-bit timer output control register		
TXS0	:	Transmit shift register		
UDLCCL:		UDL clock control register		
WDCS	:	Watchdog timer clock selection register		
WDTM	:	Watchdog timer mode register		
WTM	:	Watch timer mode control register		

Appendix D Revision History

The following shows the revision history up to present. Application portions signifies the chapter of each edition.

Edition No.	Major items revised	Revised Sections

Appendix D Revision History

NEC

Facsimile Message

From: Name Company Tel. FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: 1-800-729-9288 1-408-588-6130

Europe

Address

NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274

Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd.

Korea

NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411

Fax: +65-250-3583

Asian Nations except Philippines

NEC Electronics Singapore Pte. Ltd.

Japan **NEC Semiconductor Technical Hotline** Fax: 044-548-7900

South America

NEC do Brasil S.A. Fax: +55-11-6465-6829

Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951

I would like to report the following error/make the following suggestion:

Document title:

Document number: _

Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

CS 99 1