RELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD161802

240 OUTPUTS TFT-LCD SOURCE DRIVER WITH RAM

DESCRIPTION

The μ PD161802 is a TFT-LCD source driver that includes display RAM

This driver has 240 outputs, a display RAM capacity of 172.8 K bytes (240 pixels x 18 bits x 320 lines) and can provide a 262,144-color display.

FEATURES

- TFT-LCD driver with on-chip display RAM
- Logic power supply voltage: 1.6 to 2.0 V (Can also be generated within chip from power IC interface's power supply)
- CPU/RGB interface voltage: 1.8 to VDD
- Power supply IC interface power supply voltage: 2.5 to 3.3 V
- Driver power supply voltage: 4.0 to 5.5 V
- Display RAM: 240 x 18 x 320 bits
- Driver outputs: 240 outputs
- CPU interface: Three types of interfaces selectable
 - · 6-bit/16-bit/18-bit RGB interface (through mode, capture mode)
 - · i80/M68 parallel interface (selectable from 8/16/18-bit)
 - · 8-bit serial interface
- Colors: 262,144 colors/pixel
- On-chip timing generator
- On-chip oscillator
- E²PROM interface (Micro Wire)

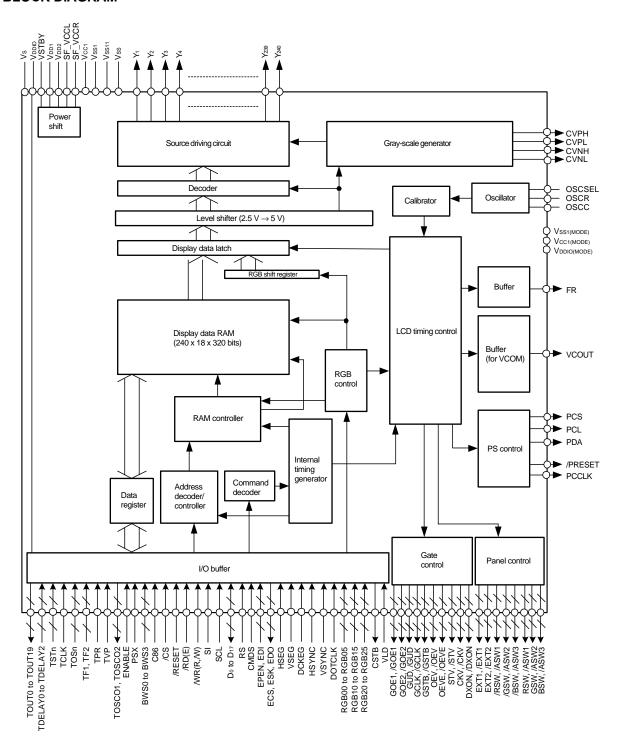
ORDERING INFORMATION

Part Number	Package
μ PD161802P	Chip

Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum on product quality, so please contact one of our sales representatives.

The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

CONTENTS


1.	BLOCK	CDIAGRAM	5
2.	PIN CO	NFIGURATION (Pad Layout)	6
3.	PIN FUN	ICTIONS	13
;	3.1 Powe	er Supply System Pins	13
;	3.2 Logic	: System Pins	16
;	3.3 Gate	Driver Control Pins	18
;	3.4 RGB	Multi-plectra Switch Control Pins	20
;	3.5 Exter	nal IC (μ PD161862, etc.) Control Pins	20
;	3.6 Drive	r Pins	20
;	3.7 Test	or Other Pins	21
4.	PIN I/O	CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	22
5.	DESCRI	PTION OF FUNCTIONS	24
į	5.1 CPU	Interface	24
	5.1.1	Selection of interface type	24
	5.1.2	Selection of data transfer mode	25
	5.1.3	RGB interface	33
	5.1.4	i80/M68 Parallel interface	39
	5.1.5	Serial interface	41
	5.1.6		
	5.1.7	Access to display data RAM and internal registers	42
	5.1.8	and the second by the second s	
,	5.2 Displ	ay Data RAM	
	5.2.1	X address circuit	49
	5.2.2		
	5.2.3	Arbitrary address area access (window access mode (WAS))	52
	5.2.4	High-speed RAM write mode	54
		lator	
	5.4 Displ	ay Timing Generator	58
	5.4.1	1-line period timing	58
	5.4.2	1-frame period timing	
	5.4.3		
	5.5 γ-Cu	rve Correction Power Supply Circuit	
	5.5.1	Amplitude adjustment with internal amplifier	
	5.5.2	Amplitude adjustment by bulit-in resistance	77
	5.5.3	Inclination adjustment	77

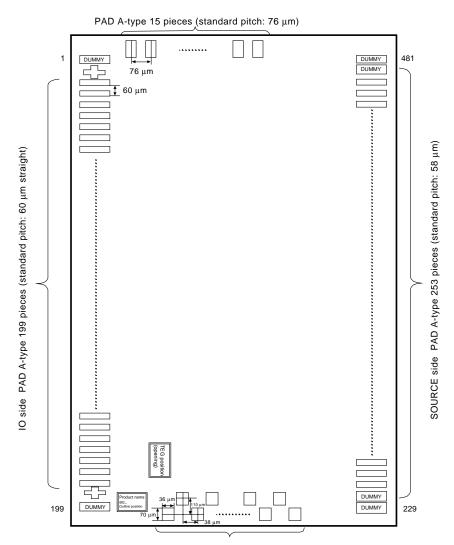
		5.5.4	Fine tuning adjustment	78
5	.6	Partial	Display Mode	79
		5.6.1	Partial display, non-display area driving	80
		5.6.2	Partial display, non-display area, and normal partial driving	81
		5.6.3	Partial display, non-display area, and non-refrech driving	83
5	5.7	Panel	Scroll	92
5	.8	Power	Supply Sequence	. 100
5	.9	Stand-	by Power Supply OFF Sequence	. 102
		5.9.1	Stand-by controlled by STBY flag	. 102
		5.9.2	Stand-by by command input control	. 105
6 .	E^2P	ROM	INTERFACE	.113
6	i.1 ·	The μ F	PD161802 and E ² PROM Connection	. 113
6	i.2	Each (Operation	. 114
7 . I	RES	SET		.119
8. (COI	MMA	ND	.122
8	3.1	Comm	and List	. 122
8	3.2	Comm	and Explanation	. 128
9 . I	ELE	ECTRI	CAL SPECIFICATIONS	.144
10.	TH	IE μP	D161802 AND THE μPD161862 CONNECTION	.155
11.	EX	AMP	LE OF THE μPD161802 AND CPU CONNECTION	.156

HITACHI MODE

5.	DE	SCRIF	PTION OF FUNCTIONS	157
	5.1	CPU II	nterface	157
			Selection of interface type	
		5.1.2	Selection of data transfer mode	159
		5.1.3	RGB interface	166
			VSYNC interface	
	5.8	Power	Supply Sequence	170
	5.9	Stand	by Power Supply OFF Sequence	172
		5.9.1	Stand-by by command input control	172
7.	RE	SET		180
			ND	
	8.1	Comm	and List	183
	8.2	Comm	and Explanation	188

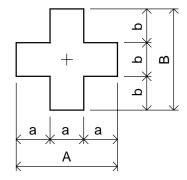
1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.



2. PIN CONFIGURATION (Pad Layout)

Chip size: 2.60 x 15.06 mm² (Target value)


Bump size:

PAD A-type: 30 x 100 μ m² PAD B-type: 36 x 70 μ m²

PAD B-type 29 pieces (standard pitch: 38 μm hounds-tooth check)

<Alignment Mark>

Alignment shape of mark (unit: μ m)

Α	а	В	b
90	30	90	30

Table 2-1. Pad Coordinate (1/5)

No.	Pin Name	I/O	Power	Pad coordina	te [μm]
		1/0	1 OWC1	X	Υ
1	DUMMY	_	-	-1152.00	7310.00
2	/PRESET	OUT	VCC1	-1152.00	7110.00
3	ASW3,BSW	OUT	VCC1	-1152.00	7050.00
4	/ASW3,/BSW	OUT	VCC1	-1152.00	6990.00
5	ASW2,GSW	OUT	VCC1	-1152.00	6930.00
6	/ASW2,/GSW	OUT	VCC1	-1152.00	6870.00
7	ASW1,RSW	OUT	VCC1	-1152.00	6810.00
8	/ASW1,/RSW	OUT	VCC1	-1152.00	6750.00
9 10	STV,GSTB /STV./GSTB	OUT	VCC1 VCC1	-1152.00	6690.00 6630.00
11	CKV.GCLK	OUT	VCC1	-1152.00 -1152.00	6570.00
12	/CKV,/GCLK	OUT	VCC1	-1152.00	6510.00
13	OEV.GOE2	OUT	VCC1	-1152.00	6450.00
14	/OEV,/GOE2	OUT	VCC1	-1152.00	6390.00
15	OEVE,GOE1	OUT	VCC1	-1152.00	6330.00
16	/OEVE,/GOE1	OUT	VCC1	-1152.00	6270.00
17	XDON,GUD	OUT	VCC1	-1152.00	6210.00
18	/XDON,/GUD	OUT	VCC1	-1152.00	6150.00
19	VCOUT	OUT	VCC1	-1152.00	6090.00
20	FR	OUT	VCC1	-1152.00	6030.00
21	PDA	OUT	VCC1	-1152.00	5970.00
22	PCS	OUT	VCC1	-1152.00	5910.00
23	PCL	OUT	VCC1	-1152.00	5850.00
	PCCLK	OUT	VCC1	-1152.00	5790.00
25	EXT1	OUT	VCC1	-1152.00	5730.00
26	/EXT1	OUT	VCC1	-1152.00	5670.00
27	EXT2	OUT	VCC1	-1152.00	5610.00
	/EXT2	OUT	VCC1	-1152.00	5550.00
29	VDDIO(MODE)	-	-	-1152.00	5490.00
30	CSTB	OUT	VDDIO	-1152.00	5390.00
31	/RESET	IN	VDDIO	-1152.00	5290.00
32	D17	IO	VDDIO	-1152.00	5190.00
33	D16	IO	VDDIO	-1152.00	5090.00
34	D15	10	VDDIO	-1152.00	4990.00
35	D14	IO	VDDIO	-1152.00	4890.00
36	D13	10	VDDIO	-1152.00	4790.00
37	D12	10	VDDIO	-1152.00	4690.00
38	D11	10	VDDIO	-1152.00	4590.00
39	D10	10	VDDIO	-1152.00	4490.00
40	D9	Ю	VDDIO	-1152.00	4390.00
41	D8	10	VDDIO	-1152.00	4290.00
42	D7	10	VDDIO	-1152.00	4190.00
43	D6	10	VDDIO	-1152.00	4090.00
44	D5	10	VDDIO	-1152.00	3990.00
45	D4	10	VDDIO	-1152.00	3890.00
46 47	D3	10 10	VDDIO	-1152.00	3790.00
47	D2 D1	10	VDDIO VDDIO	-1152.00	3690.00
				-1152.00	3590.00
49 50	D0 VSS1(MODE)	10	VDDIO	-1152.00	3490.00
50	/RD	– IN	VDDIO	-1152.00 -1152.00	3390.00 3290.00
52	/WR	IN	VDDIO	-1152.00	3190.00
53	RS	IN IN	VDDIO	-1152.00	3090.00
54	/CS	IN	VDDIO	-1152.00	2990.00
55	VDDIO(MODE)	IIN	VDDIO -	-1152.00	2890.00
56	SI	IN	VDDIO	-1152.00	2790.00
57	SCL	IN	VDDIO	-1152.00	2690.00
58	VSS1(MODE)	-	VDDIO _	-1152.00	2590.00
59	VLD	IN	VDDIO	-1152.00	2490.00
60	VDDIO(MODE)	-	-	-1152.00	2390.00
- 30	3.0(032)				_000.00

No.	Pin Name	I/O	Power	Pad coordina	ite [μm]
				X	Υ
61	VSYNC	IN	VDDIO	-1152.00	2290.00
62	HSYNC	IN	VDDIO	-1152.00	2190.00
63	DOTCLK	IN	VDDIO	-1152.00	2090.00
64	ENABLE		VDDIO	-1152.00	1990.00
65	VSS1(MODE) RGB00	- IN	-	-1152.00	1890.00 1790.00
66		10.0	VDDIO	-1152.00	
67 68	RGB01 RGB02	IN IN	VDDIO VDDIO	-1152.00 -1152.00	1690.00 1590.00
69	RGB03	IN	VDDIO	-1152.00	1490.00
	RGB04	IN	VDDIO	-1152.00	1390.00
	RGB05	IN	VDDIO	-1152.00	1290.00
72	RGB10	IN	VDDIO	-1152.00	1190.00
	RGB11	IN	VDDIO	-1152.00	1090.00
	RGB12	IN IN	VDDIO	-1152.00	990.00
75	RGB13	IN IN	VDDIO	-1152.00	890.00
	RGB14	IN IN	VDDIO	-1152.00	790.00
	RGB15	IN	VDDIO	-1152.00	690.00
78	RGB20	IN IN	VDDIO	-1152.00	590.00
79	RGB21	IN IN	VDDIO	-1152.00	490.00
80	RGB22	IN	VDDIO	-1152.00	390.00
81	RGB23	IN IN	VDDIO	-1152.00	290.00
82	RGB24	IN	VDDIO	-1152.00	190.00
83	RGB25	IN	VDDIO	-1152.00	90.00
84	VDDIO	-	_	-1152.00	-60.00
85	VDDIO	_	_	-1152.00	-120.00
86	VDDIO	_	_	-1152.00	-180.00
87	VDDIO	_	_	-1152.00	-240.00
88	VDDIO	_	_	-1152.00	-300.00
89	VDDIO	_	_	-1152.00	-360.00
90	VCC1	-	_	-1152.00	-420.00
91	VCC1	-	_	-1152.00	-480.00
92	VCC1	-	_	-1152.00	-540.00
93	VCC1	-	_	-1152.00	-600.00
94	VCC1	-	_	-1152.00	-660.00
95	VCC1	-	_	-1152.00	-720.00
96	SF_VCCL	OUT	VCC1	-1152.00	-780.00
97	SF_VCCL	OUT	VCC1	-1152.00	-840.00
98	SF_VCCL	OUT	VCC1	-1152.00	-900.00
99	SF_VCCL	OUT	VCC1	-1152.00	-960.00
100	SF_VCCL	OUT	VCC1	-1152.00	-1020.00
101	SF_VCCL	OUT	VCC1	-1152.00	-1080.00
102 103	VDD1 VDD1	-	-	-1152.00 -1152.00	-1140.00 -1200.00
103	VDD1 VDD1			-1152.00	-1200.00
104	VDD1			-1152.00	-1320.00
105	VDD1 VDD1	_	_	-1152.00	-1320.00
107	VDD1	_	_	-1152.00	-1440.00
107	VDD1	_	_	-1152.00	-1500.00
100	VDD1	_		-1152.00	-1560.00
110	SF VCCR	OUT	VCC1	-1152.00	-1620.00
111	SF VCCR	OUT	VCC1	-1152.00	-1680.00
112	SF VCCR	OUT	VCC1	-1152.00	-1740.00
113	SF VCCR	OUT	VCC1	-1152.00	-1800.00
114	SF VCCR	OUT	VCC1	-1152.00	-1860.00
115	SF_VCCR	OUT	VCC1	-1152.00	-1920.00
116	VDD2	-	-	-1152.00	-1980.00
117	VDD2	-	-	-1152.00	-2040.00
118	VDD2	-	-	-1152.00	-2100.00
119	VDD2	-	-	-1152.00	-2160.00
120	VDD2	-	-	-1152.00	-2220.00
3				02.00	

Table 2-1. Pad Coordinate (2/5)

No.	Pin Name	I/O	Power	Pad coordin	ate [μm]
		1/0	Power	X	Υ
121	VDD2	-	-	-1152.00	-2280.00
122	VDD2	_	-	-1152.00	-2340.00
123	VDD2	_	-	-1152.00	-2400.00
124	VSS1	_	_	-1152.00	-2460.00
	VSS1	_	_	-1152.00	-2520.00
126	VSS1	_	_	-1152.00	-2580.00
	VSS1	_	_	-1152.00	-2640.00
	VSS1	_	_	-1152.00	-2700.00
	VSS1	_	_	-1152.00	-2760.00
	VSS11	_	_	-1152.00	-2820.00
	VSS11	_		-1152.00	-2880.00
	VSS11	_		-1152.00	-2940.00
	VSS11	_		-1152.00	-3000.00
	VSS11	_		-1152.00	-3060.00
	VSS11			-1152.00	-3120.00
	VSS			-1152.00	-3180.00
	VSS			-1152.00	-3240.00
	VSS VSS			-1152.00	-3240.00
	VSS VSS	_	_		
				-1152.00	-3360.00
	VSS	-	-	-1152.00	-3420.00
	VSS	-	-	-1152.00	-3480.00
	CVNL	10	VS	-1152.00	-3540.00
	CVNL	10	VS	-1152.00	-3600.00
	CVNL	10	VS	-1152.00	-3660.00
	CVNH	10	VS	-1152.00	-3720.00
146	CVNH	Ю	VS	-1152.00	-3780.00
147	CVNH	10	VS	-1152.00	-3840.00
148 (CVPL	10	VS	-1152.00	-3900.00
149	CVPL	10	VS	-1152.00	-3960.00
150	CVPL	IO	VS	-1152.00	-4020.00
151	CVPH	10	VS	-1152.00	-4080.00
152	CVPH	10	VS	-1152.00	-4140.00
153	CVPH	IO	VS	-1152.00	-4200.00
154	VS	_	_	-1152.00	-4390.00
155	VS	_	_	-1152.00	-4450.00
	VS	_	_	-1152.00	-4510.00
	VS	_	_	-1152.00	-4570.00
	VS	_	_	-1152.00	-4630.00
	VS	_	_	-1152.00	-4690.00
	OSCC	IN	VDD1	-1152.00	-4790.00
	OSCR	OUT	VDD1	-1152.00	-4850.00
	EDI	IN	VCC1	-1152.00	-4950.00
	ECS	OUT	VCC1	-1152.00	-5010.00
	ESK	OUT	VCC1	-1152.00	-5070.00
	EDO	OUT	VCC1	-1152.00	-5130.00
	VSS1(MODE)	-	-	-1152.00	-5190.00
	EPEN		VCC1	-1152.00	-5250.00
	OSCSEL	– IN	VCC1	-1152.00	-5310.00
	VCC1(MODE)	114	VOO1	-1152.00	-5370.00
	CMDS	– IN	VCC1	-1152.00	-5370.00
		11.1			
	HSEG	IN	VCC1	-1152.00	-5490.00
	VSEG	IN	VCC1	-1152.00	-5550.00
	VCC1(MODE)	_	-	-1152.00	-5610.00
	DCKEG	IN	VCC1	-1152.00	-5670.00
	PSX	IN	VCC1	-1152.00	-5730.00
176	C86	IN	VCC1	-1152.00	-5790.00
			_	-1152.00	-5850.00
177	VCC1(MODE)	_			
177 \ 178 E	BWS0	- IN	VCC1	-1152.00	-5910.00
177 \ 178 E 179 E		IN IN IN	VCC1 VCC1 VCC1		

No.	Pin Name	I/O	Power	Pad coord	inate [μm]
181	VCC1(MODE)			X -1152.00	-6090.00
182		IN	VCC1	-1152.00	-6150.00
183	VSTBY	IN	VCC1	-1152.00	-6210.00
184	TDFLAY0	IN	VCC1	-1152.00	-6270.00
185	TDELAY1	IN	VCC1	-1152.00	-6330.00
186	TDELAY2	IN	VCC1	-1152.00	-6390.00
187	TCLK	IN	VCC1	-1152.00	-6450.00
188	TSTVIHL	IN	VCC1	-1152.00	-6510.00
189	TSTRTST	IN	VCC1	-1152.00	-6570.00
190	TOSCSEO1	IN	VCC1	-1152.00	-6630.00
191	TOSCSEO2	IN	VCC1	-1152.00	-6690.00
192	TOSCSEI1	IN	VCC1	-1152.00	-6750.00
193	TOSCSEI2	IN	VCC1	-1152.00	-6810.00
194	TOSCI1	IN	VCC1	-1152.00	-6870.00
195	TOSCI2	IN	VCC1	-1152.00	-6930.00
196	TOSCO1	OUT	VCC1	-1152.00	-6990.00
197	TOSCO2	OUT	VCC1	-1152.00	-7050.00
198	VSS1(MODE)	-	-	-1152.00	-7110.00
199	DUMMY	-	-	-1152.00	-7310.00
	DUMMY	-	-	-785.00	-7397.00
	DUMMY	-	-	-747.00	-7287.00
202	TOUT19	OUT	VCC1	-709.00	-7397.00
203	TOUT18	OUT	VCC1	-671.00	-7280.00
204	TOUT17	OUT	VCC1	-633.00	-7397.00
205	TOUT16	OUT	VCC1	-595.00	-7280.00
206	TOUT15	OUT	VCC1	-557.00	-7397.00
207	TOUT14	OUT	VCC1	-519.00	-7280.00
208	TOUT13	OUT	VCC1	-481.00	-7397.00
209	TOUT12	OUT	VCC1	-443.00	-7280.00
210	TOUT11	OUT	VCC1	-405.00	-7397.00
211	TOUT10	OUT	VCC1	-367.00	-7280.00
212 213	TOUT9	OUT	VCC1	-329.00 -291.00	-7397.00 -7280.00
213	TOUT8 TOUT7	OUT	VCC1	-253.00	-7397.00
214	TOUT6	OUT	VCC1	-215.00	-7280.00
216	TOUT5	OUT	VCC1	-177.00	-7397.00
217	TOUT4	OUT	VCC1	-139.00	-7280.00
	TOUT3	OUT	VCC1	-101.00	-7397.00
219	TOUT2	OUT	VCC1	-63.00	-7280.00
	TOUT1	OUT	VCC1	-25.00	-7397.00
221	TOUT0	OUT	VCC1	13.00	-7280.00
222	TF1	IN	-	51.00	-7397.00
223	TF2	IN	-	89.00	-7280.00
224	TPR	IN	-	127.00	-7397.00
225	TVP	IN	-	165.00	-7280.00
226	VSS1(MODE)	-	-	203.00	-7397.00
227	VDD1(MODE)	-	-	241.00	-7280.00
228	DUMMY	-	-	279.00	-7390.00
229	DUMMY	-	-	1152.00	-7308.00
230	DUMMY	_ OUT	-	1152.00	-7250.00
231	Y1	OUT	VS	1152.00	-7192.00 7134.00
232	Y2 Y3	OUT	VS VS	1152.00 1152.00	-7134.00
	Y3 Y4				-7076.00
234 235	Y4 Y5	OUT	VS VS	1152.00 1152.00	-7018.00 -6960.00
235	Y6	OUT	VS VS	1152.00	-6902.00
237	V7	OUT	VS	1152.00	-6844.00
238	Y8	OUT	VS	1152.00	-6786.00
239	Y9	OUT	VS	1152.00	-6728.00
240	Y10	OUT	VS	1152.00	-6670.00

PAD B TYPE

Table 2-1. Pad Coordinate (3/5)

No.	Pin Name	I/O	Power	Pad coordina	ite [μm]
241	Y11	OUT	VS	X 1152.00	-6612.00
241	Y12	OUT	VS		
				1152.00	-6554.00
243	Y13	OUT	VS	1152.00	-6496.00
244	Y14	OUT	VS	1152.00	-6438.00
245	Y15	OUT	VS	1152.00	-6380.00
246	Y16	OUT	VS	1152.00	-6322.00
247	Y17	OUT	VS	1152.00	-6264.00
248	Y18	OUT	VS	1152.00	-6206.00
249	Y19	OUT	VS	1152.00	-6148.00
250	Y20	OUT	VS	1152.00	-6090.00
251	Y21	OUT	VS	1152.00	-6032.00
252	Y22	OUT	VS	1152.00	-5974.00
253	Y23	OUT	VS	1152.00	-5916.00
254	Y24	OUT	VS	1152.00	-5858.00
255	Y25	OUT	VS	1152.00	-5800.00
256	Y26	OUT	VS	1152.00	-5742.00
257	Y27	OUT	VS	1152.00	-5684.00
258	Y28	OUT	VS	1152.00	-5626.00
259	Y29	OUT	VS	1152.00	-5568.00
260	Y30	OUT	VS	1152.00	-5510.00
261	Y31	OUT	VS	1152.00	-5452.00
262	Y32	OUT	VS	1152.00	-5394.00
263	Y33	OUT	VS	1152.00	-5336.00
264	Y34	OUT	VS	1152.00	-5278.00
265	Y35	OUT	VS	1152.00	-5220.00
266	Y36	OUT	VS	1152.00	-5162.00
267	Y37	OUT	VS	1152.00	-5104.00
268	Y38	OUT	VS	1152.00	-5046.00
269	Y39	OUT	VS	1152.00	-4988.00
270	Y40	OUT	VS	1152.00	-4930.00
271	Y41	OUT	VS	1152.00	-4872.00
272	Y42	OUT	VS	1152.00	-4814.00
273	Y43	OUT	VS	1152.00	-4756.00
274	Y44	OUT	VS	1152.00	-4698.00
275	Y45	OUT	VS	1152.00	-4640.00
276	Y46	OUT	VS	1152.00	-4582.00
277	Y47	OUT	VS	1152.00	-4524.00
278	Y48	OUT	VS	1152.00	-4466.00
279	Y49	OUT	VS	1152.00	-4408.00
280	Y50	OUT	VS	1152.00	-4350.00
281	Y51	OUT	VS	1152.00	-4292.00
282	Y52	OUT	VS	1152.00	-4234.00
283	Y53	OUT	VS	1152.00	-4176.00
284	Y54	OUT	VS	1152.00	-4118.00
285	Y55	OUT	VS	1152.00	-4060.00
286	Y56	OUT	VS	1152.00	-4002.00
287	Y57	OUT	VS	1152.00	-3944.00
288	Y58	OUT	VS	1152.00	-3886.00
289	Y59	OUT	VS	1152.00	-3828.00
290	Y60	OUT	VS	1152.00	-3770.00
290 291	Y61	OUT	VS	1152.00	-3770.00
291	Y62	OUT	VS	1152.00	-3654.00
292		OUT		1152.00	-3596.00
293	Y63 Y64	OUT	VS VS		
		OUT	VS	1152.00	-3538.00
295	Y65			1152.00	-3480.00
296	Y66	OUT	VS	1152.00	-3422.00
297	Y67	OUT	VS	1152.00	-3364.00
298	Y68	OUT	VS	1152.00	-3306.00
299	Y69	OUT	VS	1152.00	-3248.00
300	Y70	OUT	VS	1152.00	-3190.00

No.	Pin Name	I/O	Power	Pad coordina	ite [μm]
301	Y/1	OUT	VS	1152.00	-3132.00
302	Y72	OUT	VS	1152.00	-3074.00
303	Y73	OUT	VS	1152.00	-3016.00
304	Y74	OUT	VS	1152.00	-2958.00
305	Y75	OUT	VS	1152.00	-2900.00
306	Y76	OUT	VS	1152.00	-2842.00
307	Y77	OUT	VS	1152.00	-2784.00
308	Y78	OUT	VS	1152.00	-2726.00
309	Y79	OUT	VS	1152.00	-2668.00
310	Y80	OUT	VS	1152.00	-2610.00
311	Y81	OUT	VS	1152.00	-2552.00
312	Y82	OUT	VS	1152.00	-2494.00
313	Y83	OUT	VS	1152.00	-2436.00
314	Y84	OUT	VS	1152.00	-2378.00
315	Y85	OUT	VS	1152.00	-2320.00
316	Y86	OUT	VS	1152.00	-2262.00
317	Y87	OUT	VS	1152.00	-2204.00
318	Y88	OUT	VS	1152.00	-2146.00
319	Y89	OUT	VS	1152.00	-2088.00
320	Y90	OUT	VS	1152.00	-2030.00
321	Y91	OUT	VS	1152.00	-1972.00
322 323	Y92 Y93	OUT	VS VS	1152.00 1152.00	-1914.00 -1856.00
324	Y94	OUT	VS	1152.00	-1798.00
_	Y95	OUT	VS		
325 326	Y96	OUT	VS VS	1152.00 1152.00	-1740.00 -1682.00
327	Y97	OUT	VS	1152.00	-1624.00
328	Y98	OUT	VS	1152.00	-1566.00
329	Y99	OUT	VS VS	1152.00	-1508.00
330	Y100	OUT	VS	1152.00	-1450.00
331	Y101	OUT	VS	1152.00	-1392.00
332	Y102	OUT	VS	1152.00	-1334.00
333	Y103	OUT	VS	1152.00	-1276.00
334	Y104	OUT	VS	1152.00	-1218.00
335	Y105	OUT	VS	1152.00	-1160.00
336	Y106	OUT	VS	1152.00	-1102.00
337	Y107	OUT	VS	1152.00	-1044.00
338	Y108	OUT	VS	1152.00	-986.00
339	Y109	OUT	VS	1152.00	-928.00
340	Y110	OUT	VS	1152.00	-870.00
341	Y111	OUT	VS	1152.00	-812.00
342	Y112	OUT	VS	1152.00	-754.00
343 344	Y113 Y114	OUT	VS VS	1152.00 1152.00	-696.00 -638.00
344	Y114 Y115	OUT	VS VS	1152.00	-580.00
346	Y116	OUT	VS	1152.00	-522.00
347	Y117	OUT	VS	1152.00	-464.00
348	Y118	OUT	VS	1152.00	-406.00
349	Y119	OUT	VS	1152.00	-348.00
350	Y120	OUT	VS	1152.00	-290.00
351	Y121	OUT	VS	1152.00	-232.00
352	Y122	OUT	VS	1152.00	-174.00
353	Y123	OUT	VS	1152.00	-116.00
354	Y124	OUT	VS	1152.00	-58.00
355	Y125	OUT	VS	1152.00	0.00
356	Y126	OUT	VS	1152.00	58.00
357	Y127	OUT	VS	1152.00	116.00
358	Y128	OUT	VS	1152.00	174.00
359	DUMMY	ı	-	1152.00	232.00
360	DUMMY	-	-	1152.00	290.00

Table 2-1. Pad Coordinate (4/5)

361 DUMMY	No.	Pin Name	I/O	Power	Pad coordina	
362 DUMMY	361	DUMMAY			X 1152.00	348 00
152 152			_			
1152.00 522.00 538.00 539.00			_			
365 DUMMY			_			
366 DUMMY						
367 DUMMY			_	_		
368 Y129			_	_		
369 Y130			OUT	VS		
371 Y132				VS		
372 Y133 OUT VS 1152.00 986.00 373 Y134 OUT VS 1152.00 1044.00 374 Y135 OUT VS 1152.00 1140.00 375 Y136 OUT VS 1152.00 1160.00 376 Y137 OUT VS 1152.00 1218.00 377 Y138 OUT VS 1152.00 1218.00 378 Y139 OUT VS 1152.00 1334.00 379 Y140 OUT VS 1152.00 1332.00 380 Y141 OUT VS 1152.00 1450.00 381 Y142 OUT VS 1152.00 1508.00 382 Y143 OUT VS 1152.00 1508.00 383 Y144 OUT VS 1152.00 1624.00 385 Y146 OUT VS 1152.00 1624.00 386 Y147 OUT VS 1152.00 1740.00 387 Y148 OUT VS 1152.00 1624.00 388 Y149 OUT VS 1152.00 1798.00 389 Y150 OUT VS 1152.00 1798.00 389 Y150 OUT VS 1152.00 1798.00 399 Y151 OUT VS 1152.00 1972.00 391 Y152 OUT VS 1152.00 1972.00 391 Y155 OUT VS 1152.00 2030.00 392 Y153 OUT VS 1152.00 2030.00 393 Y154 OUT VS 1152.00 2030.00 394 Y155 OUT VS 1152.00 2030.00 395 Y156 OUT VS 1152.00 2088.00 396 Y157 OUT VS 1152.00 2262.00 397 Y158 OUT VS 1152.00 2262.00 399 Y150 OUT VS 1152.00 2378.00 399 Y150 OUT VS 1152.00 2378.00 391 Y152 OUT VS 1152.00 2378.00 392 Y153 OUT VS 1152.00 2378.00 394 Y155 OUT VS 1152.00 2378.00 395 Y156 OUT VS 1152.00 2378.00 397 Y158 OUT VS 1152.00 2378.00 399 Y160 OUT VS 1152.00 2388.00 400 Y161 OUT VS 1152.00 2388.00 401 Y162 OUT VS 1152.00 2388.00 402 Y163 OUT VS 1152.00 3308.00 403 Y164 OUT VS 1152.00 3308.00 404 Y165 OUT VS 1152.00 3308.00 405 Y166 OUT VS 1152.00 3308.00 407 Y168 OUT VS 1152.00 3308.00 408 Y169 OUT VS 1152.00 3308.00 409 Y170 OUT VS 1152.00 3308.00 401 Y161 OUT VS 1152.00 3308.00 402 Y163 OUT VS 1152.00 3308.00 403 Y164 OUT VS 1152.00 3308.00 404 Y165 OUT VS 1152.00 3308.00 405 Y166 OUT VS 1152.00 3308.00 407 Y168 OUT VS 1152.00 3308.00 409 Y170 OUT VS 1152.00 3308.00	370	Y131	OUT	VS	1152.00	870.00
373 Y134 OUT VS 1152.00 1044.00 374 Y135 OUT VS 1152.00 1100.00 375 Y136 OUT VS 1152.00 1100.00 376 Y137 OUT VS 1152.00 1160.00 377 Y138 OUT VS 1152.00 1276.00 378 Y139 OUT VS 1152.00 1333.00 379 Y140 OUT VS 1152.00 1333.00 381 Y141 OUT VS 1152.00 1450.00 381 Y142 OUT VS 1152.00 1450.00 382 Y143 OUT VS 1152.00 1566.00 382 Y144 OUT VS 1152.00 1566.00 383 Y144 OUT VS 1152.00 1682.00 384 Y145 OUT VS 1152.00 1682.00 385 Y146 OUT VS 1152.00 1740.00 386 Y147 OUT VS 1152.00 1740.00 387 Y148 OUT VS 1152.00 1740.00 388 Y149 OUT VS 1152.00 1740.00 389 Y150 OUT VS 1152.00 1856.00 399 Y151 OUT VS 1152.00 1914.00 391 Y152 OUT VS 1152.00 2030.00 391 Y155 OUT VS 1152.00 2030.00 392 Y153 OUT VS 1152.00 2030.00 393 Y154 OUT VS 1152.00 2030.00 394 Y155 OUT VS 1152.00 2030.00 395 Y156 OUT VS 1152.00 2030.00 396 Y157 OUT VS 1152.00 2204.00 397 Y158 OUT VS 1152.00 2204.00 399 Y150 OUT VS 1152.00 2200.00 390 Y151 OUT VS 1152.00 2200.00 390 Y151 OUT VS 1152.00 2200.00 391 Y152 OUT VS 1152.00 2200.00 392 Y153 OUT VS 1152.00 2200.00 394 Y155 OUT VS 1152.00 2200.00 395 Y156 OUT VS 1152.00 2200.00 396 Y157 OUT VS 1152.00 2200.00 397 Y158 OUT VS 1152.00 238.00 399 Y150 OUT VS 1152.00 338.00 391 Y150 OUT VS 1152.00 338.00 392 Y150 OUT VS 1152.00 338.00 393 Y154 OUT VS 1152.00 338.00 394 Y155 OUT VS 1152.00 338.00 395 Y156 OUT VS 1152.00 338.00 396 Y157 OUT VS 1152.00 338.00 397 Y158 OUT VS 1152.00 338.00 397 Y159 OUT VS 1152.00 338.00 397 Y150 OUT VS 1152.00 338.00 397 Y150 OUT VS 1152.00 338.00 397 Y150 OUT VS 1152.00 338.00	371	Y132	OUT	VS	1152.00	928.00
374 Y135 OUT VS 1152.00 1102.00 375 Y136 OUT VS 1152.00 1100.00 376 Y137 OUT VS 1152.00 1218.00 377 Y138 OUT VS 1152.00 1276.00 378 Y139 OUT VS 1152.00 1334.00 379 Y140 OUT VS 1152.00 1334.00 380 Y141 OUT VS 1152.00 1450.00 381 Y142 OUT VS 1152.00 1508.00 382 Y143 OUT VS 1152.00 1508.00 383 Y144 OUT VS 1152.00 1628.00 383 Y144 OUT VS 1152.00 1628.00 384 Y145 OUT VS 1152.00 1628.00 385 Y146 OUT VS 1152.00 1628.00 386 Y147 OUT VS 1152.00 1740.00 387 Y148 OUT VS 1152.00 1740.00 388 Y149 OUT VS 1152.00 1740.00 389 Y150 OUT VS 1152.00 1740.00 389 Y151 OUT VS 1152.00 1914.00 389 Y155 OUT VS 1152.00 1914.00 389 Y156 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2030.00 392 Y153 OUT VS 1152.00 2030.00 394 Y155 OUT VS 1152.00 2030.00 395 Y156 OUT VS 1152.00 2030.00 396 Y157 OUT VS 1152.00 2030.00 397 Y158 OUT VS 1152.00 2030.00 398 Y159 OUT VS 1152.00 2030.00 399 Y160 OUT VS 1152.00 2030.00 399 Y160 OUT VS 1152.00 2030.00 399 Y160 OUT VS 1152.00 2262.00 399 Y160 OUT VS 1152.00 2378.00 399 Y160 OUT VS 1152.00 2388.00 400 Y161 OUT VS 1152.00 2388.00 400 Y166 OUT VS 1152.00 2388.00 401 Y162 OUT VS 1152.00 2388.00 402 Y163 OUT VS 1152.00 2388.00 404 Y165 OUT VS 1152.00 2388.00 405 Y166 OUT VS 1152.00 338.00 407 Y168 OUT VS 1152.00 338.00 408 Y166 OUT VS 1152.00 338.00 409 Y170 OUT VS 1152.00 338.00 411 Y172 OUT VS 1152.00 338.00 412 Y173 OUT VS 1152.00 338.00 413 Y174 OUT VS 1152.00 3388.00 414 Y175 OUT VS 1152.00 3388.00 415 Y176 OUT VS 1152.00 3388.00 416 Y177 OUT VS 1152.00 3388.00 417 Y178 OUT VS 1152.00 3388.00 418 Y179 OUT VS 1152.00 3588.00 419 Y170 OUT VS 1152.00 3588.00 419 Y170 OUT VS 1152.00 3588.00 419 Y170 OUT VS 1152.00 3588.00	372	Y133	OUT	VS	1152.00	986.00
375 Y136	373	Y134	OUT	VS	1152.00	1044.00
376 Y137						
377 Y138 OUT VS 1152.00 1276.00 378 Y139 OUT VS 1152.00 1334.00 380 Y140 OUT VS 1152.00 1332.00 381 Y142 OUT VS 1152.00 1450.00 381 Y142 OUT VS 1152.00 1508.00 382 Y143 OUT VS 1152.00 1508.00 383 Y144 OUT VS 1152.00 1622.00 383 Y145 OUT VS 1152.00 1622.00 385 Y146 OUT VS 1152.00 1622.00 386 Y147 OUT VS 1152.00 1740.00 386 Y147 OUT VS 1152.00 1798.00 387 Y148 OUT VS 1152.00 1798.00 388 Y149 OUT VS 1152.00 1798.00 389 Y150 OUT VS 1152.00 1914.00 389 Y151 OUT VS 1152.00 2030.00 390 Y151 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2030.00 392 Y153 OUT VS 1152.00 2030.00 393 Y154 OUT VS 1152.00 2030.00 394 Y155 OUT VS 1152.00 2262.00 395 Y156 OUT VS 1152.00 2262.00 396 Y157 OUT VS 1152.00 2262.00 397 Y158 OUT VS 1152.00 2278.00 398 Y159 OUT VS 1152.00 2378.00 399 Y160 OUT VS 1152.00 2449.00 399 Y160 OUT VS 1152.00 2494.00 400 Y161 OUT VS 1152.00 2494.00 400 Y161 OUT VS 1152.00 2498.00 400 Y161 OUT VS 1152.00 2489.00 400 Y161 OUT VS 1152.00 2489.00 400 Y166 OUT VS 1152.00 2489.00 400 Y166 OUT VS 1152.00 2489.00 400 Y166 OUT VS 1152.00 2489.00 407 Y168 OUT VS 1152.00 2668.00 408 Y166 OUT VS 1152.00 2668.00 409 Y170 OUT VS 1152.00 3074.00 411 Y172 OUT VS 1152.00 3086.00 412 Y173 OUT VS 1152.00 3074.00 414 Y175 OUT VS 1152.00 3368.00 415 Y177 OUT VS 1152.00 3368.00 416 Y177 OUT VS 1152.00 3368.00 417 Y178 OUT VS 1152.00 3368.00 418 Y179 OUT VS 1152.00 3588.00						
378 Y139 OUT VS 1152.00 1334.00 379 Y140 OUT VS 1152.00 1450.00 381 Y141 OUT VS 1152.00 1450.00 381 Y142 OUT VS 1152.00 1508.00 382 Y143 OUT VS 1152.00 1568.00 382 Y144 OUT VS 1152.00 1624.00 383 Y144 OUT VS 1152.00 1682.00 384 Y145 OUT VS 1152.00 1682.00 385 Y146 OUT VS 1152.00 1798.00 386 Y147 OUT VS 1152.00 1798.00 387 Y148 OUT VS 1152.00 1798.00 388 Y149 OUT VS 1152.00 1798.00 389 Y150 OUT VS 1152.00 1914.00 389 Y150 OUT VS 1152.00 2030.00 390 Y151 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2030.00 392 Y153 OUT VS 1152.00 2030.00 393 Y154 OUT VS 1152.00 2244.00 393 Y155 OUT VS 1152.00 2244.00 394 Y155 OUT VS 1152.00 2244.00 395 Y156 OUT VS 1152.00 2244.00 396 Y157 OUT VS 1152.00 224.00 397 Y158 OUT VS 1152.00 224.00 397 Y159 OUT VS 1152.00 224.00 398 Y150 OUT VS 1152.00 224.00 399 Y150 OUT VS 1152.00 224.00 390 Y151 OUT VS 1152.00 224.00 391 Y152 OUT VS 1152.00 224.00 392 Y153 OUT VS 1152.00 224.00 393 Y154 OUT VS 1152.00 224.00 394 Y155 OUT VS 1152.00 224.00 395 Y156 OUT VS 1152.00 224.00 396 Y157 OUT VS 1152.00 2378.00 397 Y158 OUT VS 1152.00 2494.00 400 Y161 OUT VS 1152.00 2494.00 401 Y162 OUT VS 1152.00 2494.00 402 Y163 OUT VS 1152.00 2772.00 403 Y164 OUT VS 1152.00 2772.00 404 Y165 OUT VS 1152.00 2494.00 405 Y166 OUT VS 1152.00 2772.00 407 Y168 OUT VS 1152.00 2784.00 408 Y169 OUT VS 1152.00 3084.00 409 Y170 OUT VS 1152.00 3084.00 401 Y161 OUT VS 1152.00 3084.00 402 Y163 OUT VS 1152.00 3084.00 403 Y164 OUT VS 1152.00 3084.00 404 Y165 OUT VS 1152.00 3084.00 405 Y166 OUT VS 1152.00 3084.00 407 Y168 OUT VS 1152.00 3084.00 408 Y169 OUT VS 1152.00 3084.00 409 Y170 OUT VS 1152.00 3384.00 411 Y172 OUT VS 1152.00 3384.00 412 Y173 OUT VS 1152.00 3386.00 414 Y175 OUT VS 1152.00 3386.00 415 Y176 OUT VS 1152.00 3366.00 416 Y177 OUT VS 1152.00 3366.00 417 Y178 OUT VS 1152.00 3366.00 418 Y179 OUT VS 1152.00 3366.00 419 Y179 OUT VS 1152.00 3366.00	376	Y137				
379 Y140						
380 Y141 OUT VS 1152.00 1450.00 381 Y142 OUT VS 1152.00 1508.00 382 Y143 OUT VS 1152.00 1666.00 383 Y144 OUT VS 1152.00 1624.00 384 Y145 OUT VS 1152.00 1624.00 385 Y146 OUT VS 1152.00 1740.00 386 Y147 OUT VS 1152.00 1798.00 387 Y148 OUT VS 1152.00 1798.00 387 Y149 OUT VS 1152.00 1914.00 389 Y149 OUT VS 1152.00 1914.00 389 Y150 OUT VS 1152.00 1914.00 390 Y151 OUT VS 1152.00 1914.00 391 Y152 OUT VS 1152.00 2038.00 392 Y153 OUT VS 1152.00 2038.00 393 Y150 OUT VS 1152.00 2038.00 393 Y150 OUT VS 1152.00 2038.00 394 Y155 OUT VS 1152.00 2038.00 395 Y156 OUT VS 1152.00 2262.00 396 Y157 OUT VS 1152.00 2262.00 397 Y158 OUT VS 1152.00 2378.00 398 Y150 OUT VS 1152.00 2446.00 399 Y150 OUT VS 1152.00 2446.00 399 Y150 OUT VS 1152.00 2262.00 399 Y150 OUT VS 1152.00 2262.00 399 Y150 OUT VS 1152.00 2262.00 399 Y150 OUT VS 1152.00 2278.00 399 Y150 OUT VS 1152.00 2278.00 399 Y150 OUT VS 1152.00 2378.00 399 Y150 OUT VS 1152.00 2494.00 401 Y161 OUT VS 1152.00 2688.00 402 Y163 OUT VS 1152.00 2688.00 404 Y165 OUT VS 1152.00 2688.00 405 Y166 OUT VS 1152.00 2688.00 406 Y167 OUT VS 1152.00 2784.00 407 Y168 OUT VS 1152.00 2784.00 408 Y169 OUT VS 1152.00 2784.00 409 Y170 OUT VS 1152.00 3016.00 401 Y161 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3016.00 401 Y161 OUT VS 1152.00 3016.00 402 Y163 OUT VS 1152.00 3016.00 404 Y165 OUT VS 1152.00 3016.00 405 Y166 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 30384.00 411 Y171 OUT VS 1152.00 3384.00 412 Y173 OUT VS 1152.00 3384.00 414 Y175 OUT VS 1152.00 3384.00 415 Y176 OUT VS 1152.00 3384.00 416 Y177 OUT VS 1152.00 3384.00 417 Y178 OUT VS 1152.00 3588.00 418 Y179 OUT VS 1152.00 3588.00						
381 Y142						
382 Y143			2.0			
383 Y144						
384 Y145 OUT VS 1152.00 1682.00 385 Y146 OUT VS 1152.00 1740.00 386 Y147 OUT VS 1152.00 1740.00 387 Y148 OUT VS 1152.00 1856.00 388 Y149 OUT VS 1152.00 1914.00 389 Y150 OUT VS 1152.00 2030.00 391 Y151 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2030.00 392 Y153 OUT VS 1152.00 2146.00 393 Y154 OUT VS 1152.00 2246.00 393 Y155 OUT VS 1152.00 22030.00 394 Y155 OUT VS 1152.00 22030.00 395 Y156 OUT VS 1152.00 22030.00 396 Y157 OUT VS 1152.00 2204.00 397 Y158 OUT VS 1152.00 2240.00 398 Y159 OUT VS 1152.00 2378.00 399 Y160 OUT VS 1152.00 2494.00 399 Y160 OUT VS 1152.00 2494.00 399 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 2668.00 400 Y166 OUT VS 1152.00 2688.00 400 Y166 OUT VS 1152.00 2688.00 401 Y162 OUT VS 1152.00 2688.00 402 Y163 OUT VS 1152.00 2728.00 403 Y164 OUT VS 1152.00 2688.00 405 Y166 OUT VS 1152.00 2688.00 407 Y168 OUT VS 1152.00 2784.00 408 Y169 OUT VS 1152.00 2784.00 409 Y170 OUT VS 1152.00 2784.00 409 Y170 OUT VS 1152.00 2958.00 407 Y168 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3190.00 409 Y170 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3248.00 412 Y173 OUT VS 1152.00 3368.00 413 Y174 OUT VS 1152.00 3368.00 414 Y175 OUT VS 1152.00 3368.00 417 Y178 OUT VS 1152.00 3368.00 418 Y177 OUT VS 1152.00 3368.00 419 Y179 OUT VS 1152.00 3598.00 419 Y179 OUT VS 1152.00 3598.00 419 Y179 OUT VS 1152.00 3598.00			0			
385 Y446						
386 Y147	384		OUT	VS		1682.00
387 Y148 OUT VS 1152.00 1856.00 388 Y149 OUT VS 1152.00 1914.00 389 Y150 OUT VS 1152.00 1912.00 380 Y151 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2088.00 392 Y153 OUT VS 1152.00 2146.00 393 Y154 OUT VS 1152.00 2204.00 393 Y155 OUT VS 1152.00 2204.00 394 Y155 OUT VS 1152.00 2204.00 395 Y156 OUT VS 1152.00 2204.00 396 Y157 OUT VS 1152.00 2378.00 397 Y158 OUT VS 1152.00 2378.00 398 Y159 OUT VS 1152.00 2494.00 399 Y160 OUT VS 1152.00 2610.00 400 Y161 OUT VS 1152.00 2600.00 400 Y161 OUT VS 1152.00 2728.00 401 Y162 OUT VS 1152.00 2728.00 402 Y163 OUT VS 1152.00 2668.00 403 Y164 OUT VS 1152.00 2728.00 403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2688.00 405 Y166 OUT VS 1152.00 2784.00 407 Y168 OUT VS 1152.00 2784.00 408 Y169 OUT VS 1152.00 2784.00 407 Y168 OUT VS 1152.00 2784.00 408 Y169 OUT VS 1152.00 2842.00 409 Y170 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3074.00 411 Y172 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3074.00 412 Y173 OUT VS 1152.00 3084.00 414 Y175 OUT VS 1152.00 3386.00 415 Y176 OUT VS 1152.00 3386.00 416 Y177 OUT VS 1152.00 3386.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00		Y146	OUT			
388 Y149 OUT VS 1152.00 1914.00 389 Y150 OUT VS 1152.00 1972.00 389 Y151 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2046.00 392 Y153 OUT VS 1152.00 2246.00 393 Y154 OUT VS 1152.00 2262.00 394 Y155 OUT VS 1152.00 2262.00 395 Y156 OUT VS 1152.00 2262.00 396 Y157 OUT VS 1152.00 2276.00 397 Y158 OUT VS 1152.00 2276.00 398 Y159 OUT VS 1152.00 2276.00 398 Y159 OUT VS 1152.00 2268.00 399 Y160 OUT VS 1152.00 2494.00 400 Y161 OUT VS 1152.00 2668.00 400 Y161 OUT VS 1152.00 2668.00 401 Y162 OUT VS 1152.00 2726.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2726.00 405 Y166 OUT VS 1152.00 2726.00 407 Y168 OUT VS 1152.00 2726.00 408 Y167 OUT VS 1152.00 2726.00 409 Y160 OUT VS 1152.00 2726.00 407 Y168 OUT VS 1152.00 2726.00 408 Y167 OUT VS 1152.00 2984.00 409 Y170 OUT VS 1152.00 2984.00 409 Y170 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3016.00 411 Y171 OUT VS 1152.00 3016.00 412 Y173 OUT VS 1152.00 3016.00 414 Y175 OUT VS 1152.00 3306.00 415 Y166 OUT VS 1152.00 3016.00 416 Y177 OUT VS 1152.00 3306.00 417 Y178 OUT VS 1152.00 3306.00 418 Y177 OUT VS 1152.00 3366.00 419 Y178 OUT VS 1152.00 3366.00 419 Y179 OUT VS 1152.00 3596.00		Y147				
389 Y150 OUT VS 1152.00 1972.00 390 Y151 OUT VS 1152.00 2030.00 391 Y152 OUT VS 1152.00 2038.00 392 Y153 OUT VS 1152.00 2146.00 393 Y154 OUT VS 1152.00 2204.00 394 Y155 OUT VS 1152.00 2204.00 395 Y156 OUT VS 1152.00 2320.00 395 Y157 OUT VS 1152.00 2320.00 396 Y157 OUT VS 1152.00 2376.00 397 Y158 OUT VS 1152.00 2376.00 398 Y159 OUT VS 1152.00 2436.00 398 Y159 OUT VS 1152.00 2636.00 398 Y159 OUT VS 1152.00 276.00 400 Y161 OUT VS 1152.00 260.00 401 Y162 OUT VS 1152.00 276.00 401 Y163 OUT VS 1152.00 2610.00 402 Y163 OUT VS 1152.00 2688.00 404 Y165 OUT VS 1152.00 2784.00 405 Y166 OUT VS 1152.00 2784.00 406 Y167 OUT VS 1152.00 2784.00 407 Y168 OUT VS 1152.00 2990.00 406 Y169 OUT VS 1152.00 2990.00 407 Y168 OUT VS 1152.00 2980.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3016.00 409 Y171 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3190.00 411 Y174 OUT VS 1152.00 3384.00 412 Y173 OUT VS 1152.00 3384.00 414 Y175 OUT VS 1152.00 3384.00 415 Y176 OUT VS 1152.00 3384.00 416 Y177 OUT VS 1152.00 3384.00 417 Y178 OUT VS 1152.00 3386.00 418 Y177 OUT VS 1152.00 3386.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3598.00	387	Y148	OUT	VS	1152.00	1856.00
390 Y151						
391 Y152						
392 Y153 OUT VS 1152.00 2146.00 393 Y154 OUT VS 1152.00 2204.00 393 Y155 OUT VS 1152.00 2204.00 394 Y155 OUT VS 1152.00 2226.00 395 Y156 OUT VS 1152.00 2378.00 396 Y157 OUT VS 1152.00 2378.00 397 Y158 OUT VS 1152.00 2494.00 398 Y159 OUT VS 1152.00 2494.00 400 Y160 OUT VS 1152.00 2668.00 400 Y161 OUT VS 1152.00 2668.00 400 Y163 OUT VS 1152.00 2688.00 401 Y162 OUT VS 1152.00 2688.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2726.00 404 Y165 OUT VS 1152.00 2784.00 405 Y166 OUT VS 1152.00 2990.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3016.00 410 Y171 OUT VS 1152.00 3016.00 411 Y172 OUT VS 1152.00 3190.00 411 Y174 OUT VS 1152.00 3306.00 412 Y173 OUT VS 1152.00 3306.00 413 Y174 OUT VS 1152.00 3306.00 414 Y175 OUT VS 1152.00 3306.00 415 Y176 OUT VS 1152.00 3306.00 416 Y177 OUT VS 1152.00 3306.00 417 Y178 OUT VS 1152.00 3306.00 418 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00			2.0			
333 Y154 OUT VS 1152.00 2204.00 394 Y155 OUT VS 1152.00 2262.00 395 Y156 OUT VS 1152.00 2320.00 396 Y157 OUT VS 1152.00 2370.00 397 Y158 OUT VS 1152.00 2436.00 398 Y159 OUT VS 1152.00 2436.00 399 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 2688.00 401 Y162 OUT VS 1152.00 2688.00 401 Y163 OUT VS 1152.00 2728.00 402 Y163 OUT VS 1152.00 2728.00 404 Y165 OUT VS 1152.00 2728.00 405 Y166 OUT VS 1152.00 2728.00 406 Y167 OUT VS 1152.00 2788.00 407 Y168 OUT VS 1152.00 2788.00 408 Y169 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3074.00 410 Y171 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3190.00 412 Y173 OUT VS 1152.00 3190.00 414 Y175 OUT VS 1152.00 3308.00 417 Y176 OUT VS 1152.00 3308.00 418 Y177 OUT VS 1152.00 3308.00 419 Y170 OUT VS 1152.00 3308.00 411 Y174 OUT VS 1152.00 3308.00 412 Y175 OUT VS 1152.00 3368.00 413 Y174 OUT VS 1152.00 3480.00 414 Y175 OUT VS 1152.00 3598.00 417 Y178 OUT VS 1152.00 3598.00 418 Y177 OUT VS 1152.00 3598.00 419 Y179 OUT VS 1152.00 3598.00						
394 Y155 OUT VS 1152.00 2262.00 395 Y156 OUT VS 1152.00 2320.00 396 Y157 OUT VS 1152.00 2378.00 397 Y158 OUT VS 1152.00 2436.00 398 Y159 OUT VS 1152.00 2436.00 398 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 2610.00 401 Y162 OUT VS 1152.00 2610.00 401 Y165 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 278.00 403 Y166 OUT VS 1152.00 278.00 4040 Y165 OUT VS 1152.00 278.00 405 Y166 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 2958.00 408 Y169 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3384.00 411 Y172 OUT VS 1152.00 3384.00 412 Y173 OUT VS 1152.00 3384.00 413 Y174 OUT VS 1152.00 3384.00 414 Y175 OUT VS 1152.00 3386.00 415 Y176 OUT VS 1152.00 3386.00 416 Y177 OUT VS 1152.00 3386.00 417 Y178 OUT VS 1152.00 3598.00 418 Y177 OUT VS 1152.00 3598.00 419 Y170 OUT VS 1152.00 3598.00						
395 Y156 OUT VS 1152.00 2320.00 396 Y157 OUT VS 1152.00 2378.00 397 Y158 OUT VS 1152.00 2436.00 398 Y159 OUT VS 1152.00 2494.00 399 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 2668.00 401 Y162 OUT VS 1152.00 2668.00 402 Y163 OUT VS 1152.00 2688.00 403 Y164 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2784.00 405 Y166 OUT VS 1152.00 2842.00 406 Y167 OUT VS 1152.00 2990.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3190.00 410 Y171 OUT VS 1152.00 3190.00 410 Y171 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3384.00 412 Y173 OUT VS 1152.00 3384.00 414 Y175 OUT VS 1152.00 3384.00 415 Y176 OUT VS 1152.00 3384.00 417 Y178 OUT VS 1152.00 3368.00 418 Y177 OUT VS 1152.00 3368.00 419 Y170 OUT VS 1152.00 3368.00 417 Y178 OUT VS 1152.00 3368.00 418 Y177 OUT VS 1152.00 3368.00 419 Y177 OUT VS 152.00 3368.00 417 Y178 OUT VS 152.00 3598.00 418 Y177 OUT VS 152.00 3598.00 419 Y179 OUT VS 152.00 3598.00						
396 Y157						
397 Y158 OUT VS 1152.00 2436.00 398 Y159 OUT VS 1152.00 2494.00 399 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 2610.00 401 Y162 OUT VS 1152.00 2668.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 403 Y164 OUT VS 1152.00 2784.00 405 Y166 OUT VS 1152.00 2842.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3106.00 408 Y169 OUT VS 1152.00 3106.00 409 Y170 OUT VS 1152.00 3106.00 410 Y171 OUT VS 1152.00 3132.00 411 Y172 OUT VS 1152.00 3384.00 411 Y174 OUT VS 1152.00 3384.00 412 Y173 OUT VS 1152.00 3386.00 413 Y174 OUT VS 1152.00 3386.00 414 Y175 OUT VS 1152.00 3386.00 415 Y176 OUT VS 1152.00 3386.00 416 Y177 OUT VS 1152.00 3480.00 417 Y178 OUT VS 1152.00 3596.00 418 Y177 OUT VS 1152.00 3596.00 419 Y170 OUT VS 1152.00 3596.00 419 Y170 OUT VS 1152.00 3598.00						
398 Y159 OUT VS 1152.00 2494.00 399 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 25610.00 401 Y162 OUT VS 1152.00 2668.00 401 Y163 OUT VS 1152.00 2726.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2842.00 405 Y166 OUT VS 1152.00 2842.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3306.00 411 Y174 OUT VS 1152.00 3306.00 412 Y175 OUT VS 1152.00 3306.00 414 Y175 OUT VS 1152.00 3366.00 415 Y176 OUT VS 1152.00 3366.00 416 Y177 OUT VS 1152.00 3366.00 417 Y178 OUT VS 1152.00 3480.00 418 Y179 OUT VS 1152.00 3480.00 419 Y170 OUT VS 1152.00 3596.00 417 Y178 OUT VS 1152.00 3596.00 418 Y177 OUT VS 1152.00 3598.00 419 Y179 OUT VS 1152.00 3598.00 419 Y179 OUT VS 1152.00 3598.00						
399 Y160 OUT VS 1152.00 2552.00 400 Y161 OUT VS 1152.00 2610.00 401 Y162 OUT VS 1152.00 2686.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 403 Y165 OUT VS 1152.00 2900.00 404 Y165 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 312.00 410 Y171 OUT VS 1152.00 312.00 411 Y172 OUT VS 1152.00 3248.00 411 Y173 OUT VS 1152.00 3306.00 412 Y173 OUT VS 1152.00 3306.00 413 Y174 OUT VS 1152.00 3306.00 414 Y175 OUT VS 1152.00 3306.00 415 Y176 OUT VS 1152.00 3306.00 416 Y177 OUT VS 1152.00 3306.00 417 Y178 OUT VS 1152.00 3360.00 418 Y177 OUT VS 1152.00 3360.00 419 Y178 OUT VS 1152.00 3420.00 419 Y179 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3538.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00						
400 Y161 OUT VS 1152.00 2610.00 401 Y162 OUT VS 1152.00 268.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2842.00 405 Y166 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2958.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3132.00 411 Y172 OUT VS 1152.00 3364.00 412 Y173 OUT VS 1152.00 3364.00 413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 33864.00 415 Y176 OUT VS 1152.00 3388.00 416 Y177 OUT VS 1152.00 3388.00 417 Y178 OUT VS 1152.00 3388.00 418 Y179 OUT VS 1152.00 3388.00 419 Y180 OUT VS 1152.00 3596.00 419 Y180 OUT VS 1152.00 3712.00 479 Y180 OUT VS 1152.00 3712.00 470 Y180 OUT VS 1152.00 3712.00 471 Y180 OUT VS 1152.00 3712.00 472 Y180 OUT VS 1152.00 3712.00 472 Y180 OUT VS 1152.00 3712.00 471 Y180 OUT VS 1152.00 3712.00 471 Y180 OUT VS 1152.00 3712.00 472 Y180 OUT VS 1152.00 3712.00 472 Y180 OUT VS 1152.00 3712.00 473 Y180 OUT VS 1152.00 3712.00 474 Y180 OUT VS 1152.00 3712.00 475 Y180 OUT V						
401 Y162 OUT VS 1152.00 2668.00 402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2842.00 405 Y166 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 3016.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3306.00 411 Y172 OUT VS 1152.00 3306.00 412 Y174 OUT VS 1152.00 3306.00 413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3364.00 415 Y176 OUT VS 1152.00 3365.00 417 Y178 OUT VS 1152.00 3480.00 418 Y179 OUT VS 1152.00 3480.00 419 Y170 OUT VS 1152.00 3596.00 418 Y177 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3596.00 419 Y180 OUT VS 1152.00 3596.00						
402 Y163 OUT VS 1152.00 2726.00 403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2842.00 405 Y166 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 312.00 410 Y171 OUT VS 1152.00 312.00 411 Y172 OUT VS 1152.00 312.00 411 Y173 OUT VS 1152.00 3248.00 412 Y173 OUT VS 1152.00 3364.00 413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3364.00 415 Y176 OUT VS 1152.00 3364.00 416 Y177 OUT VS 1152.00 3420.00 417 Y178 OUT VS 1152.00 3420.00 418 Y179 OUT VS 1152.00 3420.00 419 Y170 OUT VS 1152.00 3583.00 417 Y178 OUT VS 1152.00 3583.00 418 Y177 OUT VS 1152.00 3583.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3696.00 419 Y179 OUT VS 1152.00 3696.00						
403 Y164 OUT VS 1152.00 2784.00 404 Y165 OUT VS 1152.00 2842.00 405 Y166 OUT VS 1152.00 2842.00 406 Y167 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2958.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 30174.00 409 Y170 OUT VS 1152.00 3190.00 410 Y171 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3190.00 411 Y173 OUT VS 1152.00 3364.00 412 Y173 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3364.00 415 Y176 OUT VS 1152.00 3364.00 416 Y177 OUT VS 1152.00 3364.00 417 Y178 OUT VS 1152.00 3480.00 418 Y179 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3538.00 417 Y179 OUT VS 1152.00 3538.00 418 Y179 OUT VS 1152.00 3596.00 419 Y180 OUT VS 1152.00 3596.00						
404 Y165 OUT VS 1152.00 2842.00 405 Y166 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2908.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3132.00 410 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3248.00 411 Y172 OUT VS 1152.00 3248.00 412 Y173 OUT VS 1152.00 336.00 413 Y174 OUT VS 1152.00 336.00 413 Y174 OUT VS 1152.00 336.00 414 Y175 OUT VS 1152.00 336.00 415 Y176 OUT VS 1152.00 3480.00 416 Y177 OUT VS 1152.00 3480.00 416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3588.00 418 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00						
405 Y166 OUT VS 1152.00 2900.00 406 Y167 OUT VS 1152.00 2958.00 407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3120.00 411 Y172 OUT VS 1152.00 3248.00 412 Y173 OUT VS 1152.00 3364.00 412 Y173 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3364.00 415 Y176 OUT VS 1152.00 3422.00 416 Y177 OUT VS 1152.00 3482.00 417 Y178 OUT VS 1152.00 3538.00 418 Y179 OUT VS 1152.00 3538.00 419 Y179 OUT VS 1152.00 3558.00 419 Y179 OUT VS 1152.00 35596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00						
406 Y167 OUT VS 1152.00 2958.00						
407 Y168 OUT VS 1152.00 3016.00 408 Y169 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3132.00 411 Y172 OUT VS 1152.00 3248.00 412 Y173 OUT VS 1152.00 336.00 413 Y174 OUT VS 1152.00 336.00 413 Y174 OUT VS 1152.00 336.00 414 Y175 OUT VS 1152.00 348.00 416 Y177 OUT VS 1152.00 3422.00 417 Y178 OUT VS 1152.00 3422.00 418 Y179 OUT VS 1152.00 3538.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3596.00 419 Y179 OUT VS 1152.00 3654.00						
408 Y169 OUT VS 1152.00 3074.00 409 Y170 OUT VS 1152.00 3132.00 410 Y171 OUT VS 1152.00 3190.00 411 Y172 OUT VS 1152.00 3248.00 411 Y173 OUT VS 1152.00 3364.00 412 Y173 OUT VS 1152.00 3364.00 413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3364.00 415 Y176 OUT VS 1152.00 3422.00 416 Y177 OUT VS 1152.00 3480.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3696.00 419 Y180 OUT VS 1152.00 3696.00						
409 Y170						
10 10 11 11 11 11 11 11		1.1				
411 Y172 OUT VS 1152.00 3248.00 412 Y173 OUT VS 1152.00 3306.00 413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3364.00 414 Y176 OUT VS 1152.00 3422.00 415 Y176 OUT VS 1152.00 3420.00 416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3654.00 418 Y179 OUT VS 1152.00 3654.00 419 Y180 OUT VS 1152.00 3712.00						
412 Y173 OUT VS 1152.00 3306.00 413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3422.00 415 Y176 OUT VS 1152.00 3480.00 416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3654.00 419 Y180 OUT VS 1152.00 3712.00						
413 Y174 OUT VS 1152.00 3364.00 414 Y175 OUT VS 1152.00 3422.00 415 Y176 OUT VS 1152.00 3480.00 416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3654.00 419 Y180 OUT VS 1152.00 3712.00	412		OUT			
414 Y175 OUT VS 1152.00 3422.00 415 Y176 OUT VS 1152.00 3480.00 416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3538.00 418 Y179 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3654.00 419 Y180 OUT VS 1152.00 3712.00						
415 Y176 OUT VS 1152.00 3480.00 416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3654.00 419 Y180 OUT VS 1152.00 3712.00						
416 Y177 OUT VS 1152.00 3538.00 417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 3654.00 419 Y180 OUT VS 1152.00 3712.00	415	Y176	OUT	VS		
417 Y178 OUT VS 1152.00 3596.00 418 Y179 OUT VS 1152.00 36596.00 419 Y180 OUT VS 1152.00 3712.00			OUT	VS		
419 Y180 OUT VS 1152.00 3712.00	417		OUT	VS	1152.00	3596.00
	418		OUT	VS		3654.00
	419	Y180	OUT	VS	1152.00	3712.00
	420	Y181	OUT	VS	1152.00	3770.00

No.	Pin Name	I/O	Power	Pad coordina	te [μm]
421	Y182	OUT	VS	X 1152.00	3828.00
422	Y183	OUT	VS	1152.00	3886.00
423	Y184	OUT	VS	1152.00	3944.00
424	Y185	OUT	VS	1152.00	4002.00
425	Y186	OUT	VS	1152.00	4060.00
426	Y187	OUT	VS	1152.00	4118.00
427	Y188	OUT	VS	1152.00	4176.00
428	Y189	OUT	VS	1152.00	4234.00
429	Y190	OUT	VS	1152.00	4292.00
430	Y191	OUT	VS	1152.00	4350.00
431	Y192	OUT	VS	1152.00	4408.00
432	Y193	OUT	VS	1152.00	4466.00
433	Y194	OUT	VS	1152.00	4524.00
434	Y195	OUT	VS	1152.00	4582.00
435	Y196	OUT	VS	1152.00	4640.00
436	Y197	OUT	VS	1152.00	4698.00
437	Y198	OUT	VS	1152.00	4756.00
438	Y199	OUT	VS	1152.00	4814.00
439	Y200	OUT	VS	1152.00	4872.00
440	Y201	OUT	VS	1152.00	4930.00
441	Y202	OUT	VS	1152.00	4988.00
442	Y203	OUT	VS	1152.00	5046.00
443	Y204	OUT	VS	1152.00	5104.00
444	Y205	OUT	VS	1152.00	5162.00
445	Y206	OUT	VS	1152.00	5220.00
446	Y207	OUT	VS	1152.00	5278.00
447	Y208	OUT	VS	1152.00	5336.00
448 449	Y209 Y210	OUT	VS VS	1152.00 1152.00	5394.00 5452.00
449	Y210 Y211	OUT	VS VS	1152.00	5452.00
450	Y212	OUT	VS	1152.00	5568.00
452	Y213	OUT	VS	1152.00	5626.00
453	Y214	OUT	VS	1152.00	5684.00
454	Y215	OUT	VS	1152.00	5742.00
455	Y216	OUT	VS	1152.00	5800.00
456	Y217	OUT	VS	1152.00	5858.00
457	Y218	OUT	VS	1152.00	5916.00
458	Y219	OUT	VS	1152.00	5974.00
459	Y220	OUT	VS	1152.00	6032.00
460	Y221	OUT	VS	1152.00	6090.00
461	Y222	OUT	VS	1152.00	6148.00
462	Y223	OUT	VS	1152.00	6206.00
463	Y224	OUT	VS	1152.00	6264.00
464	Y225	OUT	VS	1152.00	6322.00
465	Y226	OUT	VS	1152.00	6380.00
466 467	Y227 Y228	OUT	VS VS	1152.00 1152.00	6438.00 6496.00
467	Y229	OUT	VS VS	1152.00	6554.00
469	Y230	OUT	VS	1152.00	6612.00
470	Y231	OUT	VS	1152.00	6670.00
471	Y232	OUT	VS	1152.00	6728.00
472	Y233	OUT	VS	1152.00	6786.00
473	Y234	OUT	VS	1152.00	6844.00
474	Y235	OUT	VS	1152.00	6902.00
475	Y236	OUT	VS	1152.00	6960.00
476	Y237	OUT	VS	1152.00	7018.00
477	Y238	OUT	VS	1152.00	7076.00
478	Y239	OUT	VS	1152.00	7134.00
479	Y240	OUT	VS	1152.00	7192.00
480	DUMMY	-	-	1152.00	7250.00

Table 2-1. Pad Coordinate (5/5)

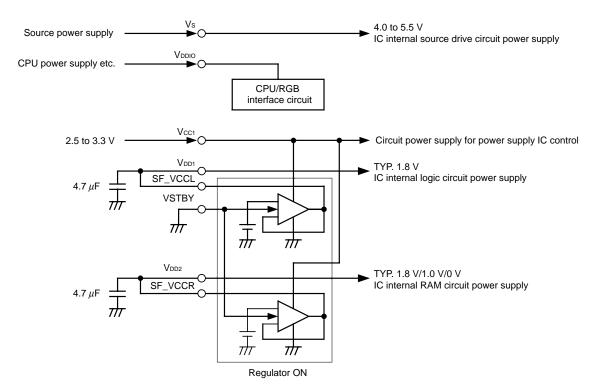
No.	Pin Name	I/O	Power	Pad coord	linate [µm]
INO.	FIII INdille	1/0	rowei	X	Υ
481	DUMMY	-	-	1152.00	7308.00
482	DUMMY	_	_	124.00	7382.00
483	DUMMY	-	-	48.00	7382.00
484	DUMMY	-	-	-28.00	7382.00
485	DUMMY	=	=	-104.00	7382.00
486	DUMMY	-	-	-180.00	7382.00
487	DUMMY	-	-	-256.00	7382.00
488	DUMMY	_	-	-332.00	7382.00
489	DUMMY	-	-	-408.00	7382.00
490	DUMMY	-	-	-484.00	7382.00
491	DUMMY	-	-	-560.00	7382.00
492	DUMMY	-	-	-636.00	7382.00
493	DUMMY	_	-	-712.00	7382.00
494	DUMMY	-	-	-788.00	7382.00
495	DUMMY	=	=	-864.00	7382.00
496	DUMMY	-	-	-940.00	7382.00

	X [μm]	Υ [μm]
Alignment Mark (M1)	-1152.00	7210.00
Alignment Mark (M2)	-1152.00	-7210.00

3. PIN FUNCTIONS

3.1 Power Supply System Pins

(1/2)


Symbol	Pin Name	Pad No.	I/O	Function
V _{DD1}	Power supply for logic	102 to 109	-	This is the power supply pin for the logic. When VSTBY = L, there is no need to apply a power supply voltage. The voltage that is input from the power supply control pin (Vcc1) is used to generate the logic's power supply voltage within the chip. However, the interface with the CPU must be implemented using VDDIO. Also, no power is supplied to the VDD1 pin, but it should be connected to the SF_VCCL pin and a 4.7 μ F capacitor should be connected between it and the GND pin. Refer to Figure 3–1 .
SF_VCCL	Internal logic power supply generation amplifier output	96 to 101	Output	If using 3 power supplies (VSTBY = L), be sure to connect a capacitor between this pin and a GND connection. For details, refer to Figure 3–1 . If using 4 power supplies (VSTBY = H), leave this pin open.
V _{DD2}	Power supply for display RAM	116 to 123	-	This power supply pin is used for the display RAM circuits. When VSTBY = L, there is no need to apply a power supply voltage. The voltage that is input from the power supply control pin (Vcc1) is used to generate the logic's power supply voltage within the chip. Also, no power is supplied to the VDD2 pin, but it should be connected to the SF_VCCR pin and a 4.7 µF capacitor should be connected between it and the GND pin. For details, refer to Figure 3–1.
SF_VCCR	Display RAM circuit power supply generation amplifier output	110 to 115	Output	In the case of 3 power-supply supply system (VSTBY = L), connect a capacitor between grounds. For details, refer to Figure 3–1 . In the case of 4 power-supply supply system (VSTBY = H), leave it open.
VDDIO	CPU/RGB interface power supply	84 to 89	_	This is the CPU/RGB interface's power supply pin. Be sure to input a power supply that has the same potential as the IC connected to the CPU/RGB interface.
Vcc1	Interface and power supply pin for power supply IC control	90 to 95	-	This is the power supply pin for the power IC control circuit. Be sure to input a power supply that has the same potential as the connected IC.
Vs	Driver and gate control for power supply	154 to 159	-	Power supply pin for driver circuit.
Vss11	Ground pin for logic	130 to 135	_	Ground pin for logic circuit
Vss1	Ground pin for interface and power supply IC	124 to 129	_	Ground pin for power supply IC of control circuit and logic interface circuit.
Vss	Ground pin for driver and gate control	136 to 141	-	Ground pin for driver circuit power supply IC control circuit
VSTBY	Logic power supply generation control	183	Input	This pin is used to select whether or not to supply voltage to the logic's power supply. VSTBY = L: Supply voltage to VDD1, VDD2, SF_VCCL, and SF_VCCR is not required. VSTBY = H: Supply voltage to VDD1 and VDD2 is required.

(2/2)

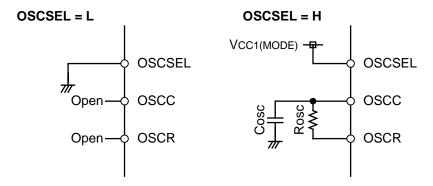

Symbol	Pin Name	Pad No.	I/O	Function
V _{DD1(MODE)}	Mode setting pull-up power supply	227	-	Pull-up power supply pin for mode setting
VDDIO(MODE)	Mode setting pull-up power supply	29, 55, 60, 84 to 88	-	Pull-up power supply pin for mode setting
VCC1 (MODE)	Mode setting pull-up power supply	169, 173, 177, 181	_	Pull-up power supply pin for mode setting
Vss1 (MODE)	Mode setting pull-down power supply	50, 58, 65, 166, 198, 226	-	Pull-down power supply pin for mode setting

Figure 3-1. Supplies for Power Supply

[At the time of IC regulator circuit use for logic circuits: Vcc1 = 2.5 to 3.3 V single power supply input]

[At the time of IC regulator circuit unused for logic circuits: VDD1, VDD2 = 1.6 to 2.0 V, VCC1 = 2.5 to 3.3 V]

Symbol	Pin Name	Pad No.	I/O			Function			
BWS0	CPU interface bus width	178	Input	This pin selects the bus width of the i80/M68 interface (it is invalid for the					
	selection			RGB interface).					
				BWS0	BWS1	i80/M68, Serial Interface Bus Width			
				L	L	18 bits			
BWS1	CPU interface bus width	179	Input	L	Н	16 bits			
	selection			Н	L	Prohibited			
				Н	Н	8 bits parallel or serial interface			
BWS2	RGB interface bus width	180	Input	·	ects the b	ous width of the RGB interface (it is invalid for the	e CPL		
	selection			interface).	DIMOS				
				BWS2	BWS3	RGB Interface Bus Width			
			1	- L	L	18 bits			
BWS3		182	Input	L	H	16 bits			
	selection			Н	L	6 bits			
				H	Н	Prohibited			
PSX	CPU interface mode	175	Input	This pin sel	ects the r	node of the CPU interface.			
	selection			L: i80/M68 i	nterface	only, H: Serial interface only			
/CS	Chip select	54	Input	This pin is u	sed for c	hip select signals. When /CS = L, the chip is act	tive		
				and can perform data I/O operations including command and data I/O.					
/RESET	Reset	31	Input	When /RESET is L, an internal reset is initialized. The reset operation is					
			executed at	executed at the /RESET signal level. Be sure to perform reset via this pin					
				at power application.					
/RD	Read	51	Input	Input When i80 series parallel data transfer (/RD) has been selected, the					
(E)	(Enable)			at this pin is used to enable read operations. Data is output to the data bus					
				only when this pin is low.					
				When M68 series parallel data transfer (E) has been selected, the signal at					
				this pin is us	sed to en	able read/write operations.			
/WR	Write	52	Input	When i80 se	eries para	allel data transfer (/WR) has been selected, the s	ignal		
(R,/W)	(Read/write)			at this pin is	used to	enable write operations.			
				When M68	series pa	rallel data transfer (R,/W) has been selected, this	s pin		
				is used to d	etermine	the direction of data transfer.			
				L: Write, H:	Read				
C86	Select interface	178	Input			vitch between interface modes (i80 series CPU o	or M68		
				series CPU	•				
			1			CPU mode, H: Selects M68 series CPU mode			
D ₀ to D ₁₇	Data bus	49 to 32	I/O		•	18-bit bi-directional data.			
					hip is not	selected, D ₀ to D ₁₇ are in Hi-Z (high impedance)			
SI	Serial input	56	Input	mode.	lata input	of serial interface.			
SCL	Serial clock	57	Input			t of serial interface.			
RS	Data/command	53	Input						
110	selection	33	Input	When parallel data transfer has been selected, this pin is usually					
	GOIGOROLI			connected to the least significant bit of the standard CPU address bus and					
				is used to distinguish between data from display data and commands. RS = L: Indicates that data from D ₀ to D ₁₇ is commands.					
HCVNC	Horizontal cumo signal	62	Innut			at data from D ₀ to D ₁₇ is display data.			
HSYNC	Horizontal sync signal	62	Input			sync signal of the RGB interface.			
VSYNC	Vertical sync signal	61	Input			rnc signal of the RGB interface.			
DOTCLK	Dot clock	63	Input	This is the dot clock signal of the RGB interface.					


(2/2)

Symbol	Pin Name	Pad No.	I/O	Function
HSEG	HSYNC polarity selection	171	Input	This selects polarity of the horizontal sync signal of the RGB interface. HSEG = L: Low active HSEG = H: High active
VSEG	VSYNC polarity selection	172	Input	This selects polarity of the vertical sync signal of the RGB interface. VSEG = L: Low active VSEG = H: High active
DCKEG	DOTCLK polarity selection	174	Input	This selects polarity of the dot clock signal of the RGB interface. DCKEG = L: High active (this pin is latched up at rising edge) DCKEG = H: High level (this pin is latched up at falling edge)
RGB00 to RGB05, RGB10 to RGB15, RGB20 to RGB25	Data bus	66 to 71, 72 to 77, 78 to 83	Input	These pins are RGB interface data signal.
CSTB	GSTB logic signal	30	Output	This pin outputs STB signal for gate driver leveled by interface power supply voltage (VDDIO). This output signal is reverse signal of GSTB.
VLD	RAM write enable signal	59	Input	This is the data valid signal of CPU I/F display RAM write and RGB I/F capture write. VLD = L: Write data is valid (write to RAM) VLD = H: Write data is invalid (no write to RAM)
OSCSEL	Oscillator circuit selection	168	Input	The oscillation circuit of the inside reference clock for liquid crystal drive of IC is selected. OSCSEL = L: Internal oscillation circuit selection OSCSEL = H: External oscillation circuit selection
OSCR	Resistance Connection for Oscillator	161	Output	Resistance of T.B.D. Ω is connected between OSCC pins at the time (OSCSEL = H) of external oscillation circuit selection. Leave it open at the time (OSCSEL = L) of internal oscillation circuit selection.
oscc	Capacitor connection for oscillator	160	Input	At the time (OSCSEL = H) of external oscillation circuit selection, resistance of T.B.D. Ω is connected between OSCR pins, and the capacitor of T.B.D. μ F is connected between grounds. Leave it open at the time (OSCSEL = L) of internal oscillation circuit selection.
CMDS	CMDS	170	Input	Connect to Vss1.
EPEN	External E ² PROM valid pin	167	Input	This selects whether external E ² PROM is valid or invalid. L: External E ² PROM is valid. H: External E ² PROM is invalid.
EDI	Data input for E ² PROM interfaces	162	Input	This is the data input for E ² PROM interfaces. This is used for data read out of E ² PROM or the check of BUSY/REDY This connects with DOUT (data out pin) of E ² PROM.
ECS	CS for E ² PROM interfaces	163	Output	This is the chip selection for E ² PROM interfaces. By outputting ECS = High, data is transmitted, after changing E ² PROM into an active state.
ESK	CLK for E ² PROM interfaces	164	Output	This is the CLK for E ² PROM interfaces. The data is outputted from EDO to E ² PROM in the falling of ESK It connects with CLK (shift clock pin) of E ² PROM.
EDO	The data output for E ² PROM interfaces	165	Output	This is the data output for E ² PROM interfaces. The data output is carried out at ROM. This connects with DIN (data ir pin) of ROM.

Remark T.B.D. (To be determined.)

[Example of the oscillator circuit connection]

3.3 Gate Driver Control Pins

Symbol	Pin Name	Pad No.	I/O	Function
OEVE,	OE1 output for gate control	15	Output	This pin is output enable pin for gate control.
GOE1				Signal is outputted to the timing set as R79 and R80.
				For details, refer to 5.4 Display Timing Generator.
/OEVE,	OE1 output for gate control	16	Output	This pin outputs inverted OEV, GOE1 signal.
/GOE1				
OEV,	OE2 output for gate control	13	Output	This pin is output enable pin for gate control.
GOE2				For details, refer to 5.4 Display Timing Generator.
/OEV, /GOE2	OE2 output for gate control	14	Output	This pin outputs inverted OEV, GOE2 signal.
STV, GSTB	STB output for gate control	9	Output	This pin is output strove pin for gate control.
				Timing signal for output, refer to 5.4 Display Timing Generator .
/STV,	STB output for gate control	10	Output	This pin outputs inverted STV, GSTB signal.
/GSTB				
CKV, GCLK	CLK output for gate control	11	Output	This pin is the CLK output for the gate control.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/CKV,	CLK output for gate control	12	Output	This pin outputs inverted CKV, GCLK signal.
/GCLK				
GUD	Control signal for gate scan	17	Output	This pin is gate scan direction control signal.
	direction			Timing signal for output, refer to 5.4 Display Timing Generator .
/GUD	Control signal for gate scan	18	Output	This pin outputs inverted GUD signal.
	direction			
XDON	Panel control output	17	Output	This pin is control output pin for panel.
				Signal is outputted by setup of RXDON
				[R77 (HITACHI mode: R017H)].
/XDON	Panel control output	18	Output	This pin outputs inverted XDON signal.
EXT1	Panel control signal	25	Output	This pin is the signal for panel control.
/EXT1	Panel control signal	26	Output	This pin outputs inverted EXT1 signal.
EXT2	Panel control signal	27	Output	This pin is the signal for panel control.
/EXT2	Panel control signal	28	Output	This pin outputs inverted EXT2 signal.

3.4 RGB Multi-plectra Switch Control Pins

Symbol	Pin Name	Pad No.	I/O	Function
ASW1, RSW	Multi-plectra control signal	7	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R83 and R84. For details, refer to 5.4 Display timing generator .
/ASW1, /RSW	Multi-plectra control signal	8	Output	This pin outputs inverted ASW1, RSW signal.
ASW2, GSW	Multi-plectra control signal	5	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R85 and R86. For details, refer to 5.4 Display timing generator .
/ASW2, /GSW	Multi-plectra control signal	6	Output	This pin outputs inverted ASW2, GSW signal.
ASW3, BSW	Multi-plectra control signal	3	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R87 and R88. For details, refer to 5.4 Display timing generator .
/ASW3, /BSW	Multi-plectra control signal	4	Output	This pin outputs inverted ASW3, BSW signal.

3.5 External IC (μ PD161862, etc.) Control Pins

Symbol	Pin Name	Pad No.	I/O	Function
PCS	Chip select signal output	22	Output	This is a chip selection output pin for serial interfaces for power supply IC control. Connect with chip selection input pins, such as the external power supply IC. Set-up of R38 to R42, and R60 to R65 starts an output. For details, refer to 5.1.8 Serial interface for power supply IC control .
PCL	Serial clock signal output	23	Output	This is a serial clock output pin for serial interfaces for power supply IC control. Connect with serial clock input pins, such as the external power supply IC. Setup of R38 to R42, and R60 to R65 starts an output. For details, refer to 5.1.8 Serial interface for power supply IC control .
PDA	Serial data output	21	Output	This is a serial data pin for serial interfaces for power supply IC control. Connect with serial data input pins, such as the external power supply IC. Setup of R38 to R42, and R60 to R65 starts an output. For details, refer to 5.1.8 Serial interface for power supply IC control .
/PRESET	Reset output	2	Output	This is a reset signal output pin for power supplies IC. The reset signal inputted from RESET pin is outputted on the input signal level (Vcc1) of the external power supply IC. Connect with reset input pins, such as the external power supply IC.
PCCLK	Power supply IC DC/DC converter clock output	24	Output	The reference clock for the DC/DC converter circuits of a power supply IC is outputted. Oscillation frequency is divided cycle and outputted by the divided cycle ratio set up by DC4 and DC3 (R72). Use this pin, connecting with reference clock inputs for DC/DC converter circuits, such as power supply IC.

3.6 Driver Pins

Symbol	Pin Name	Pad No.	I/O	Function
Y ₁ to Y ₂₄₀	Source output	231 to 358, 368 to 479	Output	These pins are source output pins
VCOUT	Common timing output	19	Output	Common timing signal is outputted from Vcc1 -Vss, Vp-p. Usually, it is used such as shifting this timing output signal to the voltage level to need.
FR	Frame signal output	20	Output	This pin outputs frame polarity signal. With VCOUT, the signal of inversion polarity is outputted in V _{CC1} to V _{SS} when RXDON (R77 • D ₂) = 0 setup. When RXDON = 1 setup, operation set as DSCGn (R72 • D ₅ to D ₀) is performed.
CVPH, CVPL, CVNH, CVNL	Basis power supply pin for γ-corrected power supplies	151 to 153, 148 to 150, 145 to 147, 142 to 144		This is operational amplifier output pin for the γ -corrected power supplies. Normally, this pin connects capacitor of T.B.D. μ F. When unused the amplifier for γ -correction, leave it open.

3.7 Test or Other Pins

Symbol	Pin Name	Pad No.	I/O	Function
TOUT ₀ to TOUT ₁₉ ,	Test output	221 to 202,	Output	This is output pin when IC is in test mode.
TOSCO1, TOSCO2,		196, 197		Normally, leave it open.
TDELAY₀ to	Test input	184 to 186,	Input	This is input pin when IC is in test mode.
TDELAY ₂		64		Normally, connected it to Vss1.
ENABLE				
TSTRTST,	Test input	189,	Input	These input pins are to set up test mode of IC.
TSTVIHL,		188,		Normally, fixed it to Vss.
TOSCI1, TOSCI2,		194, 195,		
TOSCSEI1,		192,		
TOSCSEI2,		193,		
TOSCSEO1,		190,		
TOSCSEO2,		191,		
TCLK		187,		
TF1, TF2		222, 223,		
TPR		224,		
TVP		225		
DUMMY	Dummy	1, 199 to 201,	_	Dummy pin
		228 to 230,		
		359 to 367,		
		480 to 496		

4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The I/O circuit types of each pin and recommended connection of unused pins are described below.

(1/2)

					(1/2)
Pin Name	I/O	Power Supply	Recommended Conr	ection of Unused Pins	Note
riii Name	1/0	Fower Supply	Parallel Interface	Serial Interface	NOTE
PSX	Input	Vcc1	Mode setting pin		0
BWS0 to BWS3	Input	Vcc1	Mode setting pin		0
VSTBY	Input	Vcc1	Mode setting pin		0
/RESET	Input	V _{DDIO}	Always reset on power applic	eation	_
/CS	Input	V _{DDIO}	Connect to VDDIO		-
/RD (E), /WR	Input	V _{DDIO}	Connect to VDDIO	Connect to VDDIO or VSS1	-
			(when i80 series interface)		
C86	Input	V _{CC1}	Mode setting pin	Connect to Vcc1 or Vss1	0
D ₀ to D ₁₇	I/O	V _{DDIO}	_	Connect to Vss1	_
SI, SCL	Input	V _{DDIO}	Connect to VDDIO	-	_
HSYNC	Input	V _{DDIO}	Connect to VDDIO or VSS1		_
VSYNC	Input	V _{DDIO}	Connect to VDDIO or VSS1		_
DOTCLK	Input	V _{DDIO}	Connect to VDDIO or VSS1		0
HSEG	Input	Vcc1	Mode setting pin		0
VSEG	Input	Vcc1	Mode setting pin		0
DCKEG	Input	Vcc1	Mode setting pin		-
RGB00 to RGB05,	Input	V _{DDIO}	Connect to VDDIO or VSS1		0
RGB ₁₀ to RGB ₁₅ ,					
RGB20 to RGB25					
RS	Input	V _{DDIO}	Register setting pin		_
VLD	Input	V _{DDIO}	Connect to V _{ss1}		_
CSTB	Output	V _{DDIO}	Leave open		_
OSCSEL	Input	Vcc1	Mode setting pin		0
OSCR	_	V _{DD1}	Leave open		
OSCC	_	V _{DD1}	Leave open or connect to Vss	1	
OEV, GOE1	Output	Vcc1	Leave open		_
/OEV, /GOE1	Output	Vcc1	Leave open		-
OEVE, GOE2	Output	Vcc1	Leave open		-
/OEVE, /GOE2	Output	Vcc1	Leave open		-
STV, GSTB	Output	Vcc1	Leave open		-
EPEN	Input	Vcc1	Mode setting pin		0
EDI	Input	Vcc1	Connect to Vcc1 or Vss1		_
ECS	Output	Vcc1	Leave open		_
ESK	Output	Vcc1	Leave open		_
EDO	Output	Vcc1	Leave open		_
/STV, /GSTB	Output	Vcc1	Leave open		_
CKV, GCLK	Output	Vcc1	Leave open		_
/CKV, /GCLK	Output	Vcc1	Leave open		-

(2/2)

			Recommended Conn	ection of Unused Pins	
Pin Name	I/O	Power Supply	Parallel Interface	Serial Interface	Note
EXT1	Output	Vcc1	Leave open		_
/EXT1	Output	Vcc1	Leave open		_
EXT2	Output	Vcc1	Leave open		_
/EXT2	Output	Vcc1	Leave open		_
ASW1, RSW	Output	Vcc1	Leave open		_
/ASW1, /RSW	Output	V _{CC1}	Leave open		_
ASW2, GSW	Output	V _{CC1}	Leave open		_
/ASW2, /GSW	Output	Vcc1	Leave open		_
ASW3, BSW	Output	Vcc1	Leave open		_
/ASW3, /BSW	Output	Vcc1	Leave open		_
GUD	Output	Vcc1	Leave open		_
/GUD	Output	V _{CC1}	Leave open		_
XDON	Output	V _{CC1}	Leave open		-
/XDON	Output	V _{CC1}	Leave open		_
PCS	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	_
			Leave it open when in unused	d.	
PCL	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	_
			Leave it open when in unused	d.	
PDA	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	_
			Leave it open when in unused	d	
PCCLK	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	-
			Leave it open when in unused		
/PRESET	Output	V _{CC1}	Connect power supply IC etc.		_
			Leave it open when in unused	<u>d.</u>	
VCOUT	Output	Vcc1	Leave open		_
FR	Output	Vcc1	Leave open		_
CVNL, CVNH,	Output	Vs	Always connect to the capaci	•	-
CVPL, CVPH				open if not using any amplifier	
TVP	Input	Mari	for γ-correction. Connect to V _{SS1}		
		Vcc1			_
TPR TF1, TF2	Input	Vcc1	Connect to Vss1		_
TOUT ₀ to TOUT ₁₉	Input Output	Vcc1	Leave open		_
TOSCO1, TOSCO2	Output	Vcc1	Leave open		
TSTRTST	Input	Vcc1	Connect to Vss1		_
TSTVIHL	Input	Vcc1	Connect to Vss1		_
TOSCI1, TOSCI2	Input	Vcc1	Connect to Vss1		
TOSCSEO1,	Input	Vcc1	Connect to Vss1		_
TOSCSEO2					
TOSCSEI1,	Input	Vcc1	Connect to Vss1		_
TOSCSEI2					
TDELAY ₀ to TDELAY ₂	Input	Vcc1	Connect to Vss1		_
TCLK	Input	Vcc1	Connect to Vss1		

 $\textbf{Note} \ \ \text{O: Connect to } Vcc1 \ \text{or } Vss1, \ \textbf{depending on the mode selected}.$

5. DESCRIPTION OF FUNCTIONS

5.1 CPU Interface

5.1.1 Selection of interface type

The μ PD161802 is able to transfer data via an RGB interface (18-/16-/6-bit) or via either of two CPU interfaces: the i80/M68 parallel interface (18-/16-/8-bit) or a serial interface (8-bit). The following modes can be selected for these CPU interfaces, as set via the PSX, BSW0, and BSW1 pins. Also, the RGB interface becomes valid when NWRGB (R25:D₂) = 1, at which time the bus width is selected according to the BWS2 and BSW3 pin settings.

Although the i80/M68 parallel interface and the serial interface allow writing to both the display data RAM and the registers, the RGB interface can be used only to overwrite the display data RAM.

/WR /RD PSX BWS0 BWS1 /CS RS C86 D7 to D0 SI, SCL Mode D₁₇, D₁₆ D₁₅ to D₈ (R, /W) (E) 18-bit /RD /WR Hi-Z Note L /CS RS C86 D_7 to D_0 L D17, D16 D_{15} to D_{8} parallel (E) (R, /W) /RD /WR 16-bit Hi-Z Note Hi-Z Note /CS C86 L L Н RS D_{15} to D_{8} D7 to D0 parallel (E) (R, /W) /RD /WR 8-bit Hi-Z Note Hi-Z Note Hi-Z Note Н Н /CS RS C86 D₇ to D₀ (R, /W) parallel (E) 8-bit Hi-Z^{Note} Hi-Z Note Hi-Z Note Hi-Z Note SI, SCL Н Н /CS RS Χ Χ serial Other than above Setting prohibited

Table 5-1. CPU Interface Bus Width Selection

Remark X: Don't care

Note Hi-Z: High impedance

Table 5-2. RGB Interface Bus Width Selection

BWS2	BWS3	Mode	RGB01 to RGB05	RGB00	RGB ₁₀ to RGB ₁₅	RGB21 to RGB25	RGB ₂₀				
L	L	18-bit parallel	RGB01 to RGB05	RGB00	RGB ₁₀ to RGB ₁₅	RGB21 to RGB25	RGB ₂₀				
L	Н	16-bit parallel	RGB01 to RGB05	Hi-Z Note	RGB ₁₀ to RGB ₁₅	RGB21 to RGB25	Hi-Z ^{Note}				
Н	L	6-bit parallel	Hi-Z Note	Hi-Z Note	Hi-Z Note	RGB21 to RGB25	RGB ₂₀				
Н	Н	Setting prohibited									

Note Hi-Z: High impedance

5.1.2 Selection of data transfer mode

When the 18-bit parallel interface is selected, the length of 1 pixel is fixed to 18 bits. With the 16-bit or 8-bit parallel interface, however, the length of 1 pixel can be selected from 18 or 16 bits (1 pixel = 16 bits when DTX1 = 0, and 1 pixel = 18 bits when DTX1 = 1).

If the 16-bit or 8-bit parallel interface is selected, therefore, several modes of transferring data to the display RAM are selectable. The mode is selected by using the DTX1 register.

[16-bit parallel interface]

```
<When 1 pixel = 18 bits (DTX1 = 1)>
<1> 16-bit data transfer + 2-bit data transfer
1 pixel = 18-bit data is divided into 16-bit data and 2-bit data for transfer, as shown in Figure 5–3.
<When 1 pixel = 16 bits (DTX1 = 0)>
<2> 16-bit data transfer
```

Display data of 1 pixel is transferred by one transmission as shown in Figure 5–4. Because 1 pixel is 16 bits long, the number of display colors is limited to 65,536.

[8-bit parallel interface]

```
< When 1 pixel = 18 bits (DTX1 = 1)>
<1> Transferring 6-bit data three times
1 pixel = 18-bit data is divided into three 6-bit data for transfer, as shown in Figure 5–6.
```

<When 1 pixel = 16 bits (DTX1 = 0)>

<2> Transferring 8-bit twice

1 pixel is divided into two 8-bit data for transfer, as shown in Figure 5–7. Because 1 pixel is 16 bits long, the number of display colors is limited to 65,536.

1 pixel of the μ PD161802 display RAM consists of 18 bits. If the 16-bit parallel interface is used to transfer 16 bits as 1 pixel (DTX1 = 0), therefore, the data transferred by the CPU (16 bits) runs short by 2 bits, and these 2 bits must be made up for.

For how to do this, refer to Figures 5-4, 5-5 and 5-7.

Table 5-3. Interfaces and Data Transfer Modes

PSX	BWS0	BWS1	BWS2	BWS3	Interfac	e Mode	DTX1	Number of Data of 1 Pixel	Mode of Transferring 1-Pixel Data
		L			18-bit	parallel	Х	40 h:t	18-bit transfer
	L				16-bit parallel		1	18-bit	16-bit + 2-bit transfer
L		Η	Note1	L/H Note1	10-bit parallel		0	16-bit	16-bit transfer
			L/H Note1	L/H ······	8 hit narallel		1	18-bit	Transferring 6 bits three times
	Н	Н			8-bit parallel		0	16-bit	Transferring 8 bits twice
Н	Х	Х			8-bit serial		Х	16-bit	Transferring 8 bits twice
			L	L	18-bit		18-bit	18-bit transfer	
L/H Note2	Н	Н	L	Н	RGB 16-bit	0/1 Note2	16-bit	16-bit transfer	
			Н	L	6-bit		18-bit	Transferring 6 bits three times	

Remark X: Don't care (H or L)

- **Notes 1.** The RGB interface that is shared with the i80/M68 parallel interface or serial interface is selected by inputting low or high level to this pin.
 - 2. The i80/M68 parallel interface or serial interface that is shared with the RGB interface is selected by inputting low or high level to this pin.

Figure 5-1. Relationship between Bus Data and Display RAM Data (18-bit parallel interface)

Data bus side

	18-bit data																	
Dı	17	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D₀
	- :	:								:							:	:
	RAM																	
D	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
	R data G data B data																	
	1 pixel																	

Display RAM side

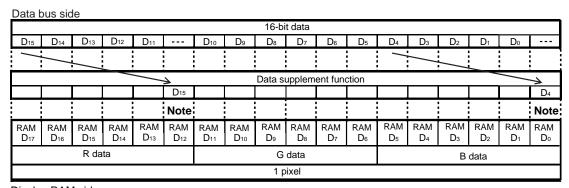
Figure 5–2. Relationship between Bus Data and Display RAM Data (18-bit RGB interface)

Data bus side

	18-bit data																
RGB25	RGB24	RGB23	RGB22	RGB21	RGB ₂₀	RGB ₁₅	RGB14	RGB ₁₃	RGB ₁₂	RGB ₁₁	RGB ₁₀	RGB ₀₅	RGB04	RGB03	RGB02	RGB01	RGB00
:	:	:												:		:	
RAM D17	RAM D16	RAM D15	RAM D14	RAM D13	RAM D ₁₂	RAM D ₁₁	RAM D ₁₀	RAM D9	RAM D8	RAM D ₇	RAM D ₆	RAM D ₅	RAM D4	RAM D3	RAM D ₂	RAM D ₁	RAM Do
	R data G data B data																
	1 pixel																

Display RAM side

Figure 5–3. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode [DTX1 = 1], 16-bit parallel interface)


Data bus side

								16-b	it data							2-bit	data
D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do	D₁	D ₀
																:	:
<u> </u>																	
RAM																	
D17	$egin{array}{c c c c c c c c c c c c c c c c c c c $																
	R data G data B data																
	1 pixel																

Display RAM side

Caution Data D2 to D15 of the second word are treated as invalid data when the 16-bit parallel interface is used.

Figure 5–4. Relationship between Bus Data and Display RAM Data (1-pixel/16-bit mode [DTX1 = 0], 16-bit parallel interface)

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by D₁₅ and D₄ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5-5. Relationship between Bus Data and Display RAM Data (16-bit RGB interface)

Data l	Data bus side																
	16-bit data RGB25 RGB24 RGB23 RGB22 RGB21 RGB15 RGB14 RGB13 RGB12 RGB11 RGB10 RGB05 RGB04 RGB03 RGB02 RGB01																
RGB ₂₅	RGB24	RGB23	RGB22	RGB21		RGB ₁₅	RGB14	RGB ₁₃	RGB ₁₂	RGB ₁₁	RGB ₁₀	RGB ₀₅	RGB04	RGB ₀₃	RGB02	RGB01	
												_					
	Data supplement function																
	RGB25 RGB05																
					Note												Note
RAM D ₁₇	RAM D ₁₆	RAM D ₁₅	RAM D ₁₄	RAM D ₁₃	RAM D12	RAM D ₁₁	RAM D ₁₀	RAM D9	RAM D ₈	RAM D ₇	RAM D ₆	RAM D₅	RAM D4	RAM D ₃	RAM D ₂	RAM D ₁	RAM Do
		R da	ıta					G	data					В	data		
	1 pixel																

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by RGB₂₅ and RGB₀₅ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–6. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode [DTX1 = 1], 8-bit parallel interface)

Data bus side

		6-bit	data					6-bit	data					6-bi	t data		
D 5	D ₄	Dз	D ₂	D ₁	Do	D ₅	D ₄	Dз	D ₂	D ₁	D ₀	D ₅	D ₄	Dз	D ₂	D ₁	D₀
	:								:							:	:
RAM	RAM	RAM	RAM	RAM	RAM	RAM						RAM	RAM	RAM	RAM	RAM	RAM
D17	D16	D15	D14	D13	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀
R data G data B									data								
								1 p	ixel								

Display RAM side

Caution Display data D₆ and D₇ of the 8-bit parallel interface are treated as invalid data.

Figure 5–7. Relationship between Bus Data and Display RAM Data (1-pixel/16-bit mode [DTX1 = 0], 8-bit parallel interface, 8-bit serial interface)

Data bus side 8-bit data 8-bit data D₆ D₄ Dз D_2 D₁ D₀ D₇ D_6 D₄ Dз D_2 Dı D_0 Data supplement function D7 D₄ Note Note RAM D₁₄ D₁₂ D₁₁ D_0 D₁₅ D_9 D₈ D_4 Dз D_2 R data G data B data 1 pixel

Display RAM side

Note When In used 8-bit parallel interface mode, display RAM data D₀ and D₁₂ are supplemented by bit D₇ of the first byte of the bus data and bit D₄ of the second byte of the bus data, and written to the display RAM as 18-bit data.

Figure 5-8. Relationship between Bus Data and Display RAM Data (6-bit RGB interface)

Data bus side

		6-bit	data					6-bit	data					6-bi	t data		
RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀
																:	:
							DAM DAM DAM DAM										
RAM						RAM	RAM	RAM	RAM	RAM	RAM						
D17	D16	D15	D14	D13	D ₁₂	D11	D10	D ₉	D8	D7	D ₆	D₅	D4	Dз	D ₂	D1	D₀
	R data G data								B data								
								1 p	ixel								

Display RAM side

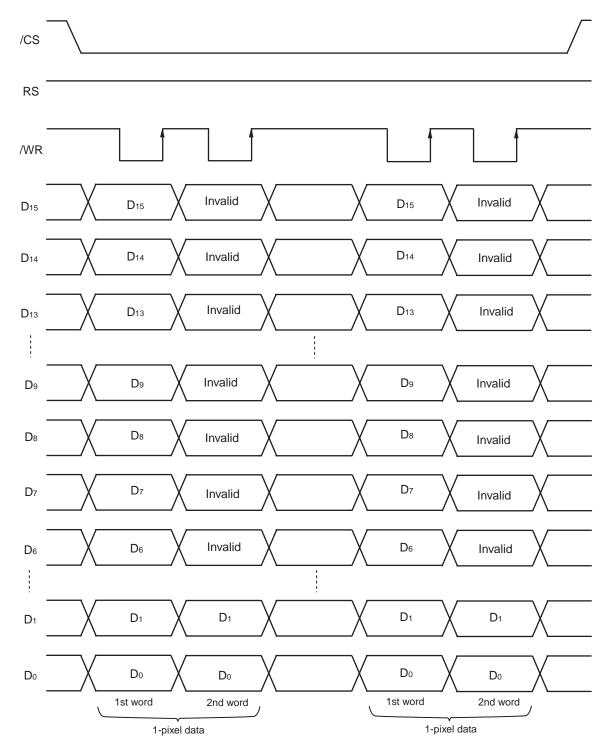
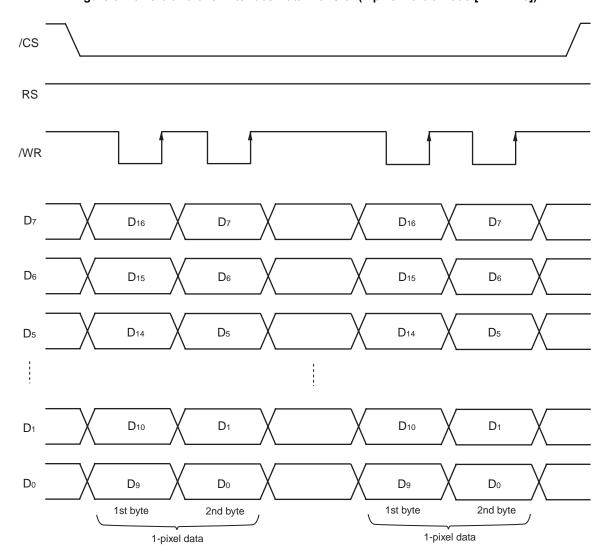



Figure 5–9. 16-bit Parallel Interface Data Transfer (1-pixel/18-bit mode [DTX1 = 1])

Figure 5–10. 8-bit Parallel Interface Data Transfer (1-pixel/16-bit mode [DTX1 = 0])

1-pixel data

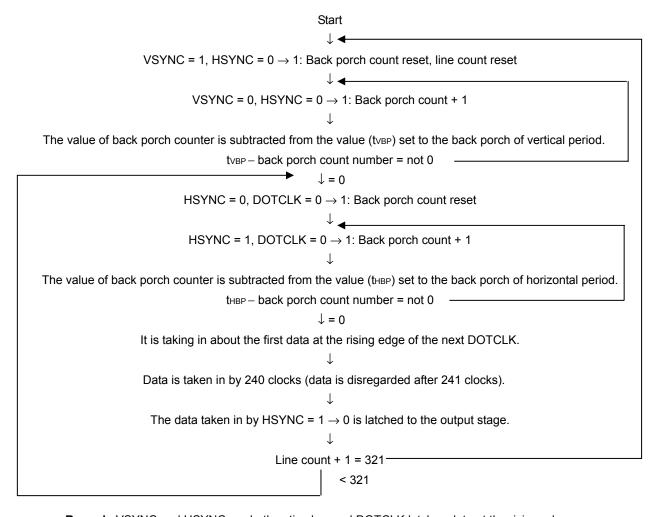
/CS RS /WR D₇ Invalid Invalid Invalid Invalid Invalid Invalid D_6 Invalid Invalid Invalid Invalid Invalid Invalid D_5 D₁₇ D₁₁ D_5 D₁₇ D₁₁ D_5 D₁₆ D_4 D₁₆ $D_{10} \\$ D_4 D₁₀ D₄ l D_1 D₁ D_1 **D**13 D₇ **D**13 D7 D_0 D₁₂ D_6 D_0 D_{12} D_6 D_0 1st byte 2nd byte 3rd byte 1st byte 2nd byte 3rd byte

1-pixel data

Figure 5–11. 8-bit Parallel Interface Data Transfer (1-pixel/18-bit mode [DTX1 = 1])

5.1.3 RGB interface

The μ PD161802 can be directly connected to the RGB interface when bit D₂ of the RGB interface control register (R25 of NWRGB (D₂ bit)) is set to 1.


The HSYNC and VSYNC signals establish synchronization in the horizontal and vertical direction, respectively, and data input to the data bus (RGB₀₀ to RBG₀₅, RGB₁₀ to RGB₁₅, and RGB₂₀ to RGB₂₅) is latched in synchronization with DOTCLK. For the electrical specifications, refer to **9**. **ELECTRICAL SPECIFICATIONS**.

When the RGB interface is selected, the display output timing can be selected from <HSYNC/VSYNC/DOTCLK> or <internal oscillation clock>. It can also be selected whether the data input from the RGB interface is to be written to the display RAM or not.

The mode in which the data input from the RGB interface is not written to the display data RAM and is used for display output is called the through mode (the display output timing is generated by HSYNC/VSYNC/DOTCLK).

The mode in which the data input from the RGB interface is written to the display data RAM for display output is called the capture mode. In the capture mode, the display output timing can be selected from <HSYNC/VSYNC/DOTCLK > or <internal oscillation clock>.

The operation of the μ PD161802 when making display output timing into <HSYNC/VSYNC/DOTCLK> is as follows.

Remark VSYNC and HSYNC are both active low and DOTCLK latches data at the rising edge.

In addition, an RGB data invalid mode is also available. In this mode, data input from a video chip via the RGB interface is ignored. Note that only data input from the RGB interface is ignored in this mode and that access from the i80/M68 parallel interface and serial interface is possible.

However, mode selection operates D₀ to D₂ bits of RGB interface control register (R25) on shown as follows.

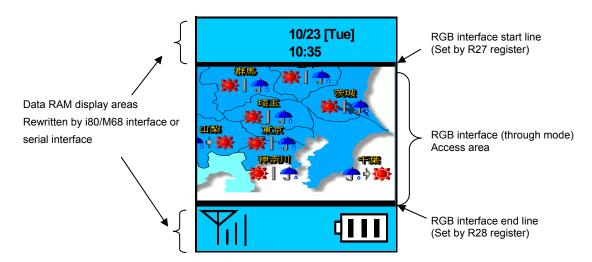
Table 5-4. RGB Interface Mode Selection

	R25			RGB Interface	
D ₂	D ₁	D ₀	Mode Name	Display Output Timing Clock	Writing from RGB Interface to
					Display Data RAM
1	0	0/1	Through mode	HSYNC/VSYNC/DOTCLK	No
1	1	1	Capture mode	HSYNC/VSYNC/DOTCLK	Yes
1	1	0		Internal oscillation clock	
0	X	1	RGB data invalid mode	HSYNC/VSYNC/DOTCLK	No
		0		Internal oscillation clock	

Remark X: Don't care

When capture mode is selected, DOTCLK is used as a write-in signal to a display data RAM. In addition, X addresses of an address pointer are reset by the HSYNC signal, and an increment is carried out by DOTCLK. Y address is reset by the VSYNC signal and an increment is carried out by the level synchronized signal.

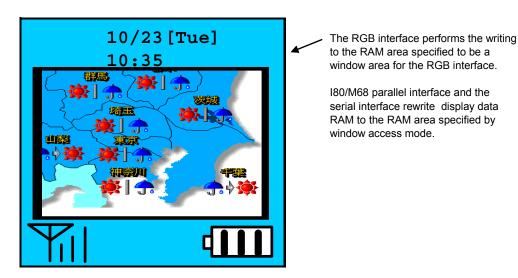
The blanking period can be set by the horizontal back porch register and vertical back porch register. The active levels of HSYNC and VSYNC can be set. In addition, the active level of DOTCLK can also be set. In the through mode, however, the scroll function, partial function, and window access mode cannot be used.


[Example of using RGB interface]

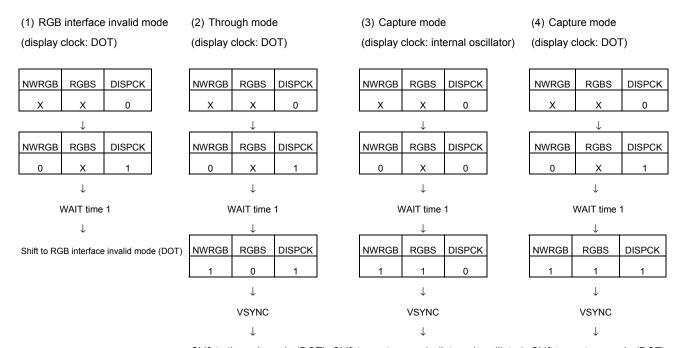
<Through mode>

In the through mode, the area to be displayed by the RGB interface is specified by the RGB interface start line register (R27) and RGB interface end line register (R28). The data written to the display data RAM are displayed in areas other than the RGB interface area.

In the through mode, the display data RAM and registers can be accessed (written or read) by the i80/M68 interface or serial interface when an access is made by the RGB interface.

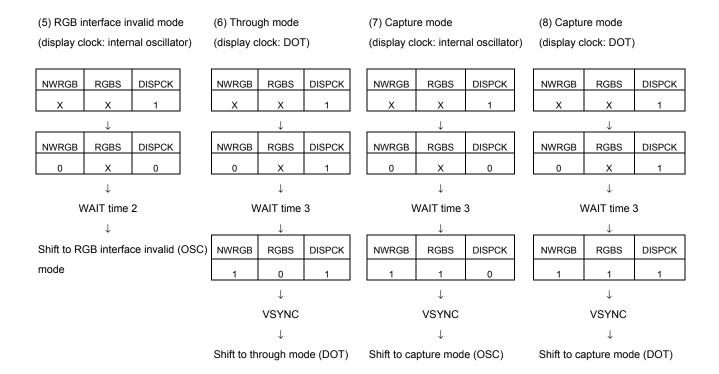

Therefore, an operation such as rewriting the time or antenna by a base band IC while inputting video data from a DSP via the RGB interface can be performed.

<Capture mode>


In the capture mode, the area set in the window access mode is written by the RGB interface (R29 to R32), and a domain which became active with the VLD pin (However, a register setup is confirmed when a register setup and a VLD pin set both up.).

Even in this mode, the i80/M68 parallel interface or serial interface, which are shared with the RGB interface, can be used. Note, however, that data can be written to a register while the RGB interface is accessed, but that the RAM cannot be accessed. Make sure that only one of these accesses is made (shift to the RGB data invalid mode so that video data is not input).

<Notes on using RGB interface>


- <1> Be sure to input data from the RGB interface every frame.
- <2> When changing the mode (e.g., from the through mode to the capture mode, and vice versa), issue defined mode of selection command after once always setting RGB invalid mode. For more details, refer to sequence in the below.
- <3> It is a shift flow from the time of internal oscillation use (DISPCK = 0) to each mode as a display clock.

Shift to through mode (DOT) Shift to capture mode (internal oscillator) Shift to capture mode (DOT)

Remark WAIT time 1: Set sufficient time of one or more frames.

<4> It is a shift flow from the time of DOTCLK use (DISPCK = 1) to each mode as a display clock.

Remarks 1. WAIT time 2: External clock for two frames is required.

- 2. WAIT time 3: External clock + VSYNC for one frame is required.
- <5> Data (back porch period is included) of one line should be set within the period of HSYNC to HSYNC.
- <6> Data (back porch period is included) of one frame should be set within the period of VSYNC to VSYNC.
- <7> Do not set access to R25 register into stand-by mode.
- <8> High-speed RAM write mode cannot be used.
- <9> INC (D₂ bit of R5) function cannot be used about the writing to the display data RAM at the time of capture mode. However, ADX and an ADR function can be used.
- <10> A setup of R6 to R11 is invalid at the time of RGB interface mode (since these are set up of CPU interface).

<11> The period from "the DOTCLK rising after falling of HSYNC" to "the rising of DOTCLK after a HSYNC rising" should not start VSYNC. For more details, refer to the next **Figure 5–12**, **5–13**.

Figure 5–12. Example of HSYNC, VSYNC, DOTCLK Input Timing (both HSYNC and VSYNC are low active)

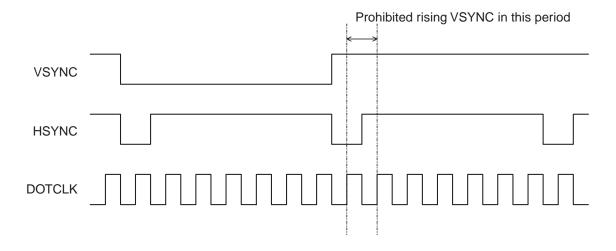
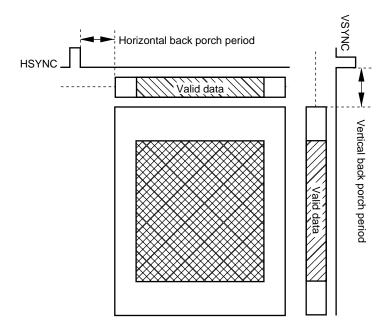



Figure 5–13. HSYNC and VSYNC Input Image Figure (when both HSYNC and VSYNC are high active)

5.1.4 i80/M68 Parallel interface

When the parallel interface has been selected, setting the C86 pin as either H or L enables a direct connection to an i80 series or M68 series CPU (see Table 5–5 below).

Table 5-5.

C86	Mode	/RD (E)	/WR (R, /W)	BWS0	BWS1	D17, D16	D ₁₅ to D ₈	D7 to D0	
				L	L	D17, D16	D ₁₅ to D ₈	D7 to D0	
	M68 series	_	D 444	L	Н	Hi-Z Note	D ₁₅ to D ₈	D7 to D0	
Н	CPU	E	R, /W	Н	Н	Hi-Z ^{Note}	Hi-Z Note	D7 to D0	
				Н	L	Setting prohibited			
				L	L	D17, D16	D ₁₅ to D ₈	D7 to D0	
	i80 series	(5.5	0.445	L	Н	Hi-Z ^{Note}	D ₁₅ to D ₈	D7 to D0	
L	L CPU /R		/WR	Н	Н	Hi-Z Note	Hi-Z Note	D7 to D0	
				Н	L	Setting prohibited			

Note Hi-Z: High impedance. Leave it open.

The data bus signal is identified according to the combination of the RS, /RD (E), and /WR (R, /W) signals, as shown in the following Table 5–6.

Table 5-6.

Common	M68 series CPU	i80 seri	es CPU	Function
RS	R, /W	/RD	/WR	
Н	Н	L	Н	Read display data
Н	L	Н	L	Write display data
L	Н	L	Н	Prohibited
L	L	Н	L	Write command

(1) i80 Series Parallel Interface

When i80 series parallel data transfer has been selected, data is written to the μ PD161802 at L period of the /WR signal. The data is output to the data bus when the /RD signal is L.

/CS1 (CS2 = H)

/WR

/RD

DBn

Hi-Z

Data write

Data read

Figure 5-14. i80 Series Interface Data Bus Status

Remark Hi-Z: High impedance

(2) M68 Series Parallel Interface

When M68 series parallel data transfer has been selected, data is written at the H period of the E signal when the R,/W signal is L. In a data read operation, data is output at the rising edge of the E signal in a period when the R,/W signal is H. The data bus is released (Hi-Z) at the falling edge of the E signal.

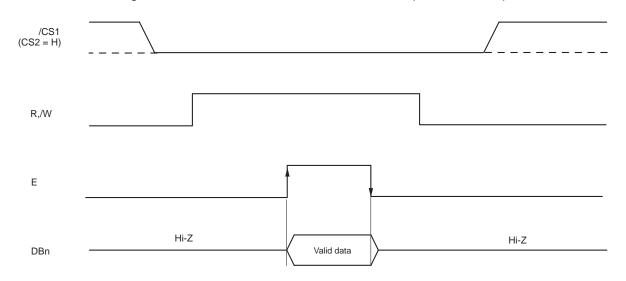


Figure 5-15. M68 Series Interface Data Bus Status (when data read)

Remark Hi-Z: High impedance

5.1.5 Serial interface

/CS

RS

SCK

When the serial interface has been selected, if the chip is active (/CS = L), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read from D_{15} and then from D_{14} to D_0 on the rising edge of the serial clock, via the serial input pin. This data is synchronized on the sixteenth serial clock's rising edge and is then converted to parallel data for processing.

RS input is used to judge serial input data as display data when RS = H the data is display data and when RS = L the data is command data. When the chip enters active mode, RS input is read at the rising edge after every sixteenth serial clock and is then used to judge the serial input data.

The serial interface signal chart is shown below.

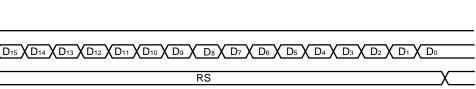


Figure 5–16. Serial Interface Signal Chart

Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings.

- **2.** The data read function is disabled during serial interface mode.
- **3.** When using SCL wiring, take care concerning the possible effects of terminating reflection and noise from external sources. Our recommends checking operation with the actual device.

5.1.6 Chip select

The μ PD161802 has a chip select pin (/CS). The CPU parallel interface and serial interface can be used only when /CS = L. When the chip select pin is inactive, D₀ to D₁₇ are set to high impedance (invalid) and input of RS, /RD, or /WR is not active.

Therefore, keep the chip select pin active for 1 cycle period of data transfer (until a read/write operation has been completed once in the parallel interface mode).

It is not necessary to keep the chip select signal active when successively transferring data. It may be non-active between data transfer operations.

However, note that it is necessary to continue making chip selection active during "a register specification + register value setup" and transmission of "higher rank 8-bit+ low rank 8-bit of RAM" of 16-bit in the case of a serial interface.

5.1.7 Access to display data RAM and internal registers

Figures 5–17 to 5–19 show read/write accesses to the display data RAM and write accesses to internal registers 8-bit, 16-bit and 18-bit parallel interface modes and serial interface mode.

Note that the both display data RAM and registers are not read in the serial interface mode.

When the CPU accessed the μ PD161802, the CPU only has to satisfy the standard requirement of the cycle time (tcyc) and can transfer data at high speeds. Usually, it is not necessary for the CPU to take WAIT time into consideration.

In parallel interface, a high-speed RAM write function, as well as the ordinary RAM write function, is provided for writing data to the display data RAM. By using the high-speed write function, data can be written to the display RAM at an access speed two times faster than that of the ordinary RAM write function. Therefore, applications, such as video display where the display data must be rewritten at high speeds, can be supported. For details, refer to **5.2.4 High-speed RAM write mode**.

No dummy data is necessary for writing data. Dummy data is necessary only when display data is read. This relationship is shown in Figure 5–20.

However, note that even when in write mode of data at high speed for data read mode of read cycle time, this mode equals to normal mode.

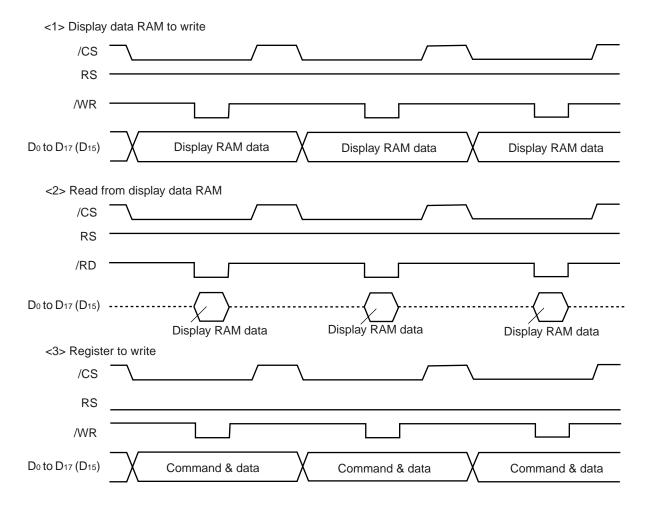


Figure 5-17. Read/Write in 16-/18-Bit Parallel Interface Mode

- Cautions 1. While setting the writing to a register, set it the fixed input of the low level to RS pin. While setting the writing to a register, in the case of 16/18-bit parallel interface, 1 cycle period of write cycle is pointed out.
 - 2. While setting the writing to a display data RAM, set it the fixed input of the high level to RS pin. While setting the writing to a display data RAM, in the case of 16/18-bit parallel interface, 1 cycle period of write cycle is pointed out. However, input signal to RS pin fix up to high level until 2-pixel data transfer ends the writing to a display data RAM at the time of high-speed RAM write mode use.

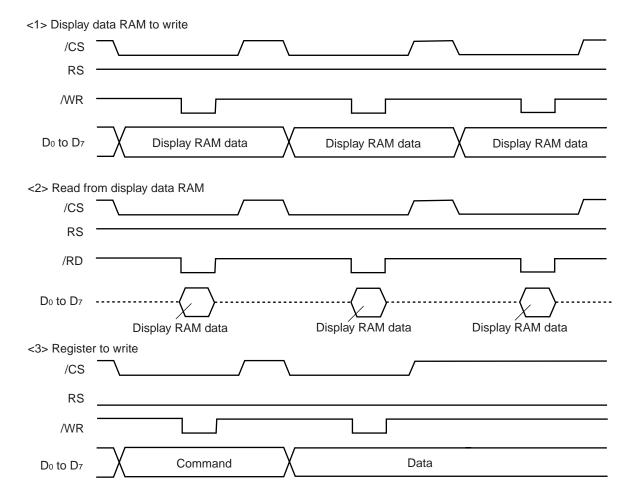
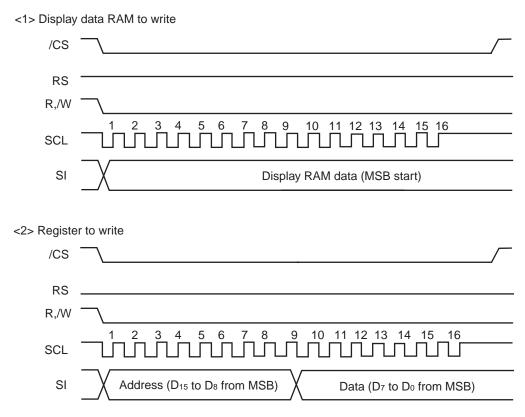



Figure 5-18. Read/Write in 8-Bit Parallel Interface Mode

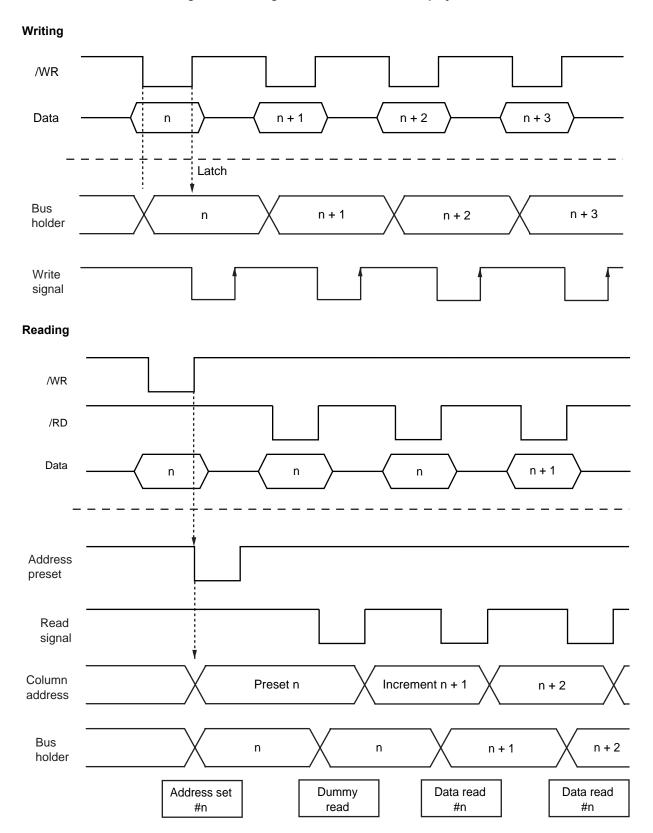

- Cautions 1. While setting the writing to a register, set it the fixed input of the low level to RS pin. While setting the writing to a register, "register address specification " + "register data setup" is pointed out.
 - While setting the writing to display data RAM, set it the fixed input of the high level to RS pin. While setting the writing to display data RAM, a "data transfer for 1 pixel" period is pointed out.
 - 3. When use 8-bit parallel interface, RS pin always start transfer after hard reset release, after set up 100 ns MIN. input of high level.

Figure 5–19. Write in Serial Interface Mode

- Cautions 1. It is necessary to continue making a tip selection active during "register address specification + register data setting" and transmission of "higher rank 8-bit+ low rank 8-bit of RAM" of 16-bit.
 - 2. The period of "register address" + "register data" fix the output to RS pin to low level at the time of the writing to a register.
 - 3. Fix it to the output to RS pin to high level during a 1-pixel data transferring period at the time of the writing to display data RAM.

Figure 5-20. Image of Internal Access to Display RAM

5.1.8 Serial interface for power supply IC control

The μ PD161802 builds in the 16-bit serial interface function, in order to perform control for the external connection IC of a power supply IC etc. The following registers and pins are assigned as an object for this function.

Transfer operation is as follows.

Pin Name		Pin Function
PCS	Chip select	When data is written in the register for power supply control, it will become active "L" and the output of data will be started. Moreover, after data transfer is completed, it returns to inactive "H".
PCL	Serial clock	Serial clock output pin
PDA	Serial data	Serial data output pin. Data is outputted in falling of PCL clock signal.

Power supply IC control register list

OWCI	supply IC control register	liot	I								
							Data	a Bit	1	1	1
Rn	Register	RS	R,/W	DB ₁₅	DB ₁₄	DB13	DB ₁₂	DB ₁₁	DB ₁₀	DB ₉	DB ₈
				DB ₇	DB ₆	DB₅	DB ₄	DB₃	DB ₂	DB ₁	DB ₀
R38	Power supply IC control	0	0	0	0	1	0	0	1	1	0
K30	register 1	U	U	PSD17	PSD16	PSD15	PSD14	PSD13	PSD12	PSD11	PSD10
R39	Power supply IC control	0	0	0	0	1	0	0	1	1	1
K39	register 2	U	U	PSD27	PSD26	PSD25	PSD24	PSD23	PSD22	PSD21	PSD20
R40	Power supply IC control	0	0	0	0	1	0	1	0	0	0
1140	register 3	U	U	PSD37	PSD36	PSD35	PSD34	PSD33	PSD32	PSD31	PSD30
R41	Power supply IC control	0	0	0	0	1	0	1	0	0	1
K41	register 4	U	U				DC1	DC0			
R42	Power supply IC control	0	0	0	0	1	0	1	0	1	0
N42	register 5	Ů		PSD57	PSD56	PSD55	PSD54	PSD53	PSD52	PSD51	PSD50
R60	Power supply IC control	0	0	0	0	1	1	1	1	0	0
Koo	register 6	U	U	PSD67	PSD66	PSD65	PSD64	PSD63	PSD62	PSD61	PSD60
R61	Power supply IC control	0	0	0	0	1	1	1	1	0	1
NOT	register 7	U	U	PSD77	PSD76	PSD75	PSD74	PSD73	PSD72	PSD71	PSD70
R62	Power supply IC control	0	0	0	0	1	1	1	1	1	0
K02	register 8	U	U	PSD87	PSD86	PSD85	PSD84	PSD83	PSD82	PSD81	PSD80
R63	Power supply IC control	0	0	0	0	1	1	1	1	1	1
100	register 9	U	U	PSD97	PSD96	PSD95	PSD94	PSD93	PSD92	PSD91	PSD90
R64	Power supply IC control	0	0	0	1	0	0	0	0	0	0
1704	register 10	U	U	PSDA7	PSDA6	PSDA5	PSDA4	PSDA3	PSDA2	PSDA1	PSDA0
R65	Power supply IC control	0	0	0	1	0	0	0	0	0	1
700	register 11		U	PSDB7	PSDB6	PSDB5	PSDB4	PSDB3	PSDB2	PSDB1	PSDB0

<Transfer operation>

By 3-line serial interface, data is transferred per 16 bits. Shift operation of serial interface is performed after chip select signal output (PCS = L) synchronizing with falling of a serial clock (PCL). The data format to the external connection IC serves as data which is set the 1st byte of transfer data as a command (register number), and is set as a command the 2nd byte. Transfer is performed at MSB first.

The start trigger of serial data transfer is the writing of the data to above-mentioned "power supply IC control" each control register. Writing of the data to each control register starts an output from PCS, PCL, and PDA automatically.

After reset command is inputted, IC connected to the μ PD161802, such as a power supply IC, needs to recognize the 1st byte of data transferred to be a command (index register), and needs to recognize the 2nd byte of data to be data (data register) to a command.

In addition, when performing the writing to the register for power supply control continuously, after pre-serial data transmission is completed, it is necessary to perform.

The continuation writing to a power supply control register should set and perform wait time of minimum 250 µs.

When the data to the register for power supply control is written in during serial data transfer, the data transfer written in data and the register during transfer is not guaranteed.

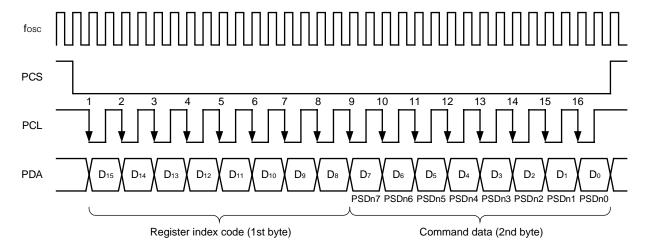


Figure 5–21. Serial Interface Timing Chart for Power Supply IC Control

5.2 Display Data RAM

This RAM stores dot data for display and consists of 4,320 bits (240 x 18) x 320 bits. Any address of this RAM can be accessed by specifying an X address and an Y address.

Display data RAM construction refers to Figure 5–22.

Figure 5-22. Display Data RAM

D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D7	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀
		Rd	ata				G data					Вd	ata				
Pixel 1 (= 1 X address)																	

Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	
Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	
000H	001H	002H	003H	004H	005H	006H	007H	
	Pixel 1	Pixel 1 Pixel 2	Pixel 1 Pixel 2 Pixel 3	Pixel 1 Pixel 2 Pixel 3 Pixel 4	Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5	Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6	Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7	Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8

5.2.1 X address circuit

The X address of the display data RAM is specified by using the X address register (R6) as shown in Figure 5–24. The specified X address is incremented by one each time display data is written or read.

In the X address increment mode, the X address is incremented up to 0EFH. If more display data is written or read, the Y address is incremented, and the X address returns to 000H.

The relationship between the X address and source output can be inverted by the ADX flag of control register 1 as shown in Figure 5–23. After switched ADX, the input data can be rotated 90 degrees and displayed by changing the ADR function and address increment direction between X and Y.

5.2.2 Y address circuit

The Y address of the display data RAM is specified by using the Y address register (R7) as shown in Figure 5–24.

The Y address is incremented each by one when one each time display is written or read and X address is incremented to last address.

When the Y address has been incremented up to 13FH and the X address up to the final address, if further display data is read or written, the X and Y addresses return to 000H.

As shown in Figure 5–23, the relationship between the Y address and gate output can be inverted by the ADR flag of the control register. The data written to the display can be rotated 90 degrees and output by changing the ADX function and address increment direction between X and Y.

Table 5-7. Data Access Control (R5) Setting

INC	Setting
0	Time of data access X directions an address continuing an increment or a decrement is carried out.
1	Time of data access Y directions an address continuing an increment or a decrement is carried out.

Caution When the access direction is changed, be sure to access Display RAM from INC after setting up X address register (R6) and Y address register (R7).

Figure 5-23. Example of 90-Degree Rotation

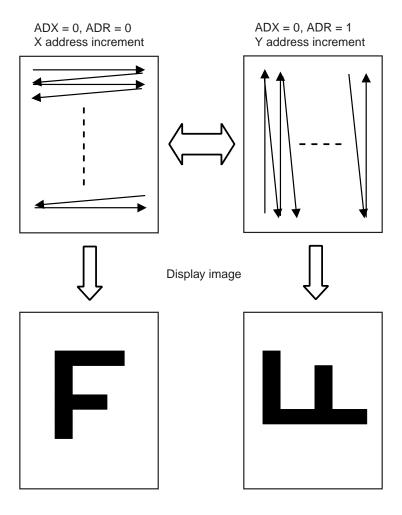
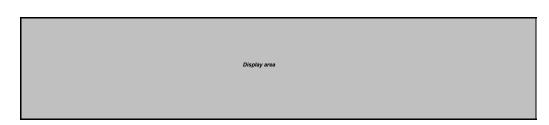



Figure 5–24. The μ PD161802 RAM Addressing

(1) ADX = 0

Source													
output		Y1			Y2		 		Y239			Y ₂₄₀	
X-address	000H			001H			 		0EEH			0EFH	
	D ₁₇ to D ₁₂	D ₁₁ to D ₆	D₅ to D₀	D ₁₇ to D ₁₂	D ₁₁ to D ₆	Ds to Do		D ₁₇ to D ₁₂	D ₁₁ to D ₆	D₅ to D₀	D ₁₇ to D ₁₂	D ₁₁ to D ₆	Ds to Do

Y-ade	dress
ADR = 0	ADR = 1
000H	13FH
001H	13EH
078H	07BH
079H	07AH
07AH	079H
07BH	078H
13EH	001H
13FH	000H

(2) ADX = 1

	urce itput		Y1			Y ₂		 ı		Y ₂₃₉			Y ₂₄₀	
X-add	ress		0EFH			0EEH		 -		001H			000H	
		D17 to D12	D11 to D6	D₅ to D∘	D17 to D12	D11 to D6	D₅ to D∘		D17 to D12	D11 to D6	D₅ to D₀	D17 to D12	D11 to D6	D₅ to D∘

Y-adi	dress
ADR = 0	ADR = 1
000H	13FH
001H	13EH
078H	07BH
079H	07AH
07AH	079H
07BH	078H
13EH	001H
13FH	000H

5.2.3 Arbitrary address area access (window access mode (WAS))

With the μ PD161802, any area of the display RAM selected by the MIN.·X/Y address registers (R8 and R10) and MAX.·X/Y address registers (R9 and R11) can be accessed.

First, select the area to be accessed by using the MIN.-X/Y address registers and MAX.-X/Y address registers. When WAS of data access control register (R5) is set to 1, the window access mode is then selected. The address scanning setting is also valid in this mode, in the same manner as when data is normally written to the display RAM. In addition, data can be written from any address by specifying the X address register (R6) and Y address register (R7).

The data input from the RGB interface in the through mode of the RGB interface cannot be used in the window access mode.

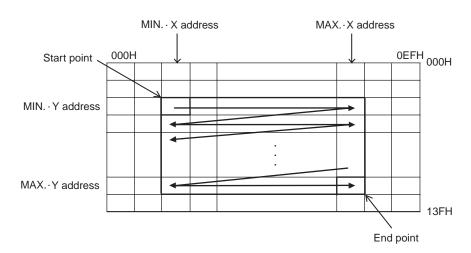


Figure 5-25. Example of Incrementing Address when in Window Access Mode

Cautions 1. When using the window access mode, the relationship between the start point and end point shown in the table below must be established.

Item	Address Relationship
X address	000H ≤ MIN.·X address ≤ X address (R6) MAX.·X address ≤ 0EFH
Y address	000H ≤ MIN.·Y address ≤ Y address (R7) MAX.·Y address ≤ 13FH

- 2. If invalid address data is set as the MIN./MAX.· address, operation is not guaranteed.
- 3. Do not specify any value other than the address value 2n 2 (n = 1 to 120) for the X address in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.

Start Data access control register (R5) (WAS = 1) Sets window access mode. MIN. · X address register (R8) Sets start point. MIN. Y address register (R10) MAX. · X address register (R9) Sets end point. MAX. · Y address register (R11) X address register (R6) Y address register (R7) Write display data Data No Writing complete? Yes End

Figure 5-26. Example of Sequence in Window Access Mode

5.2.4 High-speed RAM write mode

With the μ PD161802, two types of access modes can be selected for accessing the display RAM.

The μ PD161802 has a high-speed RAM write function, as well as an ordinary RAM write function. By using the high-speed write function, data can be written to the display RAM at an access speed two times faster than that of the ordinary RAM write function. Therefore, applications, such as video display where the display data must be rewritten at high speeds, can be supported.

When the high-speed RAM write mode is selected by using BSTR of the data access control register (R5), data is temporarily stored in an internal register of the μ PD161802. When data of 36 bits (18 bits x 2) has been stored in the register, it is written to the display RAM. It is also possible to write the next data to the internal register while the first data is being written to the RAM.

In the high-speed RAM write mode, however, the CPU must transmit data in units of 2 pixel data (1-pixel/18-bit mode: 36-bit, 1-pixel/16-bit mode: 32-bit) have been written to the internal register. If data of less than 2-pixel data is transmitted in the high-speed RAM write mode, this data is not written to the display RAM. Therefore, CPU data is not reflected on the LCD display even if it is transmitted. In this case, the data that is not reflected remains stored in the register. When the next data is transferred, it is written to the register from where the preceding data is stored.

However, if the RS signal is changed (RS = L) in the middle of data transfer, and then asserted active again and when the display data write is set, the register is initialized. Consequently, the data stored in the register is lost.

It is therefore recommended to transmit display data in 2-pixel units when using the high-speed RAM write mode.

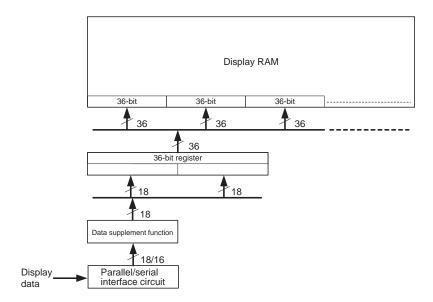
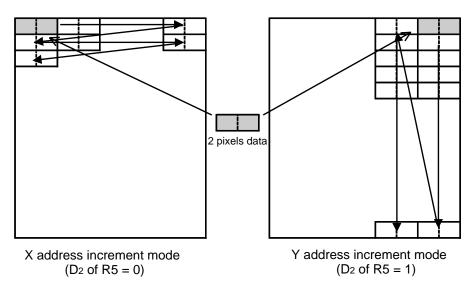



Figure 5-27. Image of Operation in High-speed RAM Write Mode

- Cautions 1. Do not specify any value other than the address value 2n 2 (n = 1 to 120) for the X address register (R6) in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.
 - 2. Burst mode cannot be used about each mode of 8-bit parallel interface, serial interface, and RGB interface
 - 3. This write-in mode is valid only at the time of 16-/18-bit parallel interface package data transfer mode.

Note that it writes in 2 pixels at a time perpendicularly at the time of Y address increment mode as shown in Figure. 5–28.

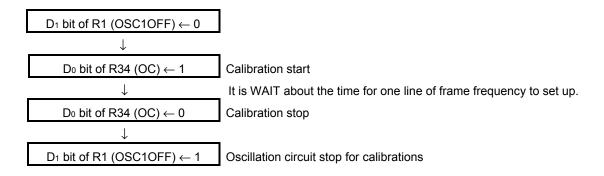
Figure 5–28. Image of Operation Accompanying Difference in the Direction of an Address Increment at the Time of High-speed RAM Write Mode

Writing is set in the direction of X address every 2 pixels.

Writing is set in the direction of Y address every 2 pixels.

Start High speed RAM write mode setting Sets the high-speed RAM write mode. (R5: BSTR [D6] = 1)X address setting register (R6) Note Y address setting register (R7) Write display data 1-pixel (2n - 1) of display data (18 bits) 2-pixel (2n) of Data write sequence display data (18 bits) (writing data in 2-pixel units) No End of data Yes Next processing End

Figure 5-29. Example of Sequence in High-Speed RAM Write Mode (when 18-Bit Parallel Interface)


 $\textbf{Remark} \ n \colon n \geq 1$

Note Do not specify any value other than the address value 2n - 2 (n = 1 to 120) for the X address (R6) in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.

5.3 Oscillator

The μ PD161802 can select from built-in oscillation circuit (OSCSEL = L: type with built-in CR), or an external oscillation circuit (OSCSEL = H: CR external) the oscillation circuit which generates display clock by setup of an OSCSEL pin.

The μ PD161802 also has two CR oscillators (with external R), which generate the display clock. One oscillation circuit (OSC2) is used in order to generate liquid crystal display output timing, and another oscillation circuit (OSC1) is used for it at the time of calibration execution of frame frequency. A calibration execution flow is shown below.

Since the oscillation circuit for calibrations comes to unnecessary after calibration execution, in order to lower power consumption, suspend an oscillation ("1" is set to OSC1OFF of D₁ bit of R1). In addition, when set calibration again once performing a calibration, start oscillation operation again.

Moreover, the frame frequency by which the calibration was carried out is eliminated by command reset. Therefore, when command reset is input, set a calibration again.

Be sure to connect the capacitor of T.B.D. μ F to an OSCR pin with resistance of T.B.D. μ F at an OSCC pin at the time (OSCSEL = H) of external oscillation circuit selection. When internal oscillator has been selected, leave both pins open. (or please make an OSCR pin leave open or make an fixed OSCC pin to low)

5.4 Display Timing Generator

The display timing generator generates the timing signals for the internal timing of the source driver and for the panel gate.

5.4.1 1-line period timing

The μ PD161802 has two drive system timing output circuits. Following preparation of these drive system timing output is carried out, and a usually different timing signal at the time of a drive and a partialness drive is generated.

	Timing Circuit 1	Timing Circuit 2	Remark	
Gate circuit clock signal	GCLK	CKV	Fixed timing	
Gate circuit start pulse signal	GSTB	STV	Fixed timing	
Multi-plectra switch signal 1	RSW	ASW1	R83, R84	
Multi-plectra switch signal 2	GSW	ASW2	R85, R86	
Multi-plectra switch signal 3	BSW	ASW3	R87, R88	
Gate output enable signal 1	GOE ₁	OEV	R79, R80	
Gate output enable signal 2	GOE ₂	OEVE	RGOE2, ROEVE [R77]	
Field selection signal 1	EXT1		R66 D [4:3]	
Field selection signal 2	EXT2			
Extended timing signal 1		EXT1	R89, R90	
Extended timing signal 2		EXT2	R91, R92	

The clock set up by the calibration function is being used for the clock of one-line period, and it is generating all timing by using 40 clocks as a base.

Calibration function is assigning 40 clocks and is adjusting frame frequency to within a time of the one line period set up by calibration time (tcal).

Moreover, the number of clocks of one-line period can be set up by the one-line period clock setting register (R76). The number of clocks set up by R76 is inserted as dummy clock from one-line period 38 clock.

Figure 5–30. 1-line Driving Period (timing circuit 1)

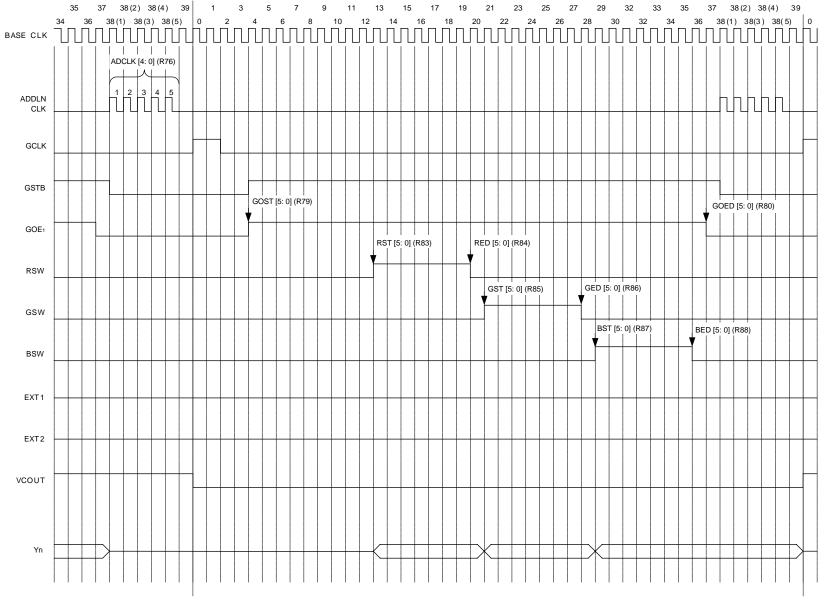
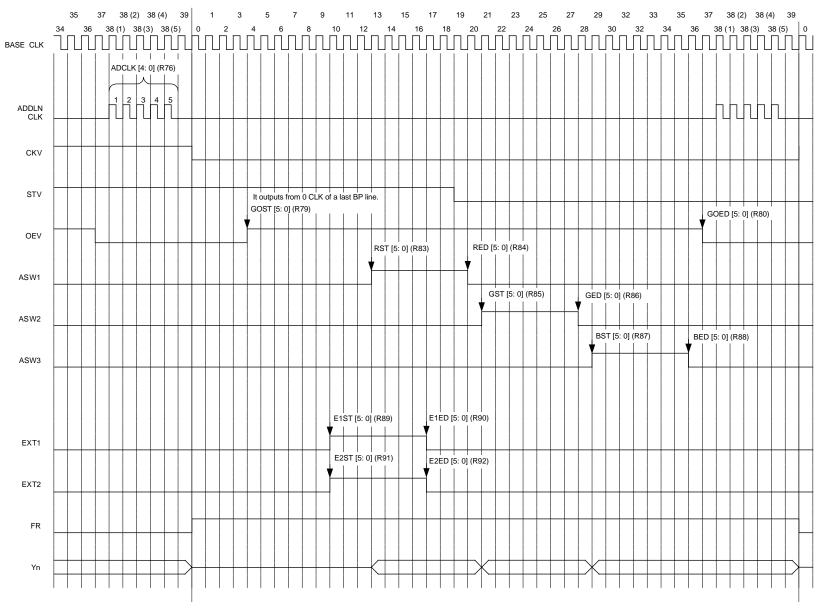
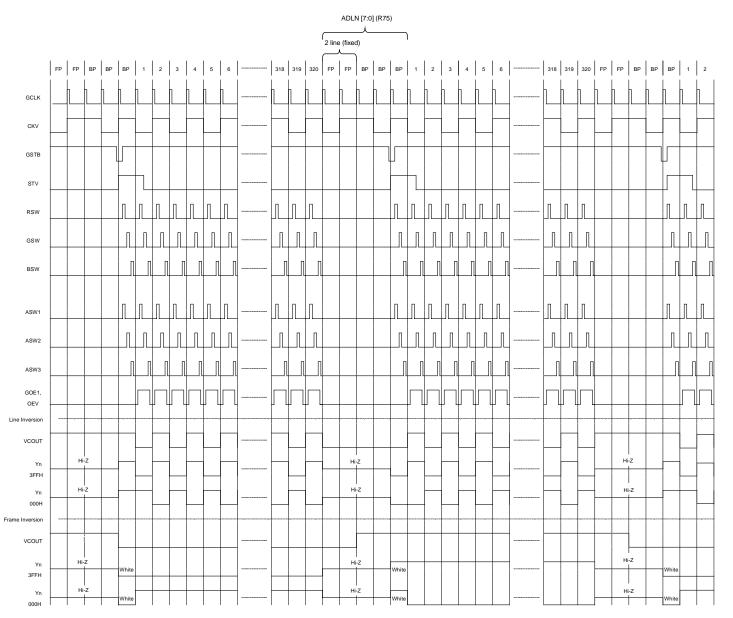



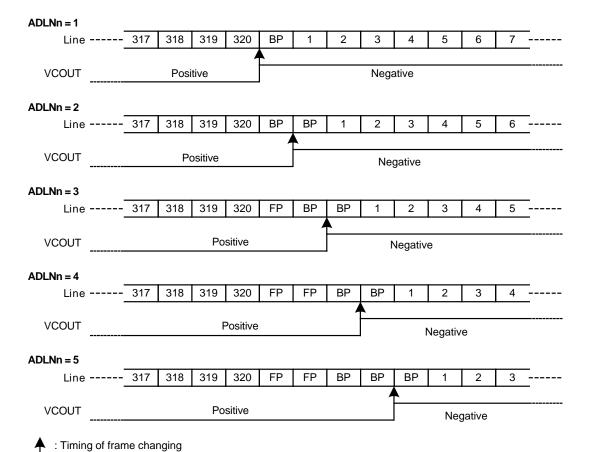
Figure 5-31. 1-line Driving Period (timing circuit 2)



Preliminary Product Information S16871EJ1V0PM

5.4.2 1-frame period timing

The μ PD161802 has two driving system timing output circuits. For details, refer to the **5.4.1 1-line period timing**. Those signals are the timing at the time of ON/OFF and a standby setup etc., and are controlled by different timing control flag. Refer to **5.8 Power Supply Sequence** and **5.9 Standby and Power Supply OFF Sequence**.


Figure 5–32. 1- frame Driving Period

Moreover, the one-frame period is constituted by 320 line + front porch period (FP) + back porch (BP), and the number of lines of a FP + BP period can be set up by the blanking period line setting register (R75: ADLNn). At this time, a frame changes and timing is performed during the back porch of the 1st line. Refer to the following Table and Figure 5–33.

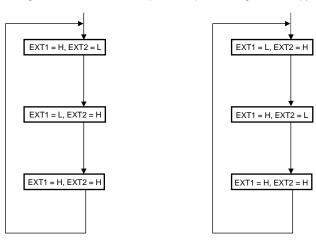
ADLN7	ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	ADLN0	Setting Line Number	
								FP	BP
0	0	0	0	0	0	0	0	Prohibited	
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	2
0	0	0	0	0	0	1	1	2	1
0	0	0	0	0	1	0	0	2	2
0	0	0	0	0	1	0	1	2	3
1	1	1	1	1	1	1	0	2	252
1	1	1	1	1	1	1	1	2	253

Figure 5-33. ADLNn Setting and Frame Change Rate

Preliminary Product Information S16871EJ1V0PM

5.4.3 3-line interlace

The μ PD161802 has 3-line interlace function.


EXT1, EXT2 pin performs the change of normal mode and 3-line interlace mode.

Normal mode: EXT1 = L, EXT2 = L

3-line interlace mode:

The 1st field Source output:
$$0 \rightarrow 3 \rightarrow 6 \rightarrow \dots \rightarrow 315 \rightarrow 318$$

The 2nd field Source output: $1 \rightarrow 4 \rightarrow 7 \rightarrow \dots \rightarrow 316 \rightarrow 319$
The 3rd field Source output: $2 \rightarrow 5 \rightarrow 8 \rightarrow \dots \rightarrow 314 \rightarrow 317$

when gate scan order direction (GUD = H) when gate scan opposite direction (GUD = L)

Cautions 1. When use 3-line interlace function, set 4 over to ALNn.

2. 3-line interlace function should set up TCKSEL (R78 [D7] = 0), and should select the timing circuit 1.

The timing at the time of 3-line interlace mode comes to be shown in the following figures.

Figure 5–34. Display timing (Blanking period = 4 line (ADLNn = 4), the dummy line between the fields = 1 line)

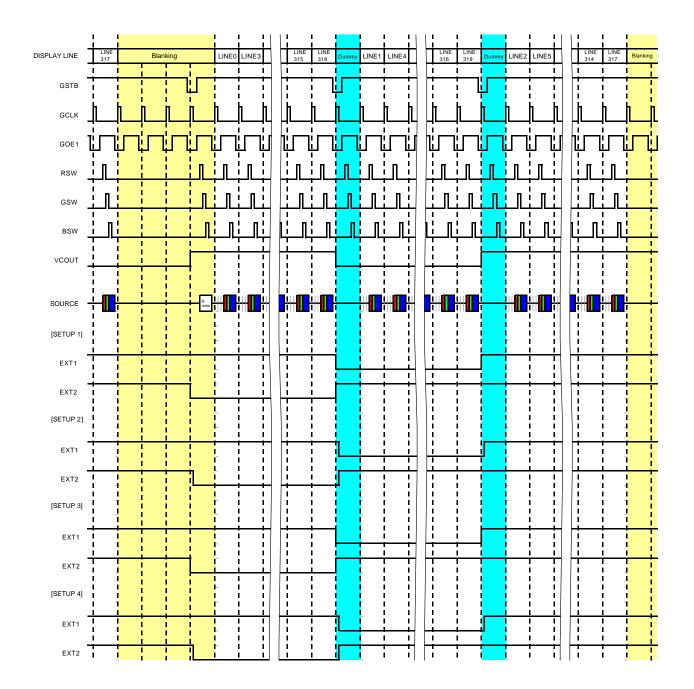


Figure 5–35. Display timing (Blanking period = 4 line (ADLNn = 4), the dummy line between the fields = 2 line)

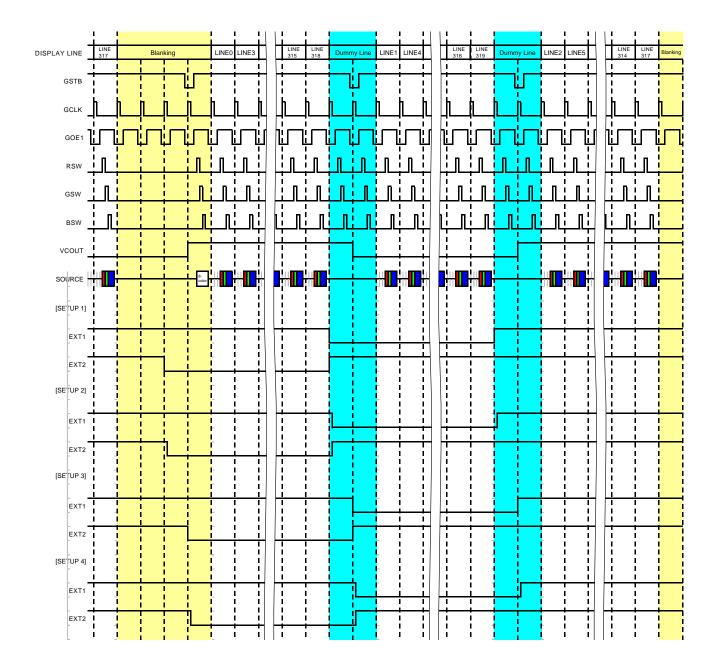


Figure 5–36. Mode change timing (Blanking period = 3-line (ADLNn = 3), the dummy line between the fields = 2 line)

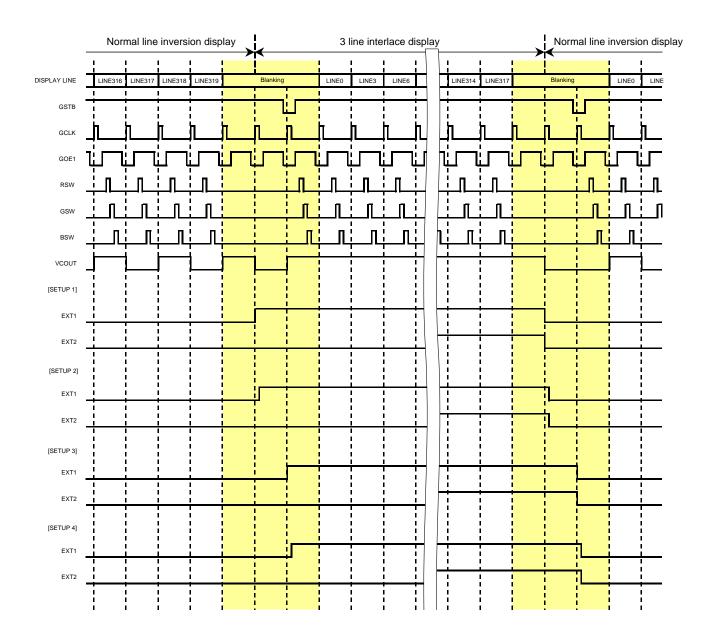


Figure 5–37. Change timing (Blanking period = 4 line (ADLNn = 4), the dummy line between the fields = 2 line)

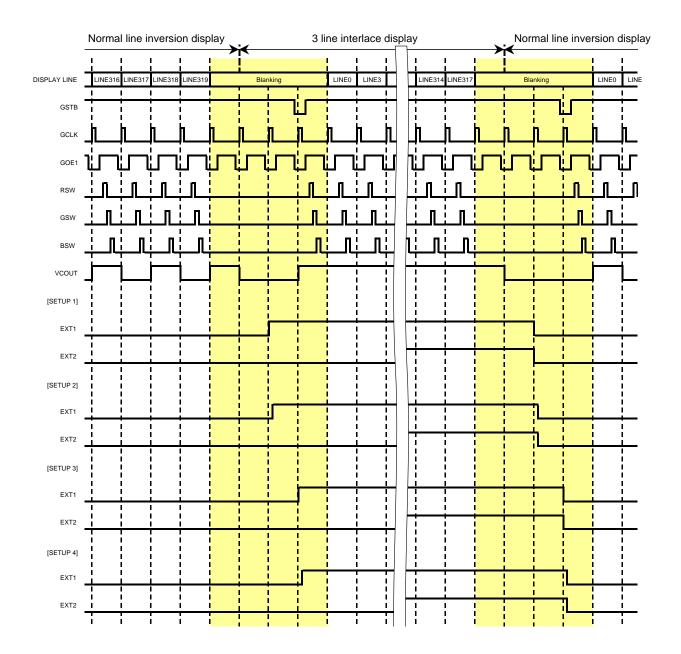
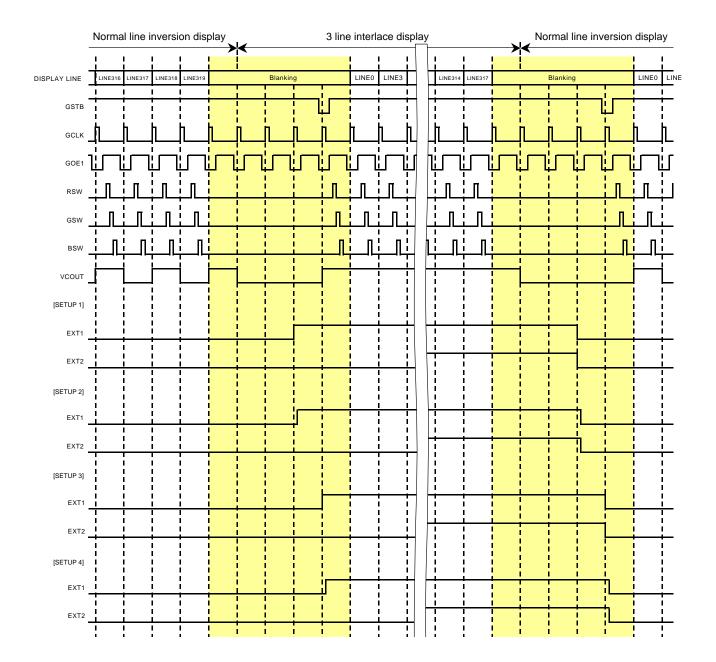



Figure 5–38. Mode change timing (Blanking period = 5 line (ADLNn = 5), the dummy line between the fields = 2 line)

VSYNC # # 6 # HSYNC RGB DATA THOUGH VSYNC HSYNC RGB DATA DISPLAY LINE LINE3 LINE2 GSTB GCLK GOF1 RSW GSW

Figure 5-39. RGB interface timing (Blanking period = 3-line, the dummy line between the fields = 1 line)

Remarks 1. Capture mode: VFP = 2, VSYNC_ACT =1, VBP = 2

Through mode: Setting impossible

2. VBP is setting by the register.

VCOUT

- 3. VFP is setting by the number of times of HSYNC input [VFP] = [the number of times of an 1 frame HSYNC input] [VSYNC_ACT] [VBP setting value] 320
- 4. VSYNC_ACT (VSYNC active period) needs the input beyond 1H.

CAPTURE (when VBP = 3 SET UP) HSYNC RGB DATA THROUGH VFP3 VSYNC 6 HSYNC RGB DATA DISPLAY LINE GSTB GCLK GOE1 RSW GSW BSW VCOUT

Figure 5-40. RGB interface timing (Blanking period = 4 line, the dummy line between the fields = 1 line)

Remarks 1. Capture mode: VFP = 2, VSYNC_ACT = 1, VBP = 3 or VFP = 2, VSYNC_ACT = 2, VBP = 2 or VFP = 3, VSYNC_ACT = 1, VBP = 2

Through mode: VFP = 3, VSYNC ACT = 1, and VBP = 2

- 2. VBP is setting by the register.
- 3. VFP is setting by the number of times of HSYNC input [VFP] = [the number of times of an 1 frame HSYNC input] [VSYNC_ACT] [VBP setting value] 320
- 4. VSYNC_ACT (VSYNC active period) needs the input beyond 1H.

VSYNC HSYNC RGB DATA THROUGH VSYNC HSYNC RGB DATA DISPLAY LINE LINE3 LINE1 GSTB GCLK GOE1 RSW GSW BSW VCOUT SOURCE

Figure 5-41. RGB interface timing (Blanking period = 3-line, the dummy line between the fields = 2 line)

Remarks 1. Capture mode: VFP = 4, VSYNC_ACT = 1, VBP = 2

Through mode: Setting impossible

- **2.** VBP is setting by the register.
- 3. VFP is setting by the number of times of HSYNC input [VFP] = [the number of times of an 1 frame HSYNC input] [VSYNC_ACT] [VBP setting value] 320
- **4.** VSYNC_ACT (VSYNC active period) needs the input beyond 1H.

CAPTURE (when VBP = 3 SETUP) VSYNC HSYNC RGB DATA THROUGH VSYNC HSYNC RGB DATA DISPLAY LINE GSTB GCLK GOE1 RSW GSW SOURCE

Figure 5–42. RGB interface timing (Blanking period = 4 line, the dummy line between the fields = 2 line)

Remarks 1. Capture mode: VFP = 4, VSYNC_ACT = 1, VBP = 3 or VFP = 4, VSYNC_ACT = 2, VBP = 2 or VFP = 5, VSYNC_ACT = 1, VBP = 2

Through mode: VFP = 5, VSYNC_ACT = 1, and VBP = 2

- 2. VBP is setting by the register.
- 3. VFP is setting by the number of times of HSYNC input [VFP] = [the number of times of an 1 frame HSYNC input] [VSYNC_ACT] [VBP setting value] 320
- 4. VSYNC ACT (VSYNC active period) needs the input beyond 1H.

5.5 γ - Curve Correction Power Supply Circuit

D/A

GPL [7: 0]

 V_{D0}

Vss₁

The μ PD161802 includes a γ -curve correction power supply circuit. If the internal γ -curve correction matches the LCD characteristics, no external components are necessary. In addition, this circuit can adjust inclination of γ - and amplitude by register setup while building in each γ -correction resistance by the side of a positive polarity and negative polarity.

Negative Vs Positive Vs GPH [7: 0] VDRP [3: 0] GH Output VHRP [3: 0] VD255 D/A VGR0P [2: 0] VGR1P [2: 0] V15 V49 VGR2P [2: 0] V59

VGR3P [2: 0]

Vss1 — O

GL

VLRP [3: 0]

VSRP [3: 0]

V63

Vss₁

Polarity

Figure 5–43. γ - Curve Correction Power Supply Block Diagram (The following circuit is in each by the side of positive-/negative-polarity)

5.5.1 Amplitude adjustment with internal amplifier

Amplitude adjustment can select two ways, the method of adjusting with internal amplifier, and the method of adjusting by internal resistance. Each register of R44 (GPH [7:0]), R45 (GNH [7:0]), R46 (GPL [7:0]), and R47 (GNL [7:0]) performs adjustment with amplifier. Refer to **Figure 5–44**.

Figure 5-44. Amplitude Adjustment

(This figure is a circuit by the side of positive-polarity. Use GPH reading it as GNH, GPL to GNL, VPH to VNH, and VPL to VNL if negative-polarity side's reading)

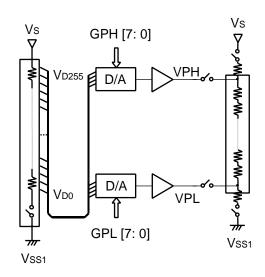
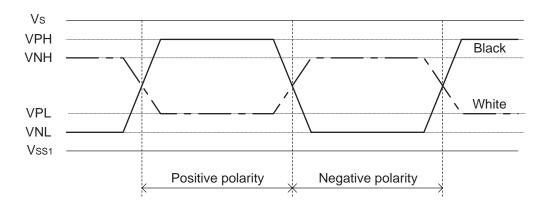



Figure 5–45. Relationship of TFT Drive Voltage (normally white)

	Drive Level	Setting Register					
VPH	Positive polarity, black	Contrast value setting register 1	R44				
VNH	Negative polarity, white	Contrast value setting register 2	R45				
VPL	Positive polarity, white	Contrast value setting register 3	R46				
VNL	Negative polarity, black	Contrast value setting register 4	R47				

The value of each amplifier output can be expressed as follows and the value of β can be set as shown in Table 5–9 and 5–10 by using the contrast value registers (R44, R45, R46, and R47)

VNL, VPL, VNH, VPH = $(\beta \div 256) \times Vs$

Caution The usable range in which each output level of VPH, VNH, VPL, and VNL can be set depends on the γ -curve.

Table 5–8. γ - Contrast Value Setting and Electronic Volume Register β Setting 1 (VPH, VNL)

R44	GPH7	GPH6	GPH5	GPH4	GPH3	GPH2	GPH1	GPH0	β value Setting or
R45	GNH7	GNH6	GNH5	GNH4	GNH3	GNH2	GNH1	GNH0	Status Setting
000H	0	0	0	0	0	0	0	0	Fixed to Vs (amplifier OFF)
001H	0	0	0	0	0	0	0	1	255
002H	0	0	0	0	0	0	1	0	254
003H	0	0	0	0	0	0	1	1	253
									-
0FEH	1	1	1	1	1	1	1	0	2
0FFH	1	1	1	1	1	1	1	1	1

Table 5–9. γ - Contrast Value Setting and Electronic Volume Register β Setting 2 (VPL, VNL)

R46	GPL7	GPL6	GPL5	GPL4	GPL3	GPL2	GPL1	GPL0	β value Setting or
R47	GNL7	GNL6	GNL5	GNL4	GNL3	GNL2	GNL1	GNL0	Statement Setting
000H	0	0	0	0	0	0	0	0	Fixed to Vss1 (amplifier OFF)
001H	0	0	0	0	0	0	0	1	1
002H	0	0	0	0	0	0	1	0	2
003H	0	0	0	0	0	0	1	1	3
0FEH	1	1	1	1	1	1	1	0	254
0FFH	1	1	1	1	1	1	1	1	255

5.5.2 Amplitude adjustment by built-in resistance

The 4-bit data set as registers R48 and R52 sets amplitude adjustment by built-in resistance. Refer to Figure 5-46.

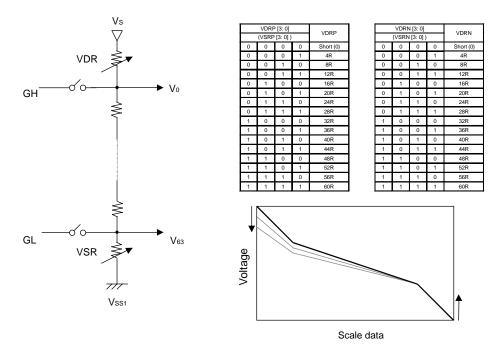


Figure 5-46. Amplitude Adjustment

5.5.3 Inclination adjustment

Internal resistance also adjusts inclination adjustment. R49 and R53 registers set adjustment. Refer to Figure 5-47.

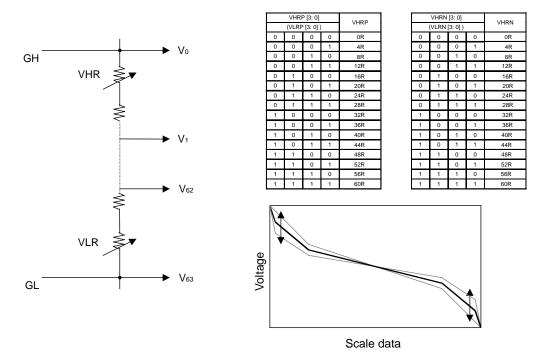


Figure 5–47. Inclination Adjustment

5.5.4 Fine tuning adjustment

Internal resistance also sets fine tuning. Please adjust by R50, R51, R54 and R55 register. Refer to Figure 5–48.

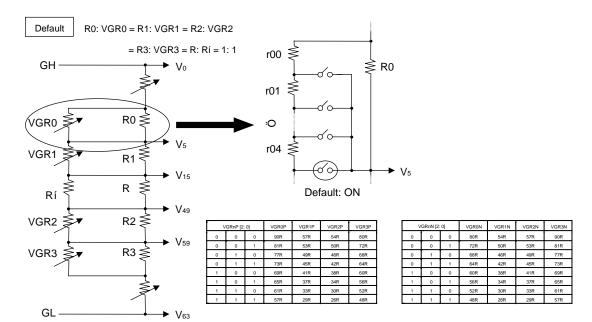


Figure 5-48. Fine Tuning

5.6 Partial Display Mode

The μ PD161802 is provided with a function that allows sections within the panel to be displayed separately (partial display mode). The start line of the area to be displayed in partial display mode is set using the partial display area start line register (R20, R21), the number of lines in the area to be displayed is set using the partial non-display area line count register (R22, R23), and the color of the area not to be displayed is set using the partial non-display area setting register (R17). If "1" is set in the partial display area line count registers (R22, R23), the partial display areas each become 1 line. If "0" is set, there are no partial display areas but only normal display areas.

The non-display area indicated by R20 and R22 is called Partial 1, and the non-display area indicates by R21 and R23 is called Partial 2. The Partial 2 setting is enabled only when the Partial 1 setting has been performed (when R22 \neq 0). Therefore, to set only one area as a non-display area, perform only the setting for Partial 1.

Low power consumption cannot be achieved if only the partial mode is set. If low power consumption is required, the mode must be switched to the 8-color mode.

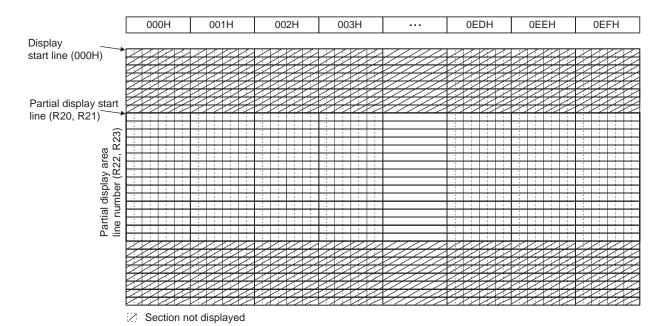


Figure 5-49. Partial Display Mode

Cautions 1. The "scroll step count register (R16)" command is ignored in the partial display mode.

- 2. The specified partial areas must not directly overlap, and the partial 1 area and partial 2 area must be separated by at least one line. If the areas overlap, only the partial 1 setting are valid, and partial display is not performed for the partial 2 area. In addition, the last line (320 lines: 13FH) and the start line (1 line: 000H) have become continuously in address. Therefore, partial the non-displaying area for 1 line is required also among these lines.
- 3. When setting the partial display areas, be sure to observe the following relationship. "000H" \leq R20 (R21)
 - R22 (R23) ≤ "13FH"
- 4. By GSEL (R43:D₄) = 1 setup, it does not become low power consumption in 8-color mode when built-in γ output adjustment circuit use.

5.6.1 Partial display, non-display area driving

The μ PD161802 can select drive of a non-displaying area by setting of PT1, PT0 [R78] and GSM at the time of a partial display as follows.

Table 5-10. Driving Output Pin and State of Driving (1/2)

GSM	PT1	PT0	GOE1	R/G/BSW	S	Remark		
					Non-display start 2	Other non-display line		
0	0	0	Normal output	Normal output	8-color specification color ^{Note}	-	Normal partial driving	
	0	1	L level fixed	Normal output	8-color specification color ^{Note}	←		
	1	0	L level fixed	Normal output	Vss	←		
	1	1	L level fixed	Normal output	8-color white display	Hi-Z	Non-refresh driving 1	
1	0	0	L level fixed	Normal output	Hi-Z	Hi-Z	Non-refresh driving 2	
	Except	above	Prohibited setting					

Note The color specified by PSEL (R17:D₃), and RGR (R17:D₂), PGG (R17:D₁) and PGB (R17:D₀)

Table 5-11. Driving Output Pin and State of Driving (2/2)

GSM	PT1	PT0	OEV	ASW1 to	o ASW3	S	n	Remark		
				Non-display	Other non-	Non-display	Other non-			
				start 2 line	display line	start 2 line	display line			
0	0	0	Normal	Normal	Normal	8-color	\leftarrow	Normal partial		
			output	output	output	specification color Note		driving		
	0	1	L level fixed	Normal	Normal	8-color	\leftarrow			
				output	output	specification color Note				
	1	0	L level fixed	Normal	Normal	Vss	←			
				output	output					
	1	1	L level fixed	Normal output	L level fixed	8-color white display	Hi-Z	Non-refresh driving 1		
1	0	0	L level fixed	Normal	Normal	Hi-Z	Hi-Z	Non-refresh driving 2		
				output	output					
	Except	above		Prohibited setting						

Note The color specified by PSEL (R17:D₃), and RGR (R17:D₂), PGG (R17:D₁) and PGB (R17:D₀)

5.6.2 Partial display, non-display area, and normal partial driving

During partial display mode or when GSM = 0, the μ PD161802 is set to normal partial drive mode whenever the settings for PT1 and PT0 are anything other than PT1 = 1 and PT0 = 1.

Normal partial drive mode is the output mode for non-display areas set via the PT1 and PT0 bits, and each frame is driven during this mode. When the settings for PT1 and PT0 are anything other than PT1 = 0 and PT0 = 0, the OEV signal is fixed at low level output so the displayed data in the panel's non-display area cannot be overwritten.

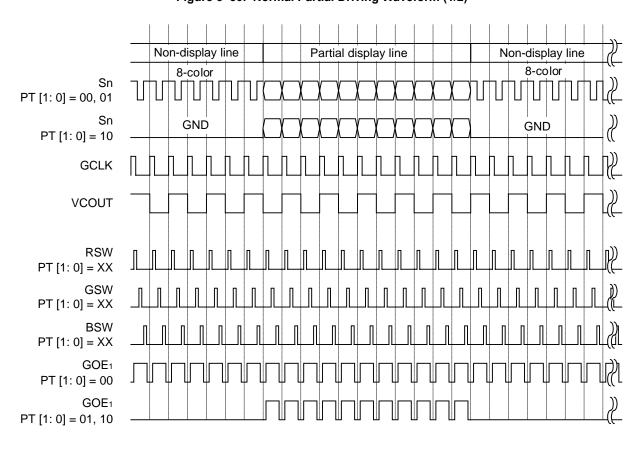


Figure 5-50. Normal Partial Driving Waveform (1/2)

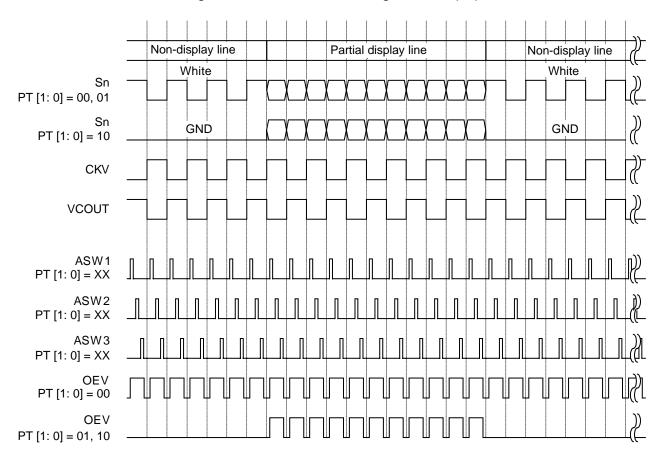


Figure 5-50. Normal Partial Driving Waveform (2/2)

5.6.3 Partial display, non-display area, and non-refresh driving

The μ PD161802 can select the non-refreshing drive of a partial a non-displaying area by setting it as GSM = 0, PT1 = 1, PT0 = 1 or GSM = 1, PT1 = 0 and PT0 = 0 at the time of partial display.

This drive is the cycle set up by REFM [2:0] (R68: D₆ to D₄) with REFB [3:0] (R68: D₃ to D₀) in the non-refreshing frame which stops a source output and operation of a gate, and the refreshment frame which carries out a source white level output (normally white panel) and a gate normal scan, and drives partial a non-displaying area.

Figure 5-51. Non-refresh Driving, Frame Cycle Switching Timing

Number of "Non-refresh frame" cycle = REFB [3: 0] x REFM [2: 0]

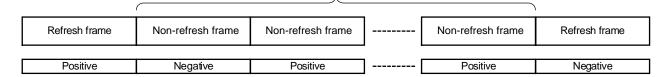


Table 5-12. Non-refresh Driving Frame Basic Cycle

REFB3	REFB2	REFB1	REFB0	Setting Value
0	0	0	0	Only non-refresh driving cycle
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
	1			
1	1	1	0	14
1	1	1	1	15

Table 5-13. Non-refresh Driving Frame Basic Cycle Multiple Setting

REFM2	REFM1	REFM0	Setting Value
0	0	0	2
0	0	1	4
0	1	0	8
0	1	1	16
1	0	0	32
1	0	1	64
1	1	0	128
1	1	1	256

Figure 5–52. Example of Non-refresh Driving Output Waveform (PT1 = 0, PT0 = 0) (1/2)

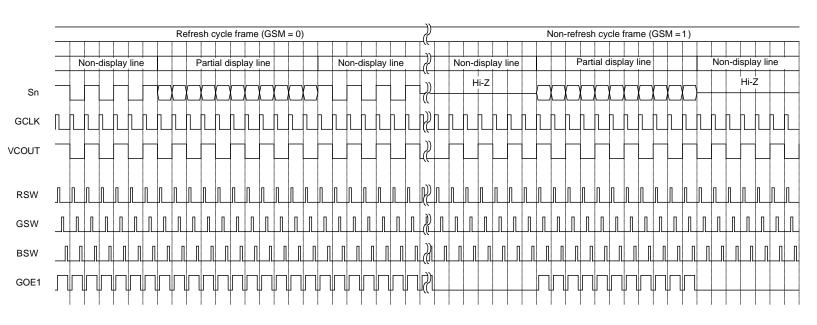


Figure 5–52. Example of Non-refresh Driving Output Waveform (PT1 = 0, PT0 = 0) (2/2)

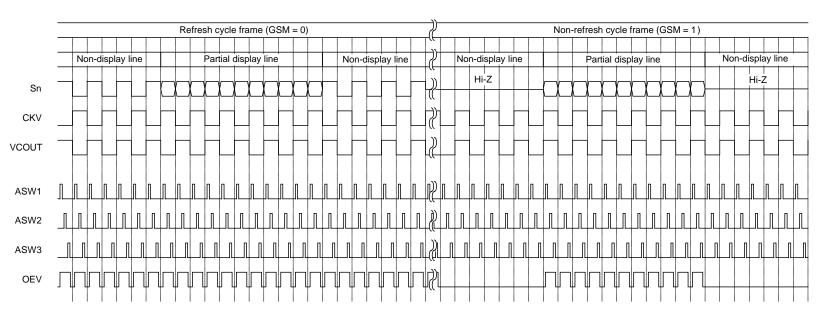
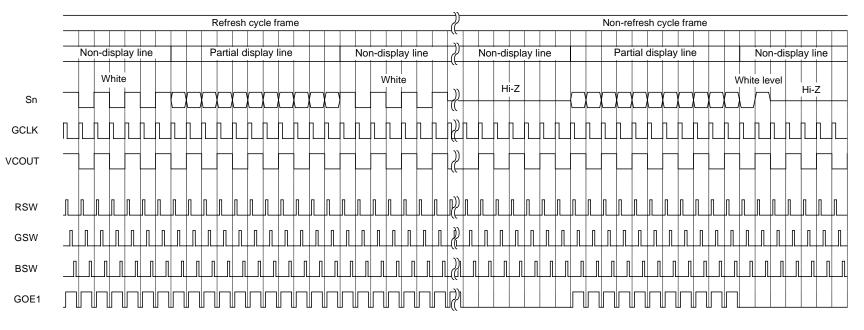
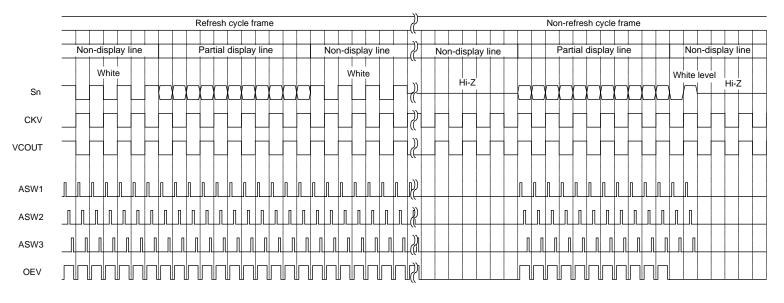


Figure 5-53. Example of Non-refresh Driving Output Waveform (GSM = 0, PT1 = 1, PT0 = 1) (1/2)

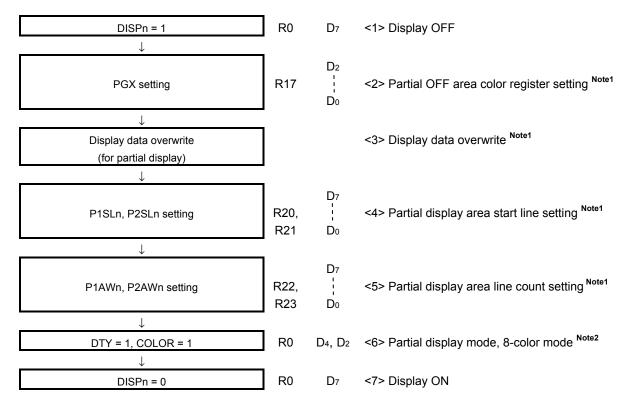
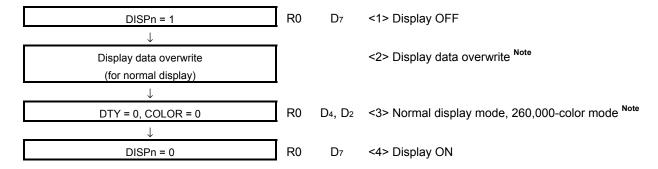


Figure 5-53. Example of Non-refresh Driving Output Waveform (GSM = 0, PT1 = 1, PT0 = 1) (2/2)

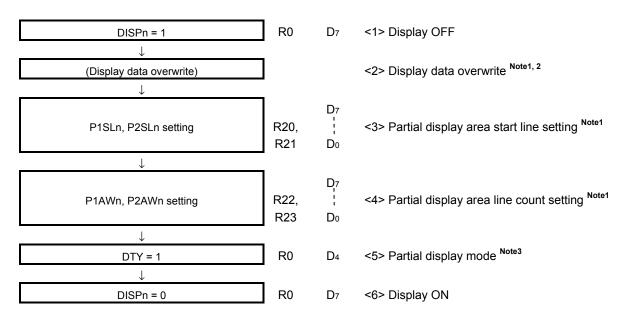
The following sequence is recommended to avoid display malfunction when switching from normal display mode to partial display mode and vice versa.

(1) Recommended sequence for switching from normal display mode to partial display mode



Notes 1. <2> to <5> can be executed in any order.

2. <6> must be executed after <4> and <5> have been set.



(2) Recommended sequence for switching from partial display mode to normal display mode

Note <2> to <3> can be executed in any order.

(3) Recommended sequence for switching from partial display mode to partial display mode (switching the partial display area)

Notes 1. <2> to <4> can be executed in any order.

- 2. Execute <2> only when necessary.
- 3. <5> must be executed after <3> and <4> have been set.

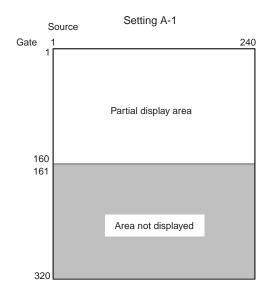
(4) Partial display setting examples

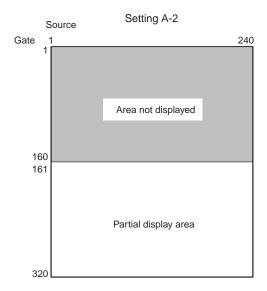
Setting A-1

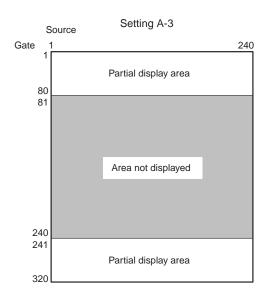
Register	Setting Value	Details of Setting Value	
Partial display area start line register (R20, R21)	000H Specifies Y address 000H		
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines	

Setting A-2

Register	Setting Value	Details of Setting Value		
Partial display area start line register (R20, R21)	0A0H	Specifies Y address 0A0H		
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines		


Setting A-3


Register	Setting Value	Details of Setting Value	
Partial display area start line register (R20, R21)	0EFH Specifies Y address 0EFH		
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines	


Setting A-4

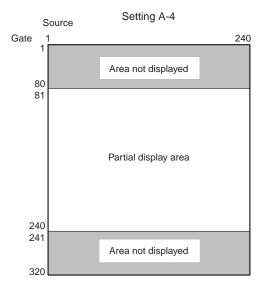

¥				
Register	Setting Value	Details of Setting Value		
Partial display area start line register (R20, R21)	050H	Specifies Y address 050H		
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines		

Figure 5-54. Partial Display Setting

5.7 Panel Scroll

The μ PD161802 has a panel scroll function. Any area of the panel can be scrolled by using the scroll area start line register (R14), scroll area line count register (R15), and scroll step count register (R16) to set the Y address of the top line of the area to be scrolled, the count of lines of the area to be scrolled, and the scroll step number, respectively. Note that in partial mode, the panel scroll function is disabled.

Table 5-14. Scroll Area Start Line Register (R14)

SSL8	SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSL0	Start Line Y Address
0	0	0	0	0	0	0	0	0	000H
0	0	0	0	0	0	0	0	1	001H
0	0	0	0	0	0	0	1	0	002H
0	0	0	0	0	0	0	1	1	003H
				\rightarrow					↓
1	0	0	1	1	1	1	0	1	13DH
1	0	0	1	1	1	1	1	0	13EH
1	0	0	1	1	1	1	1	1	13FH

Table 5–15. Scroll Area Line Count Register (R15)

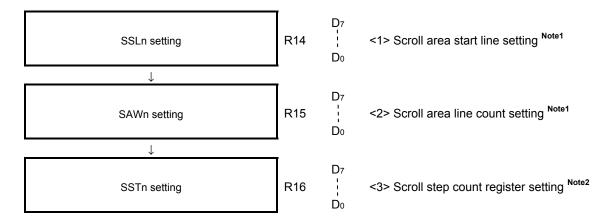

SAW8	SAW7	SAW6	SAW5	SAW4	SAW3	SAW2	SAW1	SAW0	Scroll Area Line Number	
0	0	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	1	2	
0	0	0	0	0	0	0	1	0	3	
0	0	0	0	0	0	0	1	1	4	
				\downarrow					<u> </u>	
1	0	0	1	1	1	1	0	1	318	
1	0	0	1	1	1	1	1	0	319	
1	0	0	1	1	1	1	1	1	320	

Table 5-16. Scroll Step Count Register (R16)

SST8	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0	Scroll Area Line Number	
0	0	0	0	0	0	0	0	0	0 (No scroll)	
0	0	0	0	0	0	0	0	1	1	
0	0	0	0	0	0	0	1	0	2	
0	0	0	0	0	0	0	1	1	3	
				\downarrow					<u></u>	
1	0	0	1	1	1	1	0	1	317	
1	0	0	1	1	1	1	1	0	318	
1	0	0	1	1	1	1	1	1	319	

Scrolling must be set using the following sequence.

(1) Recommended scroll sequence

Notes 1. <1> to <2> can be executed in any order.

2. <3> must be executed after <1> and <2> have been set.

Remark Set SSTn to 000H to disable the scroll operation. No particular sequence is required for this.

Cautions 1. If the sum of the values of SSLn and SAWn is 320 (13FH) or over, it is invalid (no scroll operation).

2. Set the step number SSTn so that it does not exceed the line number SAWn. If a value exceeding SAWn is set, it will be invalid (no scroll operation).

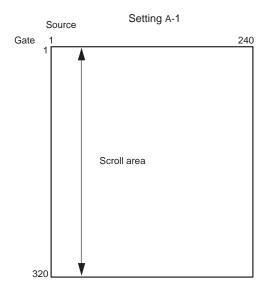
(2) Scroll setting examples

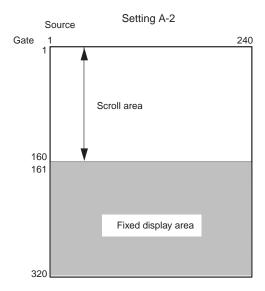
Setting A-1

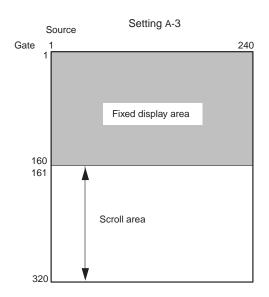
Register	Setting Value	Details of Setting Value
Scroll area start line register (R14)	000H	Sets Y address 000H
Scroll area line count register (R15)	13FH	Sets an area of 320 lines

Setting A-2

Register	Setting Value	Details of Setting Value	
Scroll area start line register (R14)	000H	Sets Y address 000H	
Scroll area line count register (R15)	09FH	Sets an area of 160 lines	


Setting A-3


Register	Setting Value	Details of Setting Value	
Scroll area start line register (R14)	0A0H	Sets Y address 0A0H	
Scroll area line count register (R15)	09FH	Sets an area of 160 lines	


Setting A-4

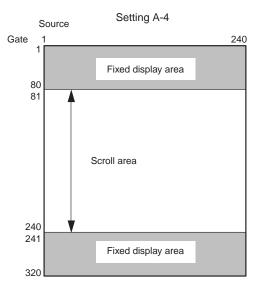
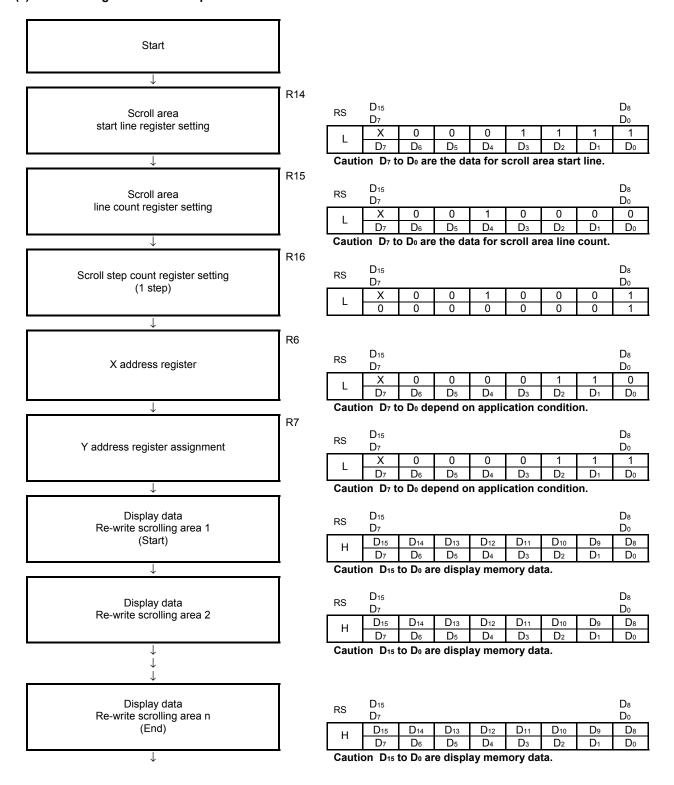

Register	Setting Value	Details of Setting Value	
Scroll area start line register (R14)	050H	Sets Y address 050H	
Scroll area line count register (R15)	09FH	Sets an area of 160 lines	

Figure 5-55. Display Scroll Setting



(3) Scroll setting flowchart example

 D_8

 D_0

D₈

 D_0

0

D₀

 D_8

 D_0

D₈

 D_0

D₈

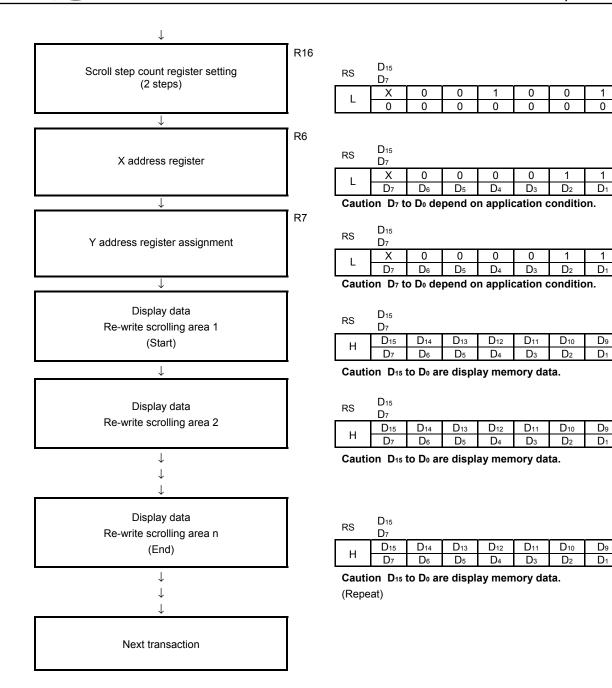
Do

 D_8

 D_0

D₈

 D_0

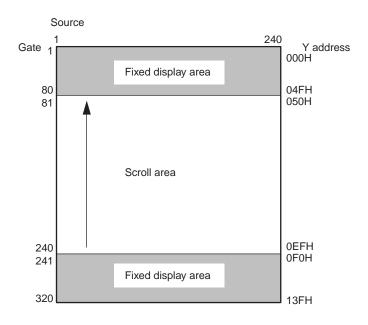

 D_8

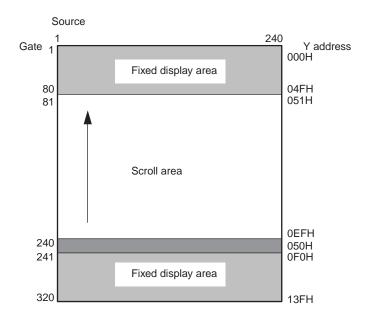
 D_0

D₈

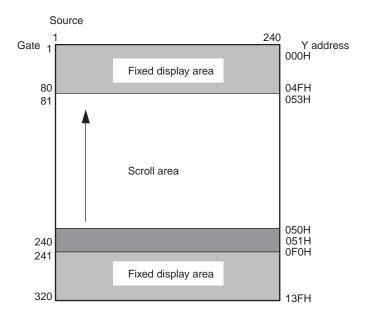
 D_0

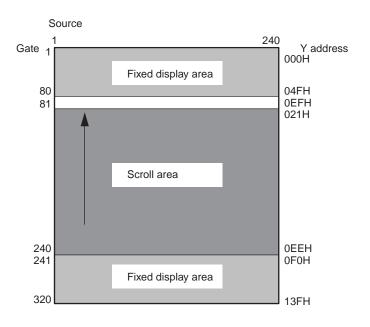
Do



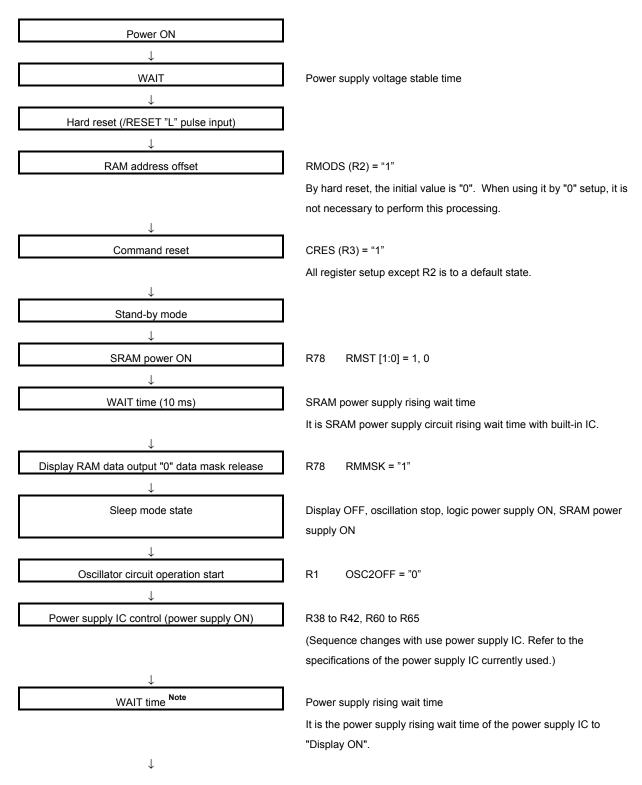

(4) Scroll function example

Scroll area start line register (R14): 03CH Scroll area line count register (R15): 077H


(a) Scroll step count register setting (R16): 000H


(b) Scroll step count register setting (R16): 001H

(c) Scroll step count register setting (R16): 002H


(d) Scroll step count register setting (R16): 076H

5.8 Power Supply Sequence

The power ON supply sequence of the μ PD161802 recommends the sequence shown below.

Note Set up the control system register flag of the signal actually used on a panel.

Panel display signal control		
Multi-plectra switch signal control	R93	RGBW = "1"
(RSW, GSW, BSW L fixed: Only OE2 control mode) Note		
Discharge signal control (GOE2 or XDON) Note	R77	RGOE2 = "0" or RXDON = "0"
Source output normal operation (Vss output)	R77	RSOUT = "1"
Gate output enable (GOE1, OEV) normal operation Note	R77	RGOE1 = "1" or ROEV = "1"
VCOUT normal operation	R93	RVCOT = "1"
Gate control signal normal operation	R93	RGCLK = "1", RGSTB = "1" or RCKV = "1", RSTV = "1
(GCLK, GSTB, CKV, STV) Note	Ī	
\downarrow	_	
Display data write ^{Note}		
↓	•	
Panel display ON	R0	DISP1 = "0", DISP0 = "0"
\downarrow	-	
Normal operation statement	Displa	ay ON
\	_	
Next transaction		

Note Set up the control system register flag of the signal actually used on a panel.

5.9 Stand-by Power Supply OFF Sequence

The stand-by power supply OFF sequence is described below.

5.9.1 Stand-by controlled by STBY flag

The μ PD161802 has a stand-by function. When the STBY bit of the control register 1 (R0) is set to 1 while changing the total output of a gate into an ON state in the dummy period of one frame, it is outputted to Vss, and VCOUTn is outputted to Vss, and discharge of the electric charge of a panel is carried out. After the output of gate is in ON state, automatically stopping oscillator (OSC2OFF = 1), regulator OFF for the μ PD161802, DC/DC converter OFF (DCON control) and display RAM power supply OFF become perfect stand-by mode.

In addition, this function is valid only when the timing circuit 1 is chosen.

As for control of power supply IC, it is possible to use and control the serial interface pin for control for power supply IC (PCS, PCL and PDA). For details, refer to the specifications of IC used about the OFF sequence/ON sequence of power supply IC.

(1) Stand-by sequence

```
R0 of STBY bit = 1

↓

(WAIT in one frame period)

↓

Power supply IC control (controlling by serial interface for power supply IC control)

(regulator OFF, DC/DC converter OFF)

↓

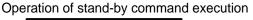
OSC display stop OSC2OFF = 1 setting

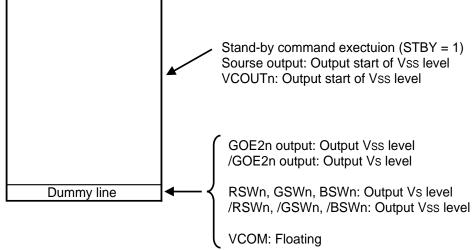
↓

Sleep mode state

↓

Display RAM power supply OFF


RAMMSK = 0 (R78:D<sub>6</sub>)


RMST [1:0] = 00 (R78:D<sub>5</sub>, D<sub>4</sub>)

↓

Stand-by statement
```

Figure 5-56. Outline of Operation at the Time of Stand-by Execution

(2) Stand-by release sequence

In case of transfer normal mode from stand-by mode, against stand-by sequence, it executes in order.

```
Under stand-by

↓
Display RAM power supply ON
RMST [1:0] = 10 (R78:D₅, D₄)

↓
(Display RAM power supply rising WAIT time)

↓
Display RAM data mask release
RAMMSK = 1 (R78:D₆)

↓
OSC display oscillation start
OSC2OFF = "0"

↓
Power supply IC control (controlling by serial interface for power supply IC control)
(regulator ON, DC/DC converter ON)

↓
(power ON rising WAIT time)

↓
STBY = 0
```

5.9.2 Standby-by command input control

When VSTBY = low (power supply to V_{DD1} and V_{DD2} is from internal regulator), the μ PD161802 can be freely switched (via input of a mode selection command) from the normal operation mode shown in Figure 5–48 to sleep mode, deep sleep mode, or stand-by mode.

These modes are organized as shown below to enable reduction of power consumption.

	State of Internal Operation the μ PD161802						
	Logic Power Supply	Command Massage	SRAM Power Supply	SRAM State	Oscillation		
Normal operation	0	Good	0	Normal operation	Operation		
Sleep mode	0	Good	0	Normal operation	Stop		
Deep sleep mode	0	Good	Δ	Data maintenance	Stop		
Stand-by mode	0	Good	X	Data cancellation	Stop		

Remark O: Supply, ∆: Low power supply, X: Supply stop

Current consumption current: Normal operation > Sleep mode > Deep sleep mode > Stand-by mode

Setting a sequence, such as for stopping the power IC's power supply, enables module-based reduction of power consumption.

When VSTBY = High has been set, the SRAM power supply voltage supplied to VDD2 from an external source remains the same (whether in deep sleep mode or standby mode). Therefore, the amount of power consumed in deep sleep mode and stand-by mode is the same as in sleep mode.

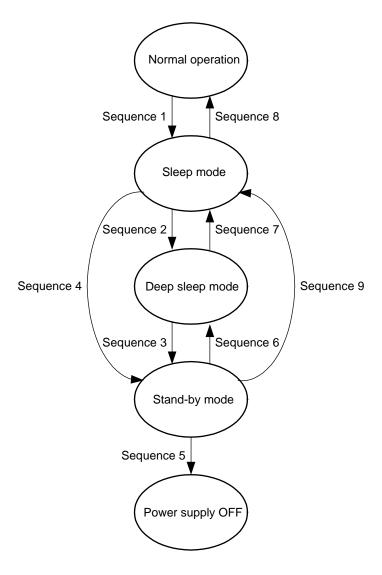
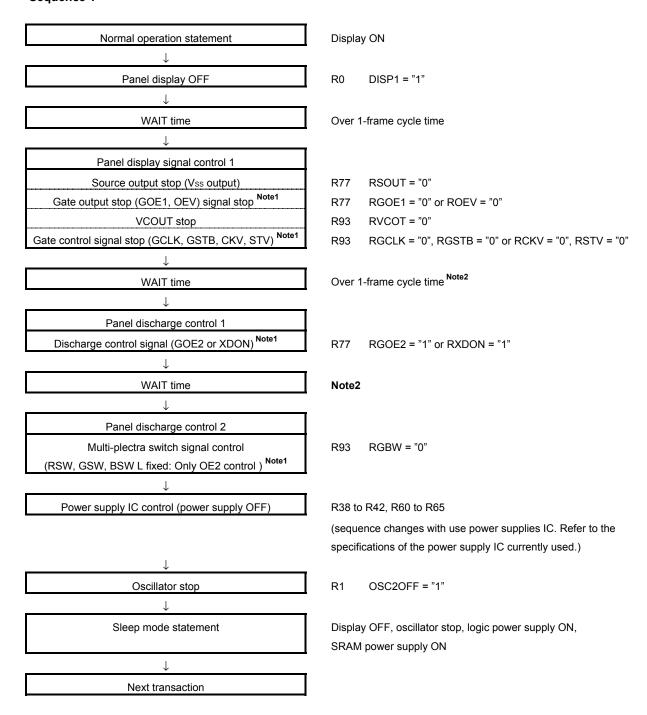
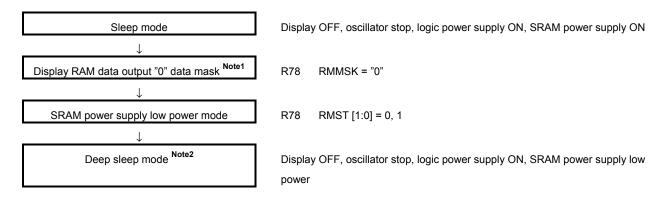



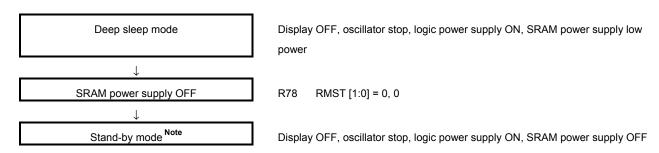
Figure 5-57. IC State Changes

Caution When using the VSTBY = High setting, the settings at sequence 2, 3, 6 and 7 cannot be made.


<Sequence 1>

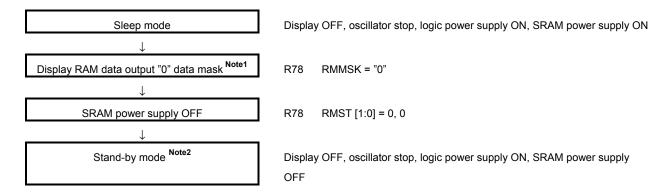
This sequence is shown in illustration and changes with use panels. It is after checking the specification of the panel used about a sequence enough evaluation. It recommends as following condition after considering.

- **Notes 1.** Set up the control system register flag of the signal actually used on a panel.
 - 2. WAIT time is after checking the characteristic of a use panel, and specification enough evaluation.


<Sequence 2>

- **Notes 1.** When it set as a deep sleep mode state, be sure to input the following command. When this processing is not performed but it shifts to a deep sleep mode (RMST [1:0] = 0, 1), problems, such as an increase in penetration current, may occur.
 - 2. Deep sleep mode state is operating the SRAM power supply for display data in the low power mode, and attains low power consumption. Although the data written to display RAM at this time is held, operation of write/read of display data cannot be performed. Note that no-guarantee about operation of IC at the time of accessing display RAM at the time of a deep sleep mode.

Caution Do not set this sequence when VSTB = High.

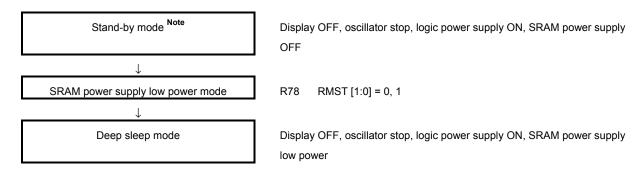

<Sequence 3>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

Caution Do not set this sequence when VSTB = High.

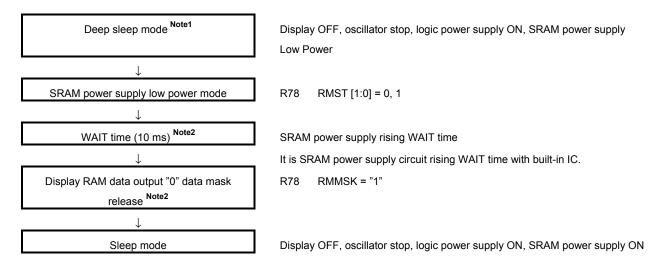
<Sequence 4>

- **Notes 1.** When it set as a deep sleep mode state, be sure to input the following command. When this processing is not performed but it shifts to a deep sleep mode (RMST [1:0] = 0, 1), problems, such as an increase in penetration current, may occur.
 - 2. Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.


Caution When VSTBY = High has been set, the SRAM power supply voltage supplied to VDD2 from an external source remains the same (even in stand-by mode). Therefore, the amount of power consumed in stand-by mode is the same as in sleep mode.

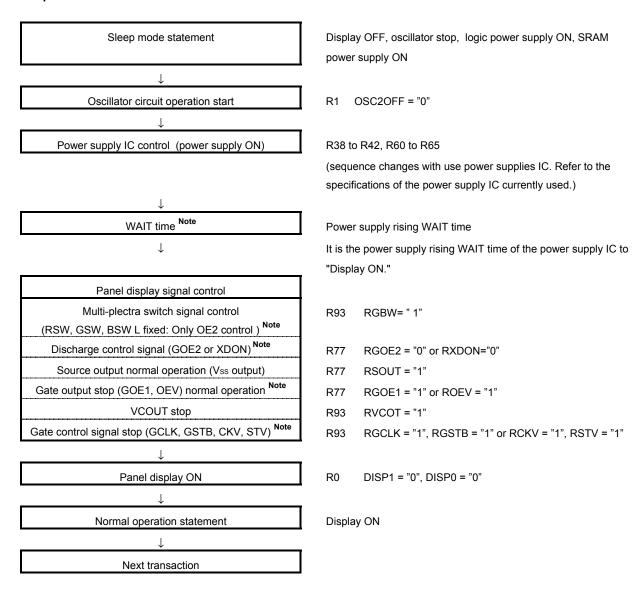
<Sequence 5>

Safely, since system power supply is turned off, after setting it as stand-by mode, it recommends turning OFF system power supply.

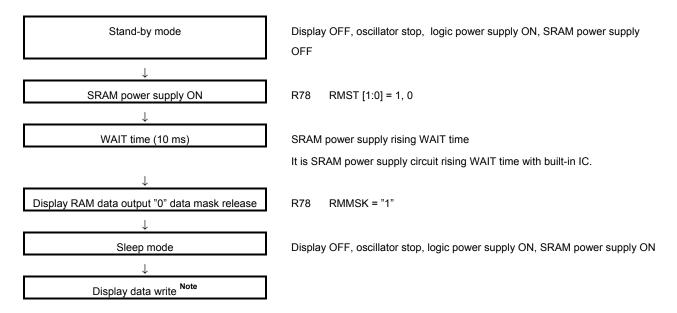

<Sequence 6>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

Caution Do not set this sequence when VSTB = High.


<Sequence 7>

- **Notes 1.** Deep sleep mode state is operating the SRAM power supply for display data in the low power mode, and attains low power consumption. Although the data written to display RAM at this time is held, operation of write/read of display data cannot be performed. Note that no-guarantee about operation of IC at the time of accessing display RAM at the time of a deep sleep mode.
 - 2. From deep sleep mode, sleep mode or when it usually returns to operation, input the following command. When display ON is carried out, all LCD displays will be "0" data outputs, without canceling a setup of this command.


Caution Do not set this sequence when VSTB = High.

<Sequence 8>

Notes Set up the control system register flag of the signal actually used on a panel.

<Sequence 9>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

Caution When VSTBY = High has been set, the SRAM power supply voltage supplied to VDD2 from an external source remains the same (even in stand-by mode). Therefore, the amount of power consumed in stand-by mode is the same as in sleep mode.

6. E²PROM INTERFACE

The μ PD161802 builds in the interface function to E²PROM corresponding to the Microwire interface. However, the capacity of E²PROM corresponds only to 2 K bits and 4 K bits article.

6.1 The μ PD161802 and E²PROM Connection

Connection with E²PROM is made as shown in the following figure.

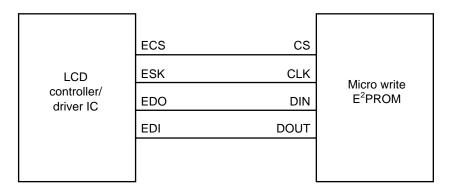
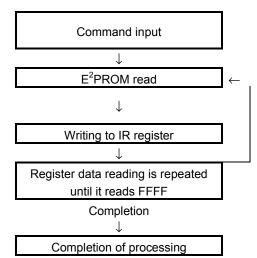


Table 6-1. LCD controller side signal

Pin	Function
ECS	Chip select signal over E ² PROM.
	With outputting ECS = 1, E^2 PROM is made into an active state and data is transmitted after that.
	It connects with CS (chip select pin) of E ² PROM.
ESK	Clock signal over E ² PROM.
	In falling of ESK, data is outputted from EDO to E ² PROM.
	It connects with CLK (shift clock pin) of E ² PROM.
EDO	Data output pin.
	Data is outputted to E ² PROM. It connects with DIN (data in pin) of E ² PROM
EDI	Data input pin.
	It is used for reading of the data of E ² PROM. It connects with DOUT (data out pin) of E ² PROM.

6.2 Each Operation


The μ PD161802 can perform writing of register data, reading of a register date and elimination of E²PROM data to E²PROM. Selection of each operation is performed using R24 register.

	R24 register		E ² PROM command			
E2OPC2	E2OPC1	E2OPC0	E PROM command			
0	0	0	Setting prohibited			
0	0	1	EPSAVE: Writing to E ² PROM			
0	1	0	MASKON: Permission of the writing and elimination to E ² PROM			
0	1	1	MASKOF: Prohibition of the writing and elimination to E ² PROM			
1	0	0	EPCLR: All area elimination of E ² PROM			
1	0	1	EPWALL: FFH is written in all the area of E ² PROM			
1	1	0	EPREAD: Reading from E ² PROM			
1	1	1	Setting prohibited			

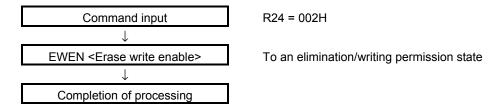
In addition, explain each operation below.

[E²PROM read command: Reading from E²PROM]

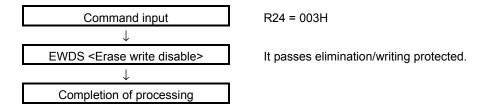
From the "E²PROM address" set as "the E²PROM reading start address register (R58)", it reads in order of "index" + "a register value" (a total of 16 bits) and the register data stored in E²PROM is saved to the applicable index of the μ PD161802. In addition, reading operation is continuously performed until it reads the reading end ID (R127 = 07FH).

R58: Setting of reading start address R24: E²PROM read execution (006H)

[EPSAVE command: Writing of the data to E²PROM]

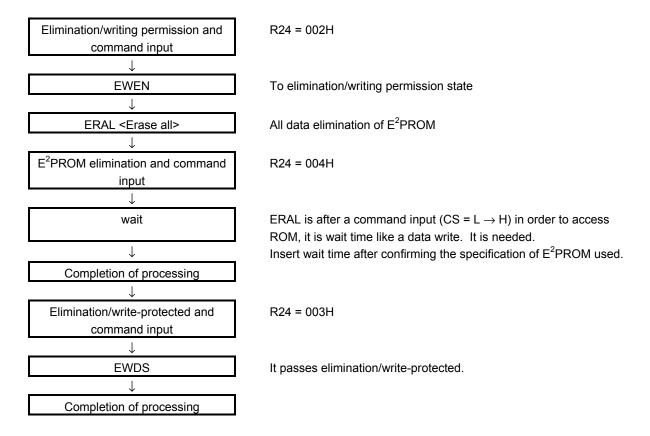

The data writing to E²PROM writes IR data of R57, and register data set up by R57 in the E²PROM address set up by R33.

Elimination/writing permission and R24: Elimination/writing permission carry out (MASKON command = command input 002H) \downarrow EWEN issue To elimination/writing permission state E²PROM writing address It writes in R33 and is specification of address. specification Caution Since increment is not carried out, it is required. Writing index specification of The index which wants to write in R57 is set up. E²PROM (As for the data of an index, the register value in μ PD161802 is written \downarrow The data transmission command R24: Data transmission execution to E^2 PROM (EPSAVE command = input to E²PROM 001H) \downarrow It is wait time in order to write in ROM. It is needed. Wait Insert wait time after confirming the specification of E²PROM used. Completion Elimination/writing protected and R24: Elimination/writing protected execution (003H) command input **EWDS** It passes elimination/writing protected. About the data of E²PROM, they are elimination or the disposal for making it not rewrite carelessly. Completion of processing

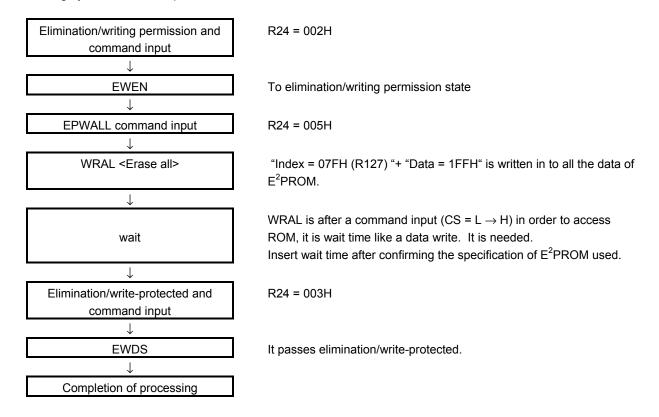

[MASKON command: Writing/elimination permission to E²PROM]

Elimination/writing to E²PROM are permitted.

[MASKOF: Writing protected to E²PROM]


Elimination/writing to E^2 PROM are protected (Reading of data is possible).

[EPCLR command: E²PROM elimination]:


The data of E²PROM is initialized.

[EPWALL]

"index = 07FH"+ "Data = 1FFH" is written in all the data of E^2PROM .

At the time of E^2 PROM initialization, it reads to all E^2 PROM data, an end command (R127) is written and the infinite loop of reading by the noise etc. is prevented.

7. RESET

If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. The reset command will also initialize each register to its default value. These default values are listed in the table below (Register number is an estimate. Understand that there is a case where it changes later).

(1/2)

Register		/RESET Pin Note1	Reset Command	(1/2 Default Value
Control register 1	R0	Х	0	080H
Control register 2	R1	Х	0	003H
RAM address offset register	R2	0	Х	000H
Command reset register	R3	Х	0	000H
Data access control register	R5	Х	0	000H
X address register	R6	Х	0	000H
Y address register	R7	Х	0	000H
MIN. ·X address register	R8	Х	0	000H
MAX. ·X address register	R9	Х	0	0EFH
MIN. ·Y address register	R10	X	0	000H
MAX. Y address register	R11	Х	0	13FH
VLD pin polarity inversion register	R13	Х	0	000H
Scroll area start line register	R14	X	0	000H
Scroll area line count register	R15	X	0	000H
Scroll step count register	R16	X	0	000H
Partial non-display area setting register	R17	X	0	000H
Blanking period bias control register	R18	Х	0	000H
Partial 1 display area start line register	R20	X	0	000H
Partial 2 display area start line register	R21	X	0	000H
Partial 1 display area line count register	R22	Х	0	000H
Partial 2 display area line count register	R23	X	0	000H
The register for E ² PROM interface control	R24	0	0	000H
RGB interface control register	R25	Х	0	000H
RGB interface back poach period register	R26	X	0	012H
RGB interface through mode start line register	R27	X	0	000H
RGB interface through mode end line register	R28	Х	0	000H
RGB interface capture mode window access MIN. ·X	R29	Х	0	000H or 10FH Note2
address register		.,		
RGB interface capture mode window access MAX. ·X address register	R30	X	0	0EFH or 0FFH Note2
RGB interface capture mode window access MIN. ·Y	R31	Х	0	000H
address register				
RGB interface capture mode window access MAX. ·Y	R32	Х	0	13FH
address register				
E ² PROM write in address specification register	R33	X	0	000H
Calibration register Note3	R34	Х	0	000H
Power supply IC control register 1 to 5	R38 to R42	Х	0	000H
γ -resistance-connection changing register	R43	Х	0	000H

Remark O: Default value set, X: Default value not set

(2/2)

Register		/RESET Pin Note1	Reset Command	(2/2) Default Value
γ -amplitude adjustment register 1 to 4	R44 to R47	X	O	005H
γ-characteristic adjustment P1 register	R48	X	0	011H
γ-characteristic adjustment P2 register	R49	X	0	077H
γ -characteristic adjustment P3 register	R50	X	0	044H
γ-characteristic adjustment P4 register	R51	X	0	044H
γ-characteristic adjustment N1 register	R52	X	0	011H
γ-characteristic adjustment N2 register	R53	X	0	077H
γ -characteristic adjustment N3 register	R54	X	0	044H
γ-characteristic adjustment N4 register	R55	X	0	044H
Output amplitude power supply setup register for 8-color	1100		Ü	04411
displays	R56	Х	0	000H
E ² PROM write in index specification register	R57	X	0	000H
E ² PROM reading start address specification register	R58	X	0	000H
γ -reference voltage generator capability setting register	R59	X	0	044H
Power supply IC control register 6 to 11	R60 to R65	X	0	000H
AMP drive method change register	R66	X	0	000H
Partial display/non-display area refresh cycle register	R68	X	0	000H
RGB switch open timing register	R72	X	0	000H
The bias current setting register for the liquid crystal drive AMP	R73	X	0	004H
Blanking period line setting register	R75	Х	0	001H
1 line period clock setting register	R76	Х	0	001H
Panel signal control register 1	R77	Х	0	000H
Pre-charge polarity select register	R78	X	0	000H
GOE1 start timing register	R79	Х	0	004H
GOE1 end timing register	R80	Х	0	025H
Pre-charge start timing register	R81	Х	0	005H
Pre-charge end timing register	R82	Х	0	005H
R switch start timing register	R83	Х	0	00DH
R switch end timing register	R84	Х	0	014H
G switch start timing register	R85	Х	0	015H
G switch end timing register	R86	Х	0	01CH
B switch start timing register	R87	Х	0	01DH
B switch end timing register	R88	Х	0	024H
Extended signal 1 start timing register	R89	Х	0	009H
Extended signal 1 end timing register	R90	Х	0	009H
Extended signal 2 start timing register	R91	Х	0	009H
Extended signal 2 end timing register	R92	Х	0	009H
Panel signal control register 2	R93	Х	0	000H
Test mode		0	0	_

Remark O: Default value set, X: Default value not set

Notes 1. The internal counters are initialized only by a reset from the /RESET pin. Be sure to perform reset via the /RESET pin at power application.

2. With setting value of RAM address offset register (R2), a default value change as show in the below table.

R2 Setting Value	Default Value					
	R29	R30				
000H	000H	0EFH				
001H	010H	0FFH				

3. The following value is set as the calibration setting time, $t_{\mbox{\tiny cal}},$ in a reset by reset command.

tcal = 1/fosc2 x 40 (fosc2 returns to initial frequency)

Caution The contents of RAM are saved in the case of both reset by /RESET pin and reset by reset command.

Note that the RAM contents are unfixed immediately after the power is turned on.

The setting table at the time of /RESET = Low

Control Sign	nal	All ON (default)	All OFF		
Source Output		GND	Hi-Z		
Gate Output	GOE1	Normal	Low Fixation		
Control Signal	GOE2	Low Fixation	Normal Note		
R/G/BSW Output		All High	All Low		

Note The output of GOE2 changes with setup of RGON2 bit (R77 D4).

RGON2 = 0: GOE2 = High RGON2 = 1: GOE2 = Low (R/G/BSW = High fixation)

Cautions 1. The timing circuit 1 is set up and only a case is valid.

2. The source output, a gate output control signal, and R/G/BSW output can be set up individually.

8. COMMAND

8.1 Command List

(Register number is an estimate. Understand that there is a case where it changes later).

Display data access

Diopiay data access	,	,	,									
							Data Bit					
RAM Access	RS	R,/W	DB ₁₇	DB ₁₆	DB ₁₅	DB ₁₄	DB ₁₃	DB ₁₂	DB ₁₁	DB ₁₀	DB ₉	
			DB ₈	DB ₇	DB ₆	DB₅	DB ₄	DВз	DB ₂	DB ₁	DB₀	
18-bit parallel interface												
Display data read 1	1	1	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	
Display data read 1	'	-	D8	D ₇	D ₆	D₅	D4	Dз	D ₂	D ₁	Do	
Display data write 4		0	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	
Display data write 1	1		D ₈	D ₇	D ₆	D ₅	D ₄	D₃	D ₂	D ₁	Do	
16-bit parallel interface (1-pixel/16-bit me	ode [DT	X = 0])										
Diaming data road 2	1	1	Hi-Z	Hi-Z	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D13	D ₁₁	D ₁₀	
Display data read 2			D ₉	D8	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	
Display data with 0			_	_	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₁	D ₁₀	
Display data write 2	1	0	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D_2	D ₁	
16-bit parallel interface (1-pixel/18-bit me	ode [DT	X = 1])								-		
			Hi-Z	Hi-Z	0	0	0	0	0	0	0	
Display data read 3	1	1	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	
			(D ₈)	(D ₇)	(D ₆)	(D ₅)	(D ₄)	(D ₃)	(D ₂)	(D ₁)	(D ₀)	
			Hi-Z	Hi-Z	Х	Х	Х	Х	Х	Х	Х	
Display data write 3	1	0	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	
			(D ₈)	(D ₇)	(D ₆)	(D ₅)	(D ₄)	(D ₃)	(D ₂)	(D ₁)	(D ₀)	

Remark Hi-Z: High impedance, X: Invalid data

Caution When the 16-bit parallel interface is used in 1-pixel/18-bit mode (DTX = H), data access of two words per pixel is required.

18-bit parallel interface mode, DB₁₇, DB₁₆ = 0 (1/5)

10 211 6	draner interface mode, DB17,										(1/0)
							Data	a Bit			
Rn	Register	RS	R,/W	DB ₁₅	DB ₁₄	DB ₁₃	DB ₁₂	DB ₁₁	DB ₁₀	DB ₉	DB ₈
				DB ₇	DB ₆	DB₅	DB4	DB₃	DB ₂	DB ₁	DB₀
				0	0	0	0	0	0	0	0
R0	Control register 1	0	0			INV	DTY	_		0	GSM
				DISP1	DISP0			STBY	COLOR	0	
R1	Control register 2	0	0	0	0	0	0	0	0	0	1
				ADX	ADR	0	GUD	LTS1	LTS0	OSC1OFF	
R2	RAM address offset register	0	0	0	0	0	0	0	0	1	0
	_										RMOFS
R3	RESET	0	0	0	0	0	0	0	0	1	1
											CRES
R5	Data access control register	0	0	0	0	0	0	0	1	0	1
	Data access contact register	Ŭ		DTX1	BSTR	0	WAS	0	INC	0	0
	X address register (1 word)			0	0	0	0	0	1	1	0
R6	A address register (1 word)	_	0	0	0	0	0	0	0	0	0
Ro	V - delega - an eleter (O accord)	0	U	Х	Х	Х	Х	Х	Х	Х	Х
	X address register (2 word)			XA ₇	XA ₆	XA ₅	XA ₄	ХАз	XA ₂	XA ₁	XA ₀
				0	0	0	0	0	1	1	1
	Y address register (1 word)			0	0	0	0	0	0	0	0
R7		0	0	Х	X	Х	Х	Х	Х	Х	YA ₈
	Y address register (2 word)			YA ₇	YA ₆	YA ₅	YA ₄	YA ₃	YA ₂	YA ₁	YA ₀
	MIN. ·X address register			0	0	0	0	1	0	0	0
	(1 word)			0	0			0			0
R8	` '	0	0			0	0		0	0	
	MIN. ·X address register			Х	Х	Х	Х	Х	Х	Х	Х
	(2 word)			XMIN7	XMIN6	XMIN5	XMIN4	XMIN3	XMIN2	XMIN1	XMIN0
	MAX. ·X address register		0	0	0	0	0	1	0	0	1
R9	(1 word)	0		0	0	0	0	0	0	0	0
	MAX. ·X address register			Х	Х	Х	Х	Х	Х	Х	Х
	(2 word)			XMAX7	XMAX6	XMAX5	XMAX4	XMAX3	XMAX2	XMAX1	XMAX0
	MIN. ·Y address register			0	0	0	0	1	0	1	0
R10	(1 word)	0	0	0	0	0	0	0	0	0	0
1110	MIN. Y address register	0		Х	Х	Х	Х	Х	Х	Х	YMIN8
	(2 word)			YMIN7	YMIN6	YMIN5	YMIN4	YMIN3	YMIN2	YMIN1	YMIN0
	MAX. ·Y address register			0	0	0	0	1	0	1	1
	(1 word)	_	_	0	0	0	0	0	0	0	0
R11	MAX. Y address register	0	0	Х	Х	Х	Х	Х	Х	Х	YMAX8
	(2 word)			YMAX7	YMAX6	YMAX5	YMAX4	YMAX3	YMAX2	YMAX1	YMAX0
	VLD pin polarity inversion			0	0	0	0	1	1	0	1
R13	register	0	0								,
				RESS0	RESGA	RESSW	0	4	VPL	0	
	Scroll area start line register			0	0	0	0	1	1	1	0
R14	(1 word)	0	0	0	0	0	0	0	0	0	0
	Scroll area start line register			X	Х	Х	Х	Х	Х	Х	SSL8
	(2 word)			SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSL0
	Scroll area line count register			0	0	0	0	1	1	1	1
R15	(1 word)	0	0	0	0	0	0	0	0	0	0
617	Scroll area line count register	U	0	X	Х	Х	Х	Х	Х	Х	SAW8
I	(2 word)			SAW7	SAW6	SAW5	SAW4	SAW3	SAW2	SAW1	SAW0
	(£ WOIU)	l	<u> </u>	5AW/	SAWG	5AW5	SAVV4	SAW3	5AW2	5AW1	SAWU

18-bit	parallel interface mode, DB ₁₇ , l	DB16 =	0	T							(2/5)
			Data Bit						ı	1	1
Rn	Register	RS	R,/W	DB ₁₅	DB ₁₄	DB ₁₃	DB ₁₂	DB ₁₁	DB ₁₀	DB ₉	DB ₈
				DB ₇	DB ₆	DB₅	DB ₄	DB₃	DB ₂	DB₁	DB₀
	Scroll step count register			0	0	0	1	0	0	0	0
	(1 word)			0	0	0	0	0	0	0	0
R16	Scroll step count register	0	0	Х	Х	Х	Х	Х	Х	Х	SST8
	(2 word)			SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0
	Partial non-display area setting			0	0	0	1	0	0	0	1
R17	register	0	0				-	PSEL	PGR	PGG	PGB
	Blanking period bias control			0	0	0	1	0	0	1	0
R18	register	0	0	BSSP7	BSSP6	BSSP5	BSSP4	BSSP3	BSSP2	BSSP1	BSSP0
	Partial 1 display area start line			0	0	0	1	0	1	0	0
	register (1 word)			0	0	0	0	0	0	0	0
R20	Partial 1 display area start line	0	0	X	X	Х	X	X	X	X	P1SL8
	register (2 word)			P1SL7	P1SL6	P1SL5	P1SL4	P1SL3	P1SL2	P1SL1	P1SL0
	Partial 2 display area start line			0	0	0	1	0	1	0	1
	register (1 word)			0	0	0	0	0	0	0	0
R21	Partial 2 display area start line	0	0	X	X	X	X	X	X	X	
	register (2 word)										P2SL8
				P2SL7	P2SL6	P2SL5	P2SL4	P2SL3	P2SL2	P2SL1	P2SL0
R22	Partial 1 display area line count		0	0	0	0	1	0	1	1	0
	register (1 word)	0		0	0	0	0	0	0	0	0
	Partial 1 display area line count			Х	Х	Х	Х	Х	Х	Х	P1AW8
	register (2 word)			P1AW7	P1AW6	P1AW5	P1AW4	P1AW3	P1AW2	P1AW1	P1AW0
	Partial 2 display area line count	- 0		0	0	0	1	0	1	1	1
R23	register (1 word)		0	0	0	0	0	0	0	0	0
	Partial 2 display area line count			Х	Х	X	Х	Х	Х	X	P2AW8
	register (2 word)			P2AW7	P2AW6	P2AW5	P2AW4	P2AW3	P2AW2	P2AW1	P2AW0
R24	E ² PROM interface control	0	0	0	0	0	1	1	0	0	0
	register								E2OPC2	E2OPC1	E2OPC0
R25	RGB interface control register	0	0	0	0	0	1	1	0	0	1
	<u> </u>				DCK2	DCK1	DCK0		NWRGB	RGBS	DISPCK
R26	RGB back poach period setting	0	0	0	0	0	1	1	0	1	0
	register			HBP3	HBP2	HBP1	HBP0	VBP3	VBP2	VBP1	VBP0
	RGB through mode display start			0	0	0	1	1	0	1	1
R27	line register (1 word)	0	0	0	0	0	0	0	0	0	0
	RGB through mode display start			Х	Х	Х	Х	Х	Х	Х	RGBST8
	line register (2 word)			RGBST7	RGBST6	RGBST5	RGBST4	RGBST3	RGBST2	RGBST1	RGBST0
	RGB through mode display end			0	0	0	1	1	1	0	0
R28	line register (1 word)	0	0	0	0	0	0	0	0	0	0
1120	RGB through mode display end			X	Χ	Х	Х	Х	Х	Х	RGBED8
	line register (2 word)			RGBED7	RGBED6	RGBED5	RGBED4	RGBED3	RGBED2	RGBED1	RGBED0
	RGB capture mode window			0	0	0	1	1	1	0	1
	access MIN. X address register			0	0	0	0	0	0	0	0
R29	(1 word)	0	0		0			, , ,	U	, , ,	, , ,
1123	RGB capture mode window			X	Χ	Х	Х	Х	Χ	Х	Х
	access MIN. X address register			04							
	(2 word)			CAPXMIN7	CAPXMIN6	CAPXMIN5	CAPXMIN4	CAPXMIN3	CAPXMIN2	CAPXMIN1	CAPXMIN0

18-bit parallel interface mode, DB₁₇, DB₁₆ = 0 (3/5)Data Bit DB₁₂ Rn Register RS R,/W DB₁₅ DB₁₄ DB₁₃ DB₁₁ DB₁₀ DB₉ DB₈ DB₇ DB₆ DB₅ DB₄ DВз DB₂ DB₁ DB₀ RGB capture mode window access 0 0 0 1 1 1 1 0 MAX. X address register (1 word) 0 0 0 0 0 0 0 0 R30 0 0 RGB capture mode window access Χ Χ Χ Χ Χ Х Χ Χ MAX. X address register (2 word) PΧMΔΧ (APXIMA) CAPXIMAX0 RGB capture mode window access 0 0 0 1 1 1 1 1 MIN. Y address register (1 word) 0 0 0 0 0 0 0 0 R31 0 0 Х Χ Х Х Х Х Х RGB capture mode window access MIN. Y address register (2 word) CAPYMIN6 APYMIN4 CAPYMIN0 PYMIN7 0 0 0 0 0 RGB capture mode window access 0 MAX. Y address register (1 word) 0 0 0 0 0 0 0 0 R32 0 0 Χ Χ RGB capture mode window access Χ Χ Χ Χ Χ CAPYMAX8 MAX. Y address register (2 word) CADMAAY CAPYMAX0 0 0 0 0 0 0 1 1 E²PROM write in address 0 R33 0 specification register E2A7 E2A6 E2A5 E2A4 E2A3 E2A2 E2A1 E2A0 0 1 0 0 0 0 0 0 R34 Calibration register 0 OC 1 0 0 1 1 0 R38 Power supply IC control register 1 0 0 PSD15 PSD12 PSD17 PSD16 PSD14 PSD13 PSD11 PSD10 0 0 0 0 1 1 1 1 R39 Power supply IC control register 2 0 0 PSD27 PSD26 PSD25 PSD24 PSD23 PSD22 PSD21 PSD20 0 0 0 0 1 1 0 0 0 0 R40 Power supply IC control register 3 PSD35 PSD34 PSD33 PSD32 PSD37 PSD36 PSD31 PSD30 0 0 0 0 1 1 0 1 R41 Power supply IC control register 4 0 0 PSD47 PSD46 PSD45 PSD44 PSD43 PSD42 PSD41 PSD40 0 0 0 1 0 R42 Power supply IC control register 5 0 0 PSD57 PSD56 PSD55 PSD54 PSD53 PSD52 PSD51 PSD50 0 1 0 1 0 γ -resistance-connection changing 0 1 1 R43 0 n register **GSEL** GONSEL 0 0 0 0 0 1 1 1 R44 γ-amplitude adjustment register 1 0 0 GPH7 GPH6 GPH5 GPH4 GPH3 GPH2 GPH1 GPH0 0 0 1 0 1 1 0 1 0 0 R45 γ -amplitude adjustment register 2 GNH7 GNH6 GNH5 GNH4 GNH3 GNH2 GNH1 GNH0 0 0 0 1 1 1 0 R46 0 0 γ -amplitude adjustment register 3 GPL7 GPL6 GPL5 GPL4 GPL3 GPL2 GPL1 GPL0 0 0 1 0 1 1 1 1 R47 γ -amplitude adjustment register 4 0 0 GNL7 GNL6 GNL5 GNL4 GNL3 GNL2 GNL1 GNL0 0 0 1 1 0 0 0 0 γ -characteristic adjustment P1 R48 0 0 register VDRP3 VDRP2 VDRP1 VDRP0 VSRP3 VSRP2 VSRP1 VSRP0 0 0 1 1 0 0 0 1 γ -characteristic adjustment P2 0 0 R49 register VLRP3 VLRP2 VLRP1 VLRP0 VHRP3 VHRP2 VHRP1 VHRP0 γ -characteristic adjustment P3 0 0 1 0 1 0 R50 0 0 VGR1P2 /GR1P1 VGR1P0 VGR0P2 VGR0P1 VGROPO γ -characteristic adjustment P4 0 0 1 0 0 1 1 1 R51 0 0 register

18-bit parallel interface mode, DB₁₇, DB₁₆ = 0 (4/5)

ו זוט-טונ	Daraner interface mode, DB17, DB	16 – 0									(4/5
							Data	a Bit			
Rn	Register	RS	R,/W	DB ₁₅	DB ₁₄	DB ₁₃	DB ₁₂	DB ₁₁	DB ₁₀	DB ₉	DB ₈
				DB ₇	DB ₆	DB₅	DB ₄	DB₃	DB ₂	DB ₁	DB₀
D.F.0	γ-characteristic adjustment N1			0	0	1	1	0	1	0	0
R52	register	0	0	VDRN3	VDRN2	VDRN1	VDRN0	VSRN3	VSRN2	VSRN1	VSRN0
	γ-characteristic adjustment N2			0	0	1	1	0	1	0	1
R53	register	0	0	VLRN3	VLRN2	VLRN1	VLRN0	VHRN3	VHRN2	VHRN1	VHRN0
	γ-characteristic adjustment N3			0	0	1	1	0	1	1	0
R54	register	0	0		VGR1N2	VGR1N1	VGR1N0		VGR0N2	VGR0N1	VGR0N0
	γ-characteristic adjustment N4			0	0	1	1	0	1	1	1
R55	register	0	0		VGR3N2	VGR3N1	VGR3N0		VGR2N2	VGR2N1	VGR2N0
	Output amplitude power supply			0	0	1	1	1	0	0	0
R56	setup register for 8-color displays	0	0							GV8S1	0
	E ² PROM writing index specification			0	0	1	1	1	0	0	1
R57	register	0	0						_		
	-			E2IR7	E2IR6	E2IR5	E2IR4	E2IR3	E2IR2	E2IR1	E2IR0
R58	E ² PROM reading start address	0	0	0	0	1	1	1	0	1	0
	specification register			E2SA7	E2SA6	E2SA5	E2SA4	E2SA3	E2SA2	E2SA1	E2SA0
R59	γ -reference voltage generator	0	0	0	0	1	1	1	0	1	1
	capability setting register			WHP	WI2	WI1	WI0	BHP	BI2	BI1	BI0
R60	Power supply IC control register 6	0	0	0	0	1	1	1	1	0	0
				PSD67	PSD66	PSD65	PSD64	PSD63	PSD62	PSD61	PSD60
R61	Power supply IC control register 7	0	0	0	0	1	1	1	1	0	1
1101	1 ower supply to control register 7		Ů	PSD77	PSD76	PSD75	PSD74	PSD73	PSD72	PSD71	PSD70
R62	2 Power supply IC control register 8	0	0	0	0	1	1	1	1	1	0
NUZ	Fower supply to control register o	U	U	PSD87	PSD86	PSD85	PSD84	PSD83	PSD82	PSD81	PSD80
Dea	Bower cumply IC central register 0	0	0	0	0	1	1	1	1	1	1
R63	Power supply IC control register 9	U	0	PSD97	PSD96	PSD95	PSD94	PSD93	PSD92	PSD91	PSD90
D04	Barran arranta 10 a arranta da miata a 40			0	1	0	0	0	0	0	0
R64	Power supply IC control register 10	0	0	PSDA7	PSDA6	PSDA5	PSDA4	PSDA3	PSDA2	PSDA1	PSDA0
				0	1	0	0	0	0	0	1
R65	Power supply IC control register 11	0	0	PSDB7	PSDB6	PSDB5	PSDB4	PSDB3	PSDB2	PSDB1	PSDB0
	The 3L interlace & AMP drive			0	1	0	0	0	0	1	0
R66	method change register	0	0	0	LACE3	LACE2	LACE1	LACE0	LMD2	LMD1	0
	Partial display/non-display area			0	1	0	0	0	1	0	0
R68	refresh cycle register	0	0		REFM2	REFM1	REFM0	REFB3	REFB2	REFB1	REFB0
	Transcent by the regions.			0	1	0	0	1	0	0	0
R72	RGB switch open timing register	0	0	DC4	DC3	DC2					
	The bias setting register for the			0	1	0	DSCG4	DSCG3	DSCG2	DSCG1	DSCG0
R73	liquid crystal drive AMP	0	0	_ U	'	U	U				
	ngala orystal alive Alvii			_	4	0		BCONB3	BCONB2	BCONB1	BCONB0
R75	Blanking period line setting register	gister 0		0	1	0	0	1	0	1	1
				ADLN7	ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	ADLN0
R76			0	0	1	0	0	1	1	0	0
							ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
R77	Panel signal control register 1	0	0	0	1	0	0	1	1	0	1
			-	RPCK1	RPCK0	RSOUT	RGOE2	RGOE1	RXDON	ROEVE	ROEV
R78	The 3L interlace & AMP drive	0	0	0	1	0	0	1	1	1	0
•	method change register	_	_	TCLSL	RMMSK	RMST1	RMST0	PT1	PT0	REV	0

R93

18-bit parallel interface mode, DB₁₇, DB₁₆ = 0 (5/5)Data Bit Rn Register DB₁₂ RS R,/W DB₁₅ DB₁₄ DB₁₃ DB₁₁ DB₁₀ DB₉ DB₈ DB₇ DB₆ DB₅ DB₄ DВз DB₂ DB₁ DB₀ 0 1 0 0 1 1 1 1 **R79** GOE1 start timing register 0 0 GOST0 GOST5 GOST4 GOST2 0 1 0 1 0 0 0 0 R80 GOE1 end timing register 0 0 GOED5 GOED4 GOED3 GOED2 GOED1 GOED0 0 1 0 1 0 0 1 1 **R83** 0 0 R switch start timing register RST5 RST4 RST3 RST2 RST1 RST0 0 0 1 0 1 0 0 1 0 0 **R84** R switch end timing register RED5 RED4 RED3 RED2 RED1 RED0 0 1 0 1 0 1 0 1 R85 G switch start timing register 0 0 GST5 GST4 GST3 GST2 GST1 GST0 0 0 1 0 1 1 1 0 R86 0 0 G switch end timing register GED5 GED4 GED3 GED2 GED1 GED0 0 1 0 0 1 1 1 R87 0 0 B switch start timing register BST5 BST4 BST3 BST2 BST1 BST0 0 1 0 1 1 0 0 0 R88 B switch end timing register 0 0 BED5 BED4 BED3 BED2 BED1 BED0 Extended signal 1 start timing 0 1 0 1 1 0 0 1 R89 0 0 register E1ST5 E1ST4 E1ST3 E1ST2 E1ST1 E1ST0 Extended signal 1 end timing 0 1 0 1 1 0 1 0 R90 0 0 E1ED2 register E1ED5 E1ED4 E1ED3 E1ED1 E1ED0 Extended signal 2 start timing 0 1 0 1 1 0 1 1 R91 0 0 register E2ST5 E2ST4 E2ST3 E2ST2 E2ST1 E2ST0 0 1 0 Extended signal 2 end timing 0 1 1 1 0 R92 0 0 register E2ED5 E2ED4 E2ED3 E2ED2 E2ED1 E2ED0

0

0

1

RVCOT

0

1

RASW

0

RSTV

1

RCKV

Cautions 1. Input unfixed (0 or 1) in blank area.

Panel signal control register 2

2. Access is prohibited about the register is not in the above register.

0

0

8.2 Command Explanation

(Register number is an estimate. Understand that there is a case where it changes later).

(1/16)

Register	Bit	Symbol	Function
R0	D ₇	DISP1	This command performs the same output as when 8-color mode white, independently of the internal
			RAM data (case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all display line 8-color mode whites.
			DISP1 takes precedence over DISP0. When DISP1 = 1, DISP0 = 1 is ignored.
	D ₆	DISP0	This command performs the same output as when 8-color mode black, independently of the internal
			RAM data (case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all display line 8-color mode black.
	D ₅	INV	This command selects a line inversion function and a frame inversion function.
			Execution in the mode set by this command is from the timing outputs the following frame data.
			In addition, at the time of 3-line interlace display mode selection, this command setup is disregarded
			and serves as field inversion.
			0: Line inversion
			1: Frame inversion
	D ₄	DTY	This pin selects the partial function.
			When the partial function s selected in the 260,000-color mode, set the partial OFF area color setting
			register (R17) to 000H. In the 8-color mode, the partial OFF area color can be set to any value from
			000H to 007H. The power consumption cannot be reduced with the partial function.
			To reduce the power consumption, select the 8-color mode.
			This command is executed following transfer from the time the next frame.
			0: Normal display mode
			1: Partial display mode
	D ₃	STBY	This bit selects the stand-by function. When the stand-by function is selected, a display OFF
			operation is executed, the amplifiers at each output are stopped.
			After executing the stand-by function using this bit, set the regulator for gate power supply IC to OFF
			and set the DC/DC converter to OFF. For the sequence, refer to the preliminary product information
			of the power supply IC etc.
			Note that when releasing stand-by, perform the opposite operation, the display RAM power supply
			ON and display RAM mask release after setting the DC/DC converter to ON and setting the
			regulators of the gate IC and power supply IC to ON, cancel this bit.
			0: Normal operation
			1: Stand-by function
			(Display read OFF from RAM, stop VCOM, display OFF = source output becomes Vss)
	D ₂	COLOR	This pin switches the 260,000-color mode and the 8-color mode. When the 8-color mode is selected,
			low power supply can be selected in order to stop the amplifier at each output circuit.
			In the 8-color mode, the value of the MSB of the internal RAM data is used as the color data.
			This command is executed following transfer from the next frame.
			0: 260,000-color mode (18-bit/pixels)
			1: 8-color mode (3-bit/pixels)
			Caution In 8-color mode, it does not become low power consumption at the time of built-in γ -
		1	output adjustment circuit use by GSEL(R43:D4) =1 setup.

(2/16)

Register	Bit	Symbol				Function		(2/16)							
R0	D ₀	GSM	Sets out	put of the gate	scanning signa	l during partial displ	ay.								
						•	rtial non-display area is stopped	d.							
			This command is executed following transfer from the next frame.												
			0: Normal mode												
			1: Stops	gate scanning	in partial non-c	lisplay area									
R1	D ₇	ADX				or more details, refe	er to Figure 5–24.								
	D ₆	ADR	Addressing of Y address is inverted. For more details, refer to Figure 5–24 .												
	D ₄	GUD	This pin	can be used w	hen changing t	he direction of gate	scan of a panel.	,							
			A displa	y is possible for	r a vertical cont	rary by changing the	e direction of gate scan of a pan	nel also							
			in the tir	ne of the throug	gh mode of RG	B interface using th	e output signal from this pin.								
			This con	nmand is execu	ited following tr	ansfer from the nex	t frame.								
			0: GUD	pin L output (at	the time of 3-li	ne interlace opposit	e direction)								
			1: GUD	ection of order)											
			The sign	al change timir	ng is the same	ning. About frame change timing	g, refer								
			to 5.4.2 1-frame period timing.												
	Dз	LTS1	Selects	set time of calib	oration.										
			The calil	The calibration function adjusts the frame frequency by setting time of one line. This command											
	D ₂	LTS0	can sele	can select the set time of a line from the following:											
				T	T	T	T								
				LTS1	LTS0	1-line time	1-line frequency								
				0	0	t _{cal} x 1	Normal operation x 1								
				0	1	t _{cal} x 2	Normal operation x 2								
				1	0	t _{cal} x 4	Normal operation x 4								
				1	1	t _{cal} x 8	Normal operation x 8								
				Remark tcal: C	alibration set ti	me = 1 ÷ Frame free	quency + Number of displayed li	ines							
	D ₁	OSC1OFF	This is o	scillator circuit	stop bit for cali	oration. This comma	and is stop when in stand-by mo	de.							
			0: Oscilla	ator operation											
			1: Oscilla	ator stop											
	D ₀	OSC2OFF	This is o	scillator circuit	stop bit for LCD	display. This comr	nand is stop when in stand-by m	node.							
			0: Oscilla	ator operation											
			1: Oscilla	ator stop											
R2	D ₀	RMOFS	Offset is	applied to the	address value	of X addresses of th	e display RAM. The relation bet	tween							
			X addres	sses and an ou	tput is set up a	s follows.									
) to 0EFH (239))									
			1: Offset	ON, 020H (0)	to 0FFH (239)										
R3	D ₀	CRES				xecute this bit after	•								
					•	-	cution (RES = 1H). Therefore, it	is not							
				,		, 0	ware. Moreover, since the time								
						• , ,	g command reset execution is								
				-		secure time until the	e next command is set following								
				d reset setting.											
				al operation											
			1: Comn	nand reset											

(3/16)

Register	Bit	Symbol	(3/16) Function
R5	D ₇	DTX1	The data bus of the display data at the time of 16-bit parallel data transfer inputted is set.
110			DTX1 = L: 1-pixel/16-bit mode
			DTX1 = H: 1-pixel/18-bit mode
	D ₆	BSTR	Sets the write mode for writing data to the display RAM.
			If the high-speed RAM write mode is selected, data is written to the display RAM in 2-pixel units
			inside the IC. When selecting the high-speed RAM write mode, be sure to write data to the
			display RAM in 2-pixel units.
			0: Normal write mode (18-bit access)
			1: High-speed RAM write mode (36-bit access)
	D ₄	WAS	Window access mode setting
			When the window access mode is set, the address is increment/decrement only in the range set
			by the MIN. X address setting register (R8), MAX. X address setting register (R9), MIN. Y
			address setting register (R10), and MAX. ·Y address setting register (R11). 0: Normal operation
			1: Window access mode
	D ₂	INC	This bit selects the direction in which the address is to be increment.
	52	""	0: Increments X address
			1: Increments Y address
R6	D7 to D0	XAn	This register sets the X address of the display RAM.
			Set 000H to 0EFH.
R7	D ₈ to D ₀	YAn	This register sets the Y address of the display RAM.
			Set 000H to 13FH.
R8	D ₇ to D ₀	XMINn	Sets the minimum value of the X address in the window access mode.
			The X address is incremented up to the maximum value set by the MAX. ·X address register
			(R9), and then initialized to the address value set by this command.
			Set 000H to 0EFH.
R9	D ₇ to D ₀	XMAXn	Sets the maximum value of the X address in the window access mode.
			The X address is incremented up to the maximum value set by the MIN. X address register (R8),
			and then initialized to the address value set by this command.
D.10	D / D	20.40	Set 000H to 0EFH.
R10	D ₈ to D ₀	YMINn	Sets the minimum value of the Y address in the window access mode.
			The Y address is incremented up to the maximum value set by the MAX. Y address register (R11), and then initialized to the address value set by this command.
			Set 000H to 13FH.
R11	D ₈ to D ₀	YMAXn	Sets the maximum value of the Y address in the window access mode.
IXII	Do 10 Do	TIVIAXII	The Y address is incremented up to the address value set by this command, and then initialized
			to the minimum address value set by the MIN. Y address register (R10).
			Set 000H to 13FH.
R13	D ₇	RESS0	The source output at the time of /RESET is set up.
			0: It is a Vss output at the time of /RESET
			1: It is a Hi-Z output at the time of /RESET
	D ₆	RESAG	·
	D ₀	REOAG	The GOE1 and GOE2 output at the time of /RESET is set up.
			0: at the time of /RESET, GOE1 = normal output, GOE2 = L level output
		DECCH	1: at the time of /RESET, GOE1 = L level output, GOE2 = normal output
	D ₅	RESSW	The RSW, GSW and BSW output at the time of /RESET is set up.
			0: at the time of /RESET, RSW = GSW = BSW = ALL High level output
			1: at the time of /RESET, RSW = GSW = BSW = ALL Low level output
	D ₂	VPL	The signal polarity of a VLD pin is set up.
			0: RAM writing becomes valid at the time of VLD = L. RAM writing becomes invalid at the time of
			VLD = H.
			1: RAM writing becomes valid at the time of VLD = H. RAM writing becomes invalid at the time
	I	İ	of VLD = L.

(4/16)

Pegister	Bit	Symbol			(4/16)
Register		Symbol	0 " ' ' ' '		Function
R14	D ₈ to D ₀	SSLn	Scroll area start line re		
					number of lines set by the scroll area line count of steps set by the scroll step count register (R16),
			starting from the line se		or steps set by the scroll step count register (KTO),
R15	D ₈ to D ₀	SAWn	Scroll area line count r		4)
KIS	D8 10 D0	SAWII		-	number of lines set by this command is scrolled up
					count register (R16), starting from the line set by
			the scroll area start line	-	, countrogister (1110), starting from the line cot by
R16	D ₈ to D ₀	SSTn	Scroll step count regist		
			, ,	, ,	number of lines set by the scroll area line count
					ster (R16) is scrolled up by the number of steps set
			by this command.		
			Note that because this	command is invalid in	n the partial display mode, the scroll function cannot
			be used.		
R17	D ₃	PSEL			ne display color of partial non-display area in PGR,
				~	ISB of a display data RAM is used as color data.
			0: Use the data specific	-	
	_		1: Display data RAM, r		
	D ₂	PGR	•	•	rtial display area during partial display (R0: DTY = 1).
			_		bit each) as the OFF color.
	D ₁	PGG	-		nd the bits of this register is as follows.
			This relationship is not PGR: R OFF= 0, ON =		value of ADC.
	D ₀	PGB	PGG: G OFF= 0, ON =		
			PGB: B OFF= 0, ON =		
R18	D7 to D0	BSSPn	·		ng period start is set up at the time of source output
			amplifier bias control re		
			Display Mode	BSSP = 0 Setting	It is more than BSSP = 1 at the setting time
			Internal OSC	It is all the	The bias OFF between several lines of a
			display	blanking period	setting value and henceforth are bias-turned
				bias ON.	ON from the blanking period start.
			VSYNC/HSYNC/		VFP line number + VSYNV Bias is turned off
			DOTCLK display		from several lines which applied the BSSP
			Bo rozir diopidy		value –1 to the number of ACT lines, and the
					blanking period start line, and it bias turns on
					henceforth.
					At the time of through mode, it takes –1 from
					the above-mentioned calculation.
					At the time of three-line interlace mode,
					several dummy line minutes are subtracted
					from the above-mentioned formula.
					Dummy setup of 1 line: –2 line
					Dummy setup of 2 line: -4 line
R20	D ₈ to D ₀	P1SLn	Partial1 display area st	art line register (000F	H to 13FH)
			During partial display (R0: DTY = 1), the are	a starting from the line set by this command and
			ending as set by the pa	artial 1 display area lir	ne count register (R22) is the partial 1 display area.

(5/16)

Register	Bit	Symbol				Function	(5/16						
R21	D ₈ to D ₀	P2SLn	Partial? dien	lav aroa etai	t line regi	ster (000H to 13FH))						
K21	D8 10 D0	PZSLII		•	-		from the line set by this command and						
						-							
DOO	D 4- D	D4 A1A/m		ng as set by the partial 2 display area line count register (R23) is the partial 2 display area al1 display area line count register (000H to 13FH)									
R22	D ₈ to D ₀	P1AWn		al1 display area line count register (000H to 13FH) rea starting from the line set by the partial 1 display area start register (R20) and ending a									
			_	by this command is the partial 1 display area.									
			_	s register is 0, the values of the partial 2 display area start line register (R21) and the partial splay area line count register (R23) are not valid.									
D00	D / D	DO ALA					4.15						
R23	D ₈ to D ₀	P2AWn		tial 2 display area line count register (000H to 13FH)									
				area starting from the line set by the partial 2 display area start register (R21) and ending as by this command is the partial 2 display area.									
			-			· · · · ·	and the second of the second o						
			-			-	e values of the partial 2 display area start						
	_					play area line coun	t register (R23) are not valid.						
R24	D ₂	E2OPC2	E ² PROM inte	erface is cor	itrolled.								
	D ₁	E2OPC1				2							
	D ₀	E2OPC0	E2OPC2	E2OPC1	E2OP(C0 E ² PROM Con	ntrol						
			0	0	0	Setting prohib	_						
			0	0	1	EPSAVE: Wri	ite in execution to E ² PROM						
			0	1	0		riting / elimination permission to						
						E ² PROM							
			0	0 1 1 MASKOGF: Writing / elimination permission to									
				E ² PROM									
			1	0	0		rea elimination of E ² PROM						
			1	0	1		s the writing of FFH to all the area of						
				E ² PROM.									
			11	1	0		ading execution of E ² PROM						
			1	1	1	Setting prohib	pited						
R25	D ₆	DCK2	The divided of	cycle ratio of	the exter	nal input DOTCLK	and a display clock is set up.						
	D ₅	DCK1											
	D ₄	DCK0	DCK2	DCK1	DCK0	The Divided	1 line input DOTCLK number						
						Cycle Ratio							
			0	0	0	6 divided cycle	[240] + [HBP] + [HSYNC ACT] over						
			0	0	1	7 divided cycle	[280] + [HBP] + [HSYNC ACT] over						
			0	1	0	8 divided cycle	[320] + [HBP] + [HSYNC ACT] over						
			0	1	1	9 divided cycle	[360] + [HBP] + [HSYNC ACT] over						
			1	0	0	10 divided cycle	[400] + [HBP] + [HSYNC ACT] over						
			1	0	1	11 divided cycle	[440] + [HBP] + [HSYNC ACT] over						
			1	1	0	12 divided cycle	[480] + [HBP] + [HSYNC ACT] over						
			1	1	1	12 divided cycle	Setting prohibited						
				'		<u> </u>	County promoted						
	De	NIMPOR	This hit some	manda inveli	d of DOD	interface inner							
	D ₂	NWRGB				interface input.							
			0: Invalid for 1: Valid for R										
	D ₁	RGBS	This bit selec										
	וטו	KGBS			nac e moc	ıc.							
			0: Through m 1: Capture m										
	D ₀	DISPCK			ock for dia	play output in RGB	interface mode						
	D ₀	DIOCON	0: Internal os	_		olay output III NGB	interface filode.						
			1: HSYNC/V										
	1		1. 110 1 NO/V		ントハ								

(6/16)

Register	Bit	Symbol	Function
R26	D ₇ to D ₄	HBPn	This bit sets horizontal back porch period of RGB interface.
			Horizontal back porch period = set value x DOTCLK unit
			In addition, set up more than "1".
	D ₃ to D ₀	VBPn	This bit sets vertical back porch period of RGB interface.
			Vertical back porch period = set value x HSYNC unit
			In addition, set up more than "2".
R27	D ₈ to D ₀	RGBSTn	These bits set the start line of the display area to be displayed by the RGB interface.
			(000H ≤ R27 ≤ 0EEH)
			Be sure to observe the relationship "Set value of R27 register < Set value of R28 register".
R28	D ₈ to D ₀	RGBEDn	These bits set the end line of the display area to be displayed by the RGB interface.
			(000H ≤ R28 ≤ 13FH)
			Be sure to observe the relationship "Set value of R27 register < Set value of R28 register".
R29	D7 to D0	CAPXMINn	Minimum of X address is set up at the time of window access at the time of selecting capture
			mode by the RGB interface.
R30	D7 to D0	CAPXMAXn	Maximum of X address is set up at the time of window access at the time of selecting capture
			mode by the RGB interface.
R31	D ₈ to D ₀	CAPYMINn	Minimum of Y address is set up at the time of window access at the time of selecting capture
1101	20 10 20	O/ a Tivili (ii)	mode by the RGB interface.
R32	D ₈ to D ₀	CAPYMAXn	Maximum of Y address is set up at the time of window access at the time of selecting capture
1102	Do 10 Do	CAFTWAXII	mode by the RGB interface.
R33	D- to Da	F04-	The writing address to E ² PROM is specified.
	D ₇ to D ₀	E2An	i i
R34	D ₀	OC	This bit is used for calibration.
			The time from calibration start command execution until calibration stop command execution
			becomes the time for 1 line.
			0: Calibration stop
			1: Calibration start
R38	D ₇ to D ₀	PSD1n	The value set as PSD1n is outputted from the serial interface output for external IC control.
			For more details, refer to 5.1.8 Serial interface for power supply IC control.
R39	D ₇ to D ₀	PSD2n	The value set as PSD2n is outputted from the serial interface output for external IC control.
			For more details, refer to 5.1.8 Serial interface for power supply IC control.
R40	D ₇ to D ₀	PSD3n	The value set as PSD3n is outputted from the serial interface output for external IC control.
			For more details, refer to 5.1.8 Serial interface for power supply IC control.
R41	D ₇ to D ₀	PSD4n	The value set as PSD4n is outputted from the serial interface output for external IC control.
			For more details, refer to 5.1.8 Serial interface for power supply IC control.
R42	D ₇ to D ₀	PSD5n	The value set as PSD5n is outputted from the serial interface output for external IC control.
			For more details, refer to 5.1.8 Serial interface for power supply IC control.
R43	D ₄	GSEL	Sets the maximum/minimum output potential of the γ -correction register.
			If the internal γ -output adjustment circuit is selected, the maximum/minimum output potential of
			the γ -correction register is:
			0: Sets power supply voltage (outputs Vs and Vss potential).
			1: Uses voltage of internal γ -output adjustment circuit (uses VPH, VNH, VPL, VNL output)
	D ₀	GONSEL	About connection between γ -correction resistance and a power supply
	D0	GONSEL	0: Connect the both ends of positive-polarity γ -resistance with Vs and GND when in used γ -
			correction by positive-polarity. On the other hand, γ -resistance by negative-polarity does not
			connect with Vs and GND. Moreover, the both ends of negative-polarity γ -resistance are
			connected with Vs and GND when in used γ -correction by negative-polarity. In that case, γ -
			resistance by positive-polarity does not connect with Vs and GND.
			1: Connect both Vs and GND on the side of positive and negative γ -correction regardless of
		İ	output from positive- or negative-polarity.

(7/16)

Register	Bit	Symbol	(7/10 Function
		Symbol	
R44	D ₇ to D ₀	GPHn	Sets the voltage value of γ -amplitude adjustment of positive polarity.
D45	D 4- D	ONUL	For more detail, refer to 5.5 γ- Curve Correction Power Supply Circuit.
R45	D ₇ to D ₀	GNHn	Sets the voltage value of γ -amplitude adjustment of negative polarity.
D46	D to D	CDI =	For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit.
R46	D ₇ to D ₀	GPLn	Sets the voltage value of γ -amplitude adjustment of positive polarity.
D47	D- to D-	CNII n	For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit.
R47	D ₇ to D ₀	GNLn	Sets the voltage value of γ -amplitude adjustment of negative polarity. For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit .
D40	D- to D	VDDDs	•
R48	D ₇ to D ₄	VDRPn	Positive-polarity γ -amplitude adjustment register
	D 4- D	\(\(\text{ODD}_{\text{D}}\)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VSRPn	Positive-polarity γ -amplitude adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R49	D7 to D4	VLRPn	Positive-polarity γ -inclination adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VHRPn	Positive-polarity γ -inclination adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R50	D ₆ to D ₄	VGR1Pn	Positive-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR0Pn	Positive-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R51	D ₆ to D ₄	VGR3Pn	Positive-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR2Pn	Positive-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R52	D7 to D4	VDRNn	Negative-polarity γ -amplitude adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VSRNn	Negative-polarity γ-amplitude adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R53	D7 to D4	VLRNn	Negative-polarity γ -inclination adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VHRNn	Negative-polarity γ-inclination adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R54	D ₆ to D ₄	VGR1Nn	Negative-polarity γ-fine tuning adjustment register
1.01	D0 10 D4	VOICHU	Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR0Nn	Negative-polarity <i>γ</i> -fine tuning adjustment register
	D2 10 D0	VGINIII	Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R55	D ₆ to D ₄	VGR3Nn	Negative-polarity γ -fine tuning adjustment register
133	D6 10 D4	VGRSIVII	Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D 4= D) (O DON)	
	D ₂ to D ₀	VGR2Nn	Negative-polarity γ-fine tuning adjustment register
D50	D 5	0)/00/1	Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R56	D ₁ , D ₀	GV8S1	The voltage concerning a panel is set at the time of 8-color mode.
			0 : Set power supply
			1: Set amplifier output
R57	D ₇ to D ₀	E2IRn	The index which writes in to address to E ² PROM is specified.
			The index and data of the register specified to be this register are written in the address of
			E ² PROM specified by R33.
R58	D7 to D0	E2SAn	The reading start address of E ² PROM is specified.

(8/16)

Register	Bit	Symbol				Function	(6/10)							
R59	D ₇	WHP	Sets the output mode of the reference voltage generator amplifier for setting the white level of the positive-polarity and negative-polarity sides (when VPL and VNL are normally white), as shown below. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used.											
				0: Normal mode										
				High-power mode (output circuit capacity: twice that of normal mode)										
	D ₆ to D ₄	Win	Sets the output of the positive-p shown below.	bias current colarity and	t of the refe	erence voltage generator amplifier for a plarity sides (when VPL and VNL are a sufficient evaluation with the actual TF	normally white), as							
			WI2	WI1	WI0	Amplifier Bias Current								
			0	0	0	0.025 μA								
			0	0	1	0.050 μA								
			0	1	0	0.100 <i>μ</i> A								
			0	1	1	0.200 μA								
			1	0	0	0.500 μA								
			1	0	1	1.000 μA								
			1	1	0	1.500 <i>μ</i> A								
	D₃		1	1	1	2.000 μA								
		ВНР	the positive-pola shown below. Determine the a 0: Normal mode	arity and neg amplifier cap	gative-pola	voltage generator amplifier for setting rity sides (when VPH and VNH are no sufficient evaluation with the actual Tractity: twice that of normal mode)	rmally white), as							
	D ₂ to D ₀	Bln				erence voltage generator amplifier for	setting the black level							
	B2 to B0	5	-			plarity sides (when VPH and VNH are	-							
			shown below.											
			Determine the a	ımplifier cap	acity after	sufficient evaluation with the actual TF	T panel to be used.							
			BI2	BI1	BI0	Amplifier Bias Current	1							
			0	0	0	0.025 μΑ	1							
			0	0	1	0.050 μΑ	1							
			0	1	0	0.100 μΑ	1							
			0	1	1	0.200 μA	1							
			1	0	0	0.500 μA	1							
			1	0	1	1.000 µA								
			1	1	0	1.500 μA								
			1	1	1	2.000 μA								

(9/16)

Desti	D::	0					F H			(9/16)				
Register	Bit	Symbol					Function							
R60	D ₇ to D ₀	PSD6n				s outputted from th Serial interface		•	or external IC control. trol.	. For				
R61	D ₇ to D ₀	PSD7n							or external IC control.	For				
						Serial interface								
R62	D ₇ to D ₀	PSD8n				s outputted from th 8 Serial interface		•	or external IC control. a trol .	. For				
R63	D7 to D0	PSD9n							or external IC control.	. For				
			more	e details, re	efer to 5.1. 8	8 Serial interface	for power supp	ly IC con	itrol.					
R64	D ₇ to D ₀	PSDAn				is outputted from th 8 Serial interface		•	or external IC control	. For				
R65	D ₇ to D ₀	PSDBn	The	value set a	as PSDBn		ne serial interface	e output fo	or external IC control	. For				
R66	D ₆	LACE3				nction is selected.	ioi powei supp	ny io con	iti Oi.					
İ							a period settina i	eaister be	etween frames (R75)	,				
İ						ore and a timing ci		_						
i						interlace for opera		-	0.27, 40 0.					
1						is executed from t			ansmission					
1						terlace display).	and ronowing man	no unter th	anomiosion.					
İ				line interla	• .									
İ	D ₅	LACE2				v lines between the	e fields at the tim	e of 3-line	e interlace display is					
1				cted.		,								
İ					command	I is executed from t	the following fram	ne after tr	ansmission					
1						mmy 1-line		and th						
İ	D ₄	LACE1					at the time of a 3	_line interl	ace display change	and a				
1	D ₃	LACE0		The field selection signals EXT1 and EXT2 at the time of a 3-line interlace display change, iosition is selected.										
İ			posi	lion is sele	cieu.									
İ				LACE1	LACE0	Changi	ng line	Char	nging timing					
İ				0	0	Just before GS	•		ising timing					
İ				0	1	Just before GS			alling timing					
i				1	0	Line during GS			ising timing					
İ				1	1	Line during GS			alling timing					
İ					•				J - J					
İ			In a	ddition this	command	I is executed from t	the following fran	ne after tr	ansmission					
ı	D ₂	LMD2 LMD1				urce output is selec		3 (3.10)						
1	וטו	LIVID I												
1				LMD2	LMD1	Display Line	Blanking P	eriod	8-color line					
1									(partial not displayed)					
1				0	0	R/G/BSW period	Between the w	/holo	Between the whole					
İ				U	0	ON	period OFF	noie	period OFF					
İ				0	1	Between the	Between the w	/hole	Between the whole					
1					•	whole period ON	period OFF		period OFF					
i				1	0	R/G/BSW period	The line period	OFF	Between the					
•			ı	ľ		ON	set up by BSS		whole period					
l					I	011								
							(R18) from the	:	OFF					
							(R18) from the Blanking perio	d start.	OFF					
							(R18) from the Blanking perio The line after i	d start. t is	OFF					
				1	1		(R18) from the Blanking perio The line after i R/G/BSW peri	d start. t is od ON.						
				1	1	Between the	(R18) from the Blanking perio The line after i R/G/BSW period The line period	d start. t is od ON.	Between the					
				1	1		(R18) from the Blanking perio The line after i R/G/BSW peri The line period set up by BSS	d start. t is od ON. d OFF Pn						
				1	1	Between the	(R18) from the Blanking perio The line after i R/G/BSW period The line period	d start. t is od ON. d OFF Pn	Between the whole period					
				1	1	Between the	(R18) from the Blanking perior The line after i R/G/BSW perior The line perior set up by BSS (R18) from the blanking perior The line after i	d start. t is od ON. d OFF Pn d start. t is	Between the whole period					
				1	1	Between the	(R18) from the Blanking perio The line after i R/G/BSW perio The line period set up by BSS (R18) from the blanking period	d start. t is od ON. d OFF Pn d start. t is	Between the whole period					

(10/16)

Register	Bit	Symbol				Fun	ction	(10/10)						
R68	D ₆ to D ₄	REFMn	1] and [GSM = stop) and a refr up in the combi For more detail	1, PT1 = 0, esh cycle (s nation of the s, refer to 5.	PT0 = 0]), source white e value set .6.2 Partia	non-refres e level out as this flac I display,	non-refreshing drive ([GSN hing frame (source output put [the normally white par g and the value set as the long-display area and no [4:0] x REFM [3:0]	stop, gate scanning nel], gate scan) are set REFBn flag.						
			REFM2	REFM1	REFM0	Setting	Value							
			0	0	0	2								
			0	0 0 1 4										
			0 1 0 8											
			0											
			1	0	0	32								
			1	0	1	64								
			1	1	0	128								
			1	1	1	256								
	D ₃ to D ₀	REFBn	REFBn When partial display, the case where it is set as non-refreshing drive ([GSM = 0 1] and [GSM = 1, PT1 = 0, PT0 = 0]), non-refreshing frame (source output stop, stop) and a refresh cycle (source white level output [the normally white panel], gup in the combination of the value set as this flag and the value set as the REFN For more details, refer to 5.6.2 Partial display, non-display area and normal The number of non-refreshing frames = REFB [4:0] x REFM [3:0]											
			REFB3	REFB2	REFB1	REFB0	Setting Value							
			0	0	0	0	Only non-refresh drive							
			0	0	0	1	1							
			0	0 0 1 0 2 0 0 1 1 3										
			0											
			0	1	0	0	4	_						
			:											
			1	1	1	0	14	_						
			1	1	1	1	15							

(11/16)

Register	Bit	Symbol						Funct	tion					10)
R72	D ₇	DC4	The fre	equency o	of the clock	outputted	from th	e PC	CLK p	oin used	as clocks,	such as a	DC/DC	
	D ₆	DC3	conver	ter circuit	of a power	r supply IC	; is set	up. 1	This cl	lock is g	enerated fr	om oscilla	ation	
	D₅	DC2			or externa	I clock DC	TCLK, i	s cyc	cle rati	o by the	number of	setting of	f this flag,	
			and is	outputted	1.									
				DC4	DC3	3	PCCLK	Clock	k Freq	quency				
						D	C2 = 0		DC	2 = 1				
				0	0	foso	÷ 4	D	OUTC	CLK ÷ 32				
				0	1	foso	÷ 8	D	OUTC	CLK ÷ 64				
				11	0		÷ 16			CLK ÷ 12				
				1	1	foso	÷ 32	D	OUTC	CLK ÷ 25	6			
			Remar		outputs a o	_		PCCL	₋K pin,	, it is ned	essary to	operate a	n oscillation	
	D ₄ to D ₀	DSCGn	output this flag fixation When I carried RXDOI For mo	of ASW3 g. The out a after set DSCGn = I out to L N = H) ar ore details	, ASW2 an thout of AS\ting period = 000H setuoutput fixat and this timir s, refer to 5	d ASW1 a W3, ASW2 up, the out tion to a X ng. 8 Power	re cons 2, ASW1 put of A DON ou	idered I, ST\ SW3 tput I	ed as the V, CKV B, ASW H outp	he line p V, FR ar V2, ASW out (it ou	eriod H ou ld OEV are 1, STV, Ch	tput fixation carried of the carried	ON = H), the on set up wit out to L output od OEV are rame of	th
				DSCG4	DSCG3	DSCG2	DSC	G1	DSC	G0 S	Setting Line	Count		
				0	0	0	0		0	0				
			_	0	0	0	0		1	2				
				0	0	0	1		0 1	3				
				0	0	1	0		0					
				0	0	1	0		1	5			1	
				:	:	:	:		:	:				
				1	1	1	1		0	31				
			L	1	1	1	1		1	32	!		J	
R73	D ₃ to D ₀	BCONBn	The bia	as curren	t for the liqu	uid crystal	drive A	MP is	s set u	ıp.				
			В	CONB3	BCONB2	2 BCON	NB1 E	BCON	NB0	Bias C	urrent [μA]			
				0	0	0		<u>0</u>		0.87 1.67				
				0	0	1		0		2.43				
				0	0	1		1		3.18				
				0	1	0		<u>0</u>		3.98 (d 4.70	efault)			
				0	1	1		0		5.41				
				0	1	1		1		6.11				
			-	1 1	0	0		<u>0</u>		6.88 7.57		1		
				1	0	1		0		8.24				
			-	<u>1</u> 1	0	1 0		1 0		8.91 9.62		-		
				1	1	0		1		10.28				
				1	1	1		0		10.93				
			▎┕	1	1	1		1		11.58				
	<u> </u>	<u> </u>					-							_

(12/16)

Register	Bit	Symbol		Function (12/1										
R75	D ₇ to D ₀	ADLNn	fix Fo	ne number of lines set up by this register is set up as the number of lines of the FP [2 Line ed] + BP period of a frame changing. For more details, refer to 5.4.2 1-frame period timing . ADLNn \(\leq 2 \): Only BP period ADLNn \(> 3 \): FP line count [2-line] + BP period line count = Setting line count = ADLNn setting value										
				ADLN7 ADLN6 ADLN5 ADLN4 ADLN3 ADLN2 ADLN1 ADLN0 Setting line count										
				0	0	0	0	0	0	0	0	Setting prohibited		
				0	0	0	0	0	0	0	1	BP1		
				0	0	0	0	0	0	1	0	BP2		
				0	0	0	0	0	0	1	1	FP2 + BP1		
					0	0	0	0	0	1	0	0	FP2 + BP2	
				0	0	0	0	0	1	0	1	FP2 + BP3		
				:	:	:	:	:	:	:	:	:		
				1	1	1	1	1	1	1	0	FP2 + BP252		
				1	1	1	1	1	1	1	1	FP2 + BP253		
R76	D ₄ to D ₀	ADCKn	ре	riod.	etails, ref		by this reg 1 1-line p ADCK2		ing.			thin 1-line drive		
				0		0	0	0	0		etting proh			
				0		0	0	0	1	1				
				0		0	0	1	0	2				
			0 0 0 1 1											
				0		0	1	0	0	4				
	1			0		0	1	0	1	5				
								l	1 -					
				:		:	:	:	:	:				
				:		1	: 1	1	0	3	0			

(13/16)

Register	Bit	Symbol				Function						
R77	D ₇	RPCK1	ON/OFI	F control of the	clock outputt	ed from the PCCLK pin used as clocks, such as DC/DC						
	D ₆	RPCK0		er circuit of pov	•	•						
				RPCK1	RPCK0	PCCLK clock output ON/OFF						
				0	0	The output ON during the whole period						
				0	1	The output OFF during the whole period						
				1	It output turns on the blanking period output OFF							
						and except it.						
				1	1	The output OFF during the whole period						
	D ₅	RSOUT	Operati	on of source o	utput (Yn) is c	ontrolled.						
				(Vss output fixe								
			,	Normal operati	,							
			_	Setting by this flag becomes valid from the output timing of the following frame after inputted.								
	_	DOOFO				e, refer to 5.4.2 1-frame period timing.						
	D ₄	RGOE2		on of panel dis	•							
						d BSW (Normal operation) d BSW (H fixed)						
						om the output timing of the following frame after inputted.						
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .									
	D ₃	RGOE1										
			Operation of gate output enable signal is controlled. 0: OFF (Vss output fixed)									
				` Normal operati								
			Setting	by this flag bed	comes valid fr	om the output timing of the following frame after inputted.						
			About th	he change timi	ng of the fram	e, refer to 5.4.2 1-frame period timing.						
	D ₂	RXDON	Operati	on of panel dis	charge is con	trolled.						
			0: XDO	N (L output), A	SW1, ASW2	and ASW3 (Normal operation)						
						and ASW3 (H fixed)						
			_	-		om the output timing of the following frame after inputted.						
						e, refer to 5.4.2 1-frame period timing.						
	D ₁	ROEVE		output operatio	n is controlled	l.						
				E (L fixed)								
				E (H fixed)		and the containt time in a of the fall and a factor from a fitting in a stand						
						om the output timing of the following frame after inputted. e, refer to 5.4.2 1-frame period timing .						
	D ₀	ROEV				DEV) is controlled.						
	D0	I NOL V		•	• .	DEV/18 CONTROLLED.						
			0: OFF (L output fixed) 1: ON (Normal operation)									
			Setting by this flag becomes valid from the output timing of the following frame after inputted.									
				, ,		e, refer to 5.4.2 1-frame period timing.						

(14/16)

								(14/16							
Register	Bit	Symbol				Function	n								
R78	D ₇	TCKSL	A liquid crystal c		· ·										
				0: Timing Circuit 1 (GSTB, GCLK, GOE, GOE2, RSW, GSW, BSW, and GUD)											
			1: Timing Circuit	1: Timing Circuit 2 (STV, CKV, OEVE, OEV, ASW1, ASW2, ASW3, and XDON)											
			In addition, as fo	or 3-line inte	erlace display fu	unction, or	nly the timing circuit 1 corresponds.								
	D ₆	RMMSK	The mask of the	data of dis	play RAM is ca	arried out b	oy "0" data.0: All "0" data mask								
			1: RAM data enable (Normal operation)												
	D ₅	RMST1	It sets up about	operation o	f power supply	supplied	to RAM circuit.								
			RMST1	RMST0	Display RAM Suppl		Display RAM State								
			0	0	Power C		RAM data is abandoned								
			0	1	Low Pov		RAM data maintenance Note1								
			1	0	Power (
	D ₄	RMST0		, and the second			RAM writing operation is possible Note2								
			1	1 1 Setting prohibited											
			Notes 1. SI	leep mode	etc. can be use	ed when lo	w power consumption and RAM								
			da	ata need to	be held. When	normal o	peration, do not set up (Display ON	l,							
			W	writing of display data).											
			2. W	Vhen norma	al operation, us	e it in this	mode (Display ON, writing of display	ay							
			da	ata).											
-															
	Dз	PT1	When partial display, the drive of non-display area can be selected by setup of PT1, PT0 a												
'			GSM [R0] as shown in below.												
			For more details	s, refer to 5.	6.1 Partial dis	splay, nor	n-display area driving.								
			GSM [RC)] PT	1 PT0	Pa	artial Display Operation								
			0	0	0	Normal	partial drive								
	D ₂	PT0		0	1										
				1	0										
				1	1	Non-refi	resh drive 1								
			1	0	0	Non-refi	resh drive 2								
				Othe	er than above	Setting	prohibited								
			-												
	D ₁	REV	The gray-scale le	evel of sour	rce output is inv	verted.									
			0: Normal operation												
			1: Gray-scale inv	version out	out										
R79	D ₅ to D ₀	GOSTn	•	•		m GOE1 (/GOE1) and OEV (/OEV) pin is set	up.							
	2		1	•	•	(, = = = = = = = = = = = = = = = = = = =	r							
				Set up in the range $001H \le R79 \le 026H$. n addition, prohibited for setting up the same value as R79 and R80.											
R80	D ₅ to D ₀	GOEDn					GOE1) and OEV (/OEV) pin is set u	ın							
1100	D3 10 D0	COLDII	Set up in the ran	•	•		COLT, and OLV (OLV) pin is set t	ω ρ.							
			Jet up in the fall	ŭ	1\00 ≥ 0Z0∏.		D-0 1 D00								
•			The model (4) 1 1	addition, prohibited for setting up the same value as R79 and R80.											
	1														
R83	D ₅ to D ₀	RSTn	The start timing	of the signa	al outputted fror		as R79 and R80. RSW) and ASW1 (/ASW1) pin is se	et up.							
R83	D₅ to D₀	RSTn		of the signa	al outputted fror			et up.							

(15/16)

Register	Bit	Symbol	Function
R84	D ₅ to D ₀	REDn	The end timing of the signal outputted from RSW (/RSW) and ASW1 (/ASW1) pin is set up.
			Set up in the range 002H ≤ R84 ≤ 025H.
			In addition, prohibited for setting up the same value as R83 and R84.
R85	D₅ to D₀	GSTn	The start timing of the signal outputted from GSW (/GSW) and ASW2 (/ASW2) pin is set up.
			Set up in the range 002H ≤ R85 ≤ 025H.
			In addition, prohibited for setting up the same value as R85 and R86.
R86	D₅ to D₀	The end timing of the signal outputted from GSW (/GSW) and ASW2 (/ASW2) pin is set up.	
			Set up in the range 002H ≤ R86 ≤ 025H.
			In addition, prohibited for setting up the same value as R85 and R86.
R87	D ₅ to D ₀	The start timing of the signal outputted from BSW (/BSW) and ASW3 (/ASW3) pin is set up.	
			Set up in the range 002H ≤ R87 ≤ 025H.
			In addition, prohibited for setting up the same value as R87 and R88.
R88	D ₅ to D ₀	BEDn	The end timing of the signal outputted from BSW (/BSW) and ASW3 (/ASW3) pin is set up.
			Set up in the range 002H ≤ R88 ≤ 025H.
			In addition, prohibited for setting up the same value as R87 and R88.
R89	D ₅ to D ₀	E1STn	The start timing of the signal outputted from EXT1 (/EXT1) pin is set up.
			Set up in the range $001H \le R89 \le 026H$.
			In addition, when unused output signal from these pins, set up the same value as R89 and R90.
			In default, these bits are fixed to EXT1 = L, /EXT1 = H.
			By liquid crystal control timing circuit selection register (R78:D ₇) = 1, this setup becomes valid, only
			when the timing circuit 2 is selected.
R90	D ₅ to D ₀	E1EDn	The end timing of the signal outputted from EXT1 (/EXT1) pin is set up.
			Set up in the range $001H \le R90 \le 026H$.
			In addition, when unused output signal from these pins, set up the same value as R89 and R90.
			By liquid crystal control timing circuit selection register (R78:D ₇) = 1, this setup becomes valid,
			only when the timing circuit 2 is selected.
R91	D ₅ to D ₀	E2STn	The start timing of the signal outputted from EXT2 (/EXT2) pin is set up.
			Set up in the range 001H ≤ R91 ≤ 026H.
			In addition, when unused output signal from these pins, set up the same value as R91 and R92.
			In default, these bits are fixed to EXT2 = L, /EXT2 = H.
			By liquid crystal control timing circuit selection register (R78:D ₇) = 1, this setup becomes valid, only
			when the timing circuit 2 is selected.
R92	D₅ to D₀	E2EDn	The end timing of the signal outputted from EXT2 (/EXT2) pin is set up.
			Set up in the range 001H ≤ R92 ≤ 026H.
			In addition, when unused output signal from these pins, set up the same value as R91 and R92.
			By liquid crystal control timing circuit selection register (R78:D ₇) = 1, this setup becomes valid,
			only when the timing circuit 2 is selected.

(16/16)

Register	Bit	Function	
R93	D ₆	RVCOT	Operation of common timing signal (VCOUT) is controlled.
			0: VCOUT signal and FR signal OFF (L output fixed)
			1: VCOUT signal and FR signal ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₅	RGBSW	Operation of panel multi-plexus signal (RSW, GSW, BSW) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₄	RGSTB	Operation of the strobe signal for gate control (GSTB) is controlled.
			0: OFF (H output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₃	RGCLK	Operation of the clock signal for gate control (GCLK) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₂	RASW	Operation of panel multi-plexus signal (ASW1, ASW2, ASW3) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₁	RSTV	Operation of the start signal for gate control (STV) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₀	RCKV	Operation of the clock signal for gate control (CKV) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25°C, Vss = 0 V)

Parameter	Symbol	Ratings	Unit
Power supply voltage	Vs	-0.5 to +6.0	V
Power supply voltage	V _{DD1}	-0.5 to +2.2	V
Power supply voltage	V _{DD2}	-0.5 to +2.2	V
Power supply voltage	V _{DDIO}	-0.5 to +4.6	V
Power supply voltage	V _{CC1}	-0.5 to +4.6	V
γ -correction power supply	V ₁ to V ₅	-0.5 to Vs + 0.5	V
Input voltage	V _{I1}	-0.5 to V _{DDIO} + 0.5	V
Input voltage	V ₁₂	-0.5 to V _{CC1} + 0.5	V
Input current	lı .	±10	mA
Operating ambient temperature	TA	-40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions (T_A = -40 to +85°C, Vss = 0 V)

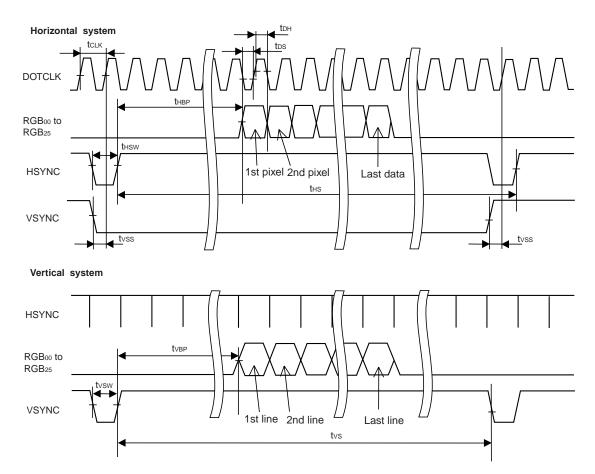
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Power supply voltage	Vs	4.0	5.0	5.5	V
Power supply voltage	V _{DD1}	1.6		2.0	V
Power supply voltage	V _{DD2}	1.6		2.0	V
Power supply voltage	V _{DDIO}	1.8		3.3	V
Power supply voltage	Vcc1	2.5		3.3	V
Input voltage	V _{I1} Note1	0		V _{DDIO}	V
Input voltage	V ₁₂ Note2	0		Vcc1	V

Notes 1. About pins of VDDIO power supply system: /CS, /RD (E), /WR (R,/W), Do to D17, RS, /RESET, etc.

2. About pins of Vcc1 power supply system: PSX, C86, TOUT0 to TOUT19, GOE1, GOE2, GSTB, GCLK, TSTRTST, TSTVIHL, etc.

Electrical Specifications (Unless Otherwise Specified, $T_A = -40$ to +85°C, $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V,

 $V_{CC1} = 2.5 \text{ to } 3.3 \text{ V}, V_{DDIO} = 1.8 \text{ to } 3.3 \text{ V}, V_S = 4.0 \text{ to } 5.5 \text{ V})$

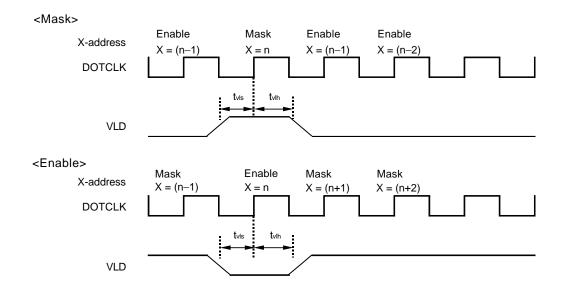

Parameter	Symbol	Condition	MIN.	TYP. Note1	MAX.	Unit
High level input voltage	V _{IH1}	VDDIO	0.8 VDDIO			V
	V _{IH2}	Vcc1	0.8 Vcc1			V
Low level input voltage	V _{IL1}	VDDIO			0.2 VDDIO	V
	V _{IL2}	Vcc1			0.2 Vcc1	V
High level output voltage	V _{OH1}	VDDIO, IOUT = -1 mA	0.8 VDDIO			V
	V _{OH2}	Vсс1, louт = –1 mA	0.8 Vcc1			V
Low level output voltage	V _{OL1}	VDDIO, IOUT = 1 mA			0.2 VDDIO	V
	V _{OL2}	Vсс1, louт = 1 mA			0.2 Vcc1	V
High level input current	I _{IH1}	VDDIO			1	μΑ
	I _{IH2}	Vcc1			1	μA
Low level input current	IIL1	VDDIO			– 1	μΑ
	I _{IL2}	Vcc1			– 1	μA
High level leakage current	Інн	Do to D17			1	μA
Low level leakage current	ILIL	Do to D ₁₇			– 1	μΑ
High level driver output current	Іvон	Vx = 3.5 V, Vout = 3.0 V,			-25	μA
		Vs = 5.0 V				
Low level driver output current	Ivol	Vx = 1.5 V, Vout = 2.0 V,	25			μA
		Vs = 5.0 V				
Current consumption	Iddio	VDDIO (when non-access CPU)			5	μA
	Icc1	Vcc1 (when non-access CPU)			400	μΑ
	Іѕтву	VDDIO			1	μΑ
		Vcc1 (STBY mode)			50	μΑ
		Vcc1 (DEEP SLEEP)			200	μΑ
		Vcc1 (SLEEP mode)			300	μΑ
	Is	260,000-color mode Note2			1.5	μΑ
		8-color mode Note2			50	μΑ
		Stand-by mode			5	μΑ
Output voltage deviation	ΔVο	Vs = 5.0 V, V _{OUT} = 1.65 V Note3			10	mV
		Vs = 5.0 V, V _{OUT} = 2.50 V Note3			10	mV

Notes 1. TYP. values are reference values when $T_A = 25^{\circ}C$

- 2. Frame frequency: 60 Hz, line inversion mode selection, dot checkerboard input pattern, and no load.
- **3.** Vx: The output voltage of analog output pins Y₁ to Y₂₄₀, V_{OUT}: The application voltage of analog output pins Y₁ to Y₂₄₀.

AC Characteristics (Unless Otherwise Specified, $T_A = -40$ to $+85^{\circ}$ C, $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V, $V_{CC1} = 2.5$ to 3.3 V, $V_S = 4.0$ to 5.5 V)

(a) RGB interface

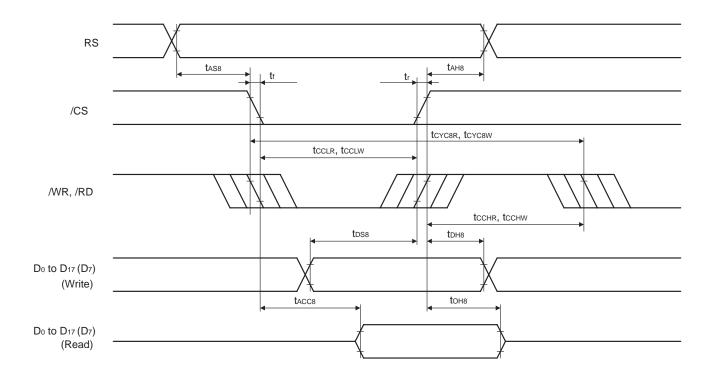

Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Dot clock cycle time	tclk		150			ns
Dot clock high level pulse width	tclkH		75			ns
Dot clock low level pulse width	tclkl		75			ns
Data setup time	tos		60			ns
Data hold time	tон		60			ns
HSYNC pulse width	thsw		1			DOTCLK
Horizon period back porch time	tнвр		1			DOTCLK
VSYNC pulse width	tvsw		1			HS
VSYNC setup time	tvss	·	60			ns
Vertical period back porch time	tvbp		2			HS

Note TYP. values are reference values when $T_A = 25$ °C.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

- 2. All timing is rated based on 20 to 80% of Vcc1.
- 3. One frame period ≥ VSYNC active period (1 HS) + VBP value (2 HS) + display line count (320 HS) = 323-line period (HS)
- **4.** 1 line period HSYNC active period (1 DOTCLK) + HBP value (1 DOTCLK) + display pixel count (240 DOTCLK) = 242 clock period (DOTCLK)

(b) RGB interface capture mode VLD function


Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
VLD setup time	tvls		60			ns
VLD hold time	tvlh		60			ns

Note TYP. values are reference values when $T_A = 25$ °C.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

(c) i80 series CPU interface

When $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V, $V_{CC1} = 2.5$ to 3.3 V (normal write mode)

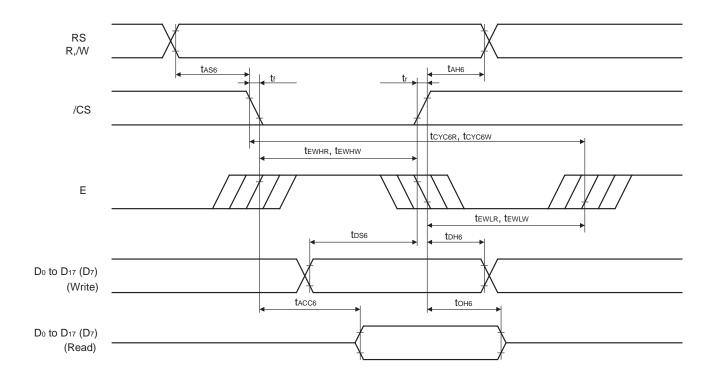
Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Address hold time	t AH8	RS	10			ns
Address setup time	t _{AS8}	RS	10			ns
System cycle time (when write)	tcyc8w	VSTBY = Low	100			ns
		R98 = 005H				
		VSTBY = High	100			ns
		$V_{DD1} = V_{DD2} = 1.7 \text{ MIN}.$				
		R98 = 005H				
System cycle time (when read)	tcyc8R		250			ns
Control low-level pulse width (/WR)	tcclw	/WR	25			ns
Control low-level pulse width (/RD)	tcclr	/RD	140			ns
Control high-level pulse width (/WR)	t ccHW	/WR	20			ns
Control high-level pulse width (/RD)	tcchr	/RD	80			ns
Data setup time	t _{DS8}	D ₀ to D ₁₇	25			ns
Data hold time	t _{DH8}	D ₀ to D ₁₇	10			ns
/RD access time	t _{ACC8}	D ₀ to D ₁₇ , C _L = 100 pF			140	ns
Output disable time	t _{OH8}	D ₀ to D ₁₇ , C _L = 100 pF	5		140	ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

When V_{DD1} = V_{DD2} = 1.6 to 2.0 V, V_{CC1} = 2.5 to 3.3 V (high-speed RAM write mode, valid only for writing data)


						J ,
Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Address hold time	t _{AH8}	RS	10			ns
Address setup time	tasa	RS	10			ns
System cycle time (when write)	tcyc8w		65			ns
Control low-level pulse width (/WR)	tccLw	/WR	25			ns
Control high-level pulse width (/WR)	t cchw	/WR	20			ns
Data setup time	t _{DS8}	Do to D ₁₇	25			ns
Data hold time	t _{DH8}	Do to D ₁₇	10			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

(d) M68 series CPU interface

When $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V, $V_{CC1} = 2.5$ to 3.3 V (normal write mode)

Parameter		Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Address hold time		t _{AH6}	RS	10			ns
Address setup time		t _{AS6}	RS	10			ns
System cycle time (when write)		tcycew	VSTBY = Low R98 = 005H	100			ns
			VSTBY = High V _{DD1} = V _{DD2} = 1.7 MIN. R98 = 005H	100			ns
System cycle time (when	read)	tcyc6R		250			ns
Data setup time		t _{DS6}	Do to D ₁₇	25			ns
Data hold time		t _{DH6}	Do to D ₁₇	10			ns
Access time		t _{ACC6}	D ₀ to D ₁₇ , C _L = 100 pF			140	ns
Output disable time		t он6	D ₀ to D ₁₇ , C _L = 100 pF	5		140	ns
Enable high level pulse	Read	t ewhr	Е	140			ns
width	Write	t ewhw	Е	35			ns
Enable low level pulse Read		t ewlr	Е	80			ns
width	Write	t EWLW	E	30			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

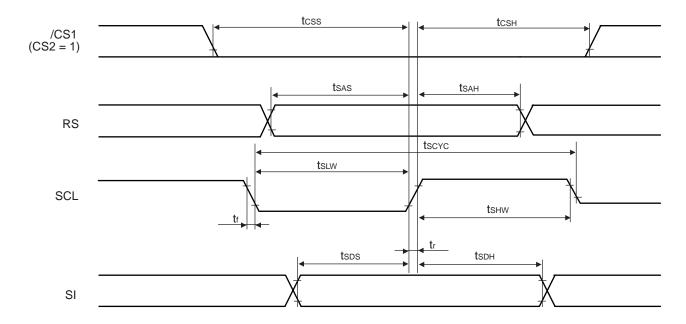
Remarks 1. The rise and fall times (t_r and t_f) of input signals are rated at 15 ns or less. When using a high-speed system cycle time, the rated value range is either ($t_r + t_f$) < ($t_{CYC6} - t_{EWLR} - t_{EWHR}$) or ($t_r + t_f$) < ($t_{CYC6} - t_{EWLW} - t_{EWHW}$).

2. All timing is rated based on 20 to 80% of Vcc1.

When V_{DD1} = V_{DD2} = 1.6 to 2.0 V, V_{CC1} = 2.5 to 3.3 V (high-speed RAM write mode, valid only for writing data)

Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Address hold time	t _{AH6}	RS	10			ns
Address setup time	t _{AS6}	RS	10			ns
System cycle time	tcyc6w		80			ns
Data setup time	t _{DS6}	Do to D ₁₇	25			ns
Data hold time	t _{DH6}	Do to D ₁₇	10			ns
Enable high level pulse width	tewnw	Е	35			ns
Enable low level pulse width	tewlw	Е	30			ns

Note TYP. values are reference values when $T_A = 25$ °C.

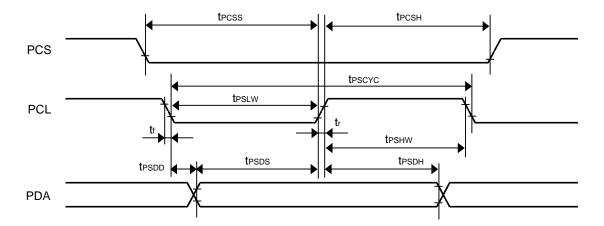

Remarks 1. The rise and fall times (t_r and t_f) of input signals are rated at 15 ns or less. When using a high-speed system cycle time, the rated value range is either ($t_r + t_f$) < ($t_{CYC6} - t_{EWLR} - t_{EWHR}$) or ($t_r + t_f$) < ($t_{CYC6} - t_{EWLW} - t_{EWHW}$).

2. All timing is rated based on 20 to 80% of V_{CC1} .

(e) Serial interface

<1> Serial interface between CPU and the μ PD161802

When $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V, $V_{CC1} = 2.5$ to 3.3 V


Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Serial clock cycle	tscyc	SCL	150			ns
SCL high level pulse width	tshw	SCL	60			ns
SCL low level pulse width	tslw	SCL	60			ns
Address hold time	tsah	RS	90			ns
Address set up time	tsas	RS	90			ns
Data set up time	tsps	SI	60			ns
Data hold time	tspн	SI	60			ns
CS - SCL time	tcss	/CS	90			ns
	tсsн	/CS	90			ns

Note TYP. values are reference values when $T_A = 25$ °C.

Remarks 1. The rise and fall times (tr and tr) of input signals are rated at 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

<2> Serial interface between the μ PD161802and the μ PD161862

When $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V, $V_{CC1} = 2.5$ to 3.3 V

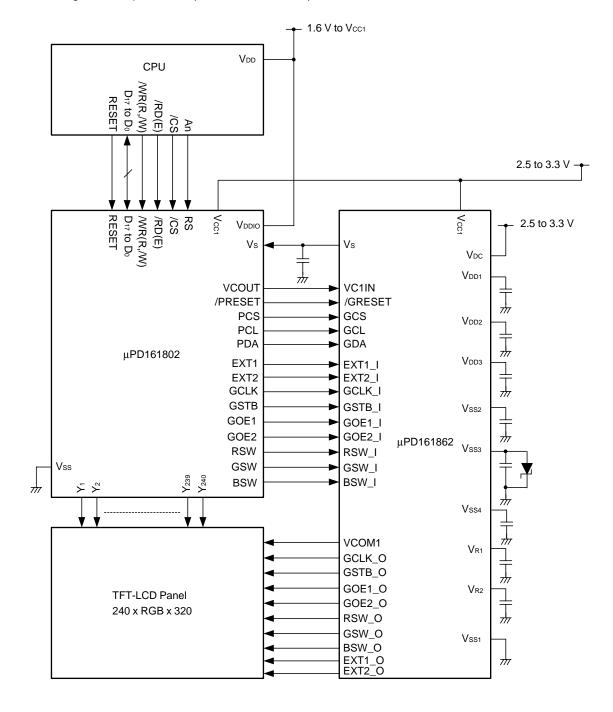
Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Serial clock cycle	tescyc		2			1/fosc
PCL high level pulse width	tpshw		1			1/fosc
PCL low level pulse width	tpslw		1			1/fosc
Data set up time	tpsps		1			1/fosc
Data hold time	t PSDH		1			1/fosc
$PCL\!\!\downarrow \to PDA$ output delay time	tPSDD		30			ns

Note TYP. values are reference values when $T_A = 25$ °C.

Remarks 1. The rise and fall times (tr and tr) of input signals are rated at 15 ns or less.

- 2. All timing is rated based on 20 to 80% of V_{CC1} .
- **3.** fosc is the internal oscillator's oscillation frequency.

(f) Common

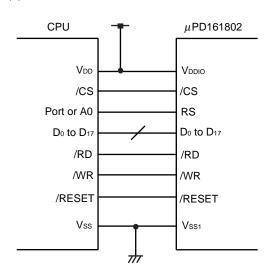

Parameter	Symbol	Condition	MIN.	TYP. Note1	MAX.	Unit
Calibration setting time	tcal	Note2		51.9		μs
(frame frequency)	(fframeo)			(60)		(Hz)
Frame frequency	fFRAME2	Calibrated Note3		60		Hz
	fFRAME3	Calibrated Note4		60		Hz
Reset pulse width	trw		100			ns
Reset time	t R	/RESET↑ to interface operation	100			ns

Notes 1. TYP. values are reference values when $T_A = 25$ °C.

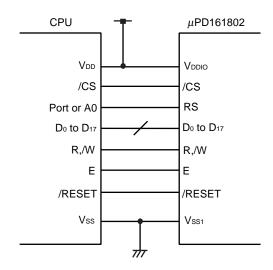
- 2. The relationship between the frame frequency and the calibration setting time is as follows. $f_{FRAME0} = 1/t_{cal} \times 321$
- 3. Measured at $T_A = -40$ to $+85^{\circ}$ C, after calibration at frame frequency = 60 Hz, $T_A = 25^{\circ}$ C exactly.
- **4.** Measured at ±5°C, after calibration at frame frequency = 60 Hz exactly.

10. THE μ PD161802 AND THE μ PD161862 CONNECTION

Connection diagram examples for the μ PD161802 and the μ PD161862 are show below.



11. EXAMPLE OF THE μ PD161802 AND CPU CONNECTION


Examples of the μ PD161802 and CPU connection are shown below.

In the example below, RS pin control in parallel interface mode is described for the case when the least significant bit of the address bus is being used.

(1) i80 series format

(2) M68 series format

HITACHI MODE

5. DESCRIPTION OF FUNCTIONS

5.1 CPU Interface

5.1.1 Selection of interface type

The μ PD161802 is able to transfer data via an RGB interface (18-/16-/9-/6-bit) or via either of two CPU interfaces: the i80 parallel interface (18-/16-/8-bit). The following modes can be selected for these CPU interfaces, as set via the BSW0 to BSW3 pins. Also, the RGB interface becomes valid when at which time the bus width is selected according to the RIM1 and RIM0 [R00CH: D1, D0] settings.

Although the i80 parallel interface and the serial interface allow writing to both the display data RAM and the registers, the RGB interface can be used only to overwrite the display data RAM.

Moreover, the display operation mode at the time of each interface use can be set up by setup of DM1 and DM0 [R00CH:D₅, D₄]. Internal clock operation and external display interface operation can be changed by this setup.

 D_8 to D₁₇ to BWS3 BWS2 BWS1 BWS0 Mode /CS RS /RD /WR D₉ D٥ D₁₀ D_1 L Χ Setting prohibited 16bit parallel D₁₇ to Hi-Z D₈ to Hi-Z L /CS RS /RD /WR L D₁₀ D_1 L Н 8bit parallel D₁₇ to Hi-Z Note /CS /WR RS /RD Н D₁₀ Н Χ Χ Setting prohibited Х L Setting prohibited 18bit parallel D₁₇ to D₈ to /WR L /CS RS /RD D₉ Dο L D_{10} Н Н 9bit parallel D₁₇ to Hi-Z Note Hi-Z /CS RS Н Χ D_9 D₁₀ Н Х Х Setting prohibited

Table 5-1. CPU Interface Bus Width Selection

Remark X: Don't care

Note Hi-Z: High impedance

Table 5-2. Interface Selection

RM	RAM Access Interface
0	CPU system interface
	Set it as DM [1:0] = 1, 0 (VSYNIC interface) or at the time DM [1:0] = 0, 0 (internal clock).
1	RGB interface
	Set it as at the time DM [1:0] = 0, 1 (RGB interface).

Table 5-3. RGB Interface Bus Width Selection

RIM1	RIM0	Mode	RGB05 to RGB01	RGB00	RGB ₁₅ to RGB ₁₀	RGB ₂₅ to RGB ₂₁	RGB ₂₀	
L	L	18-bit parallel	RGB05 to RGB01	RGB00	RGB ₁₅ to RGB ₁₀	RGB ₂₅ to RGB ₂₁	RGB ₂₀	
L	Н	16-bit parallel	RGB ₀₅ to RGB ₀₁	Hi-Z ^{Note}	RGB ₁₅ to RGB ₁₀	RGB25 to RGB21	Hi-Z ^{Note}	
Н	L	6-bit parallel	Hi-Z ^{Note}	Hi-Z ^{Note}	Hi-Z Note	RGB ₂₅ to RGB ₂₁	RGB ₂₀	
Н	Н	Setting prohibited						

Note Hi-Z: High impedance

Table 5-4. Display Interface Selection

DM1	DM0	The interface which performs display operation (reference clock)
0	0	Internal clock operation
0	1	RGB interface
1	0	VSYNC interface
1	1	Setting prohibited

5.1.2 Selection of data transfer mode

When data bus width selection, it is fixed to 1 pixel = 18-bit at the time of 18-bit parallel interface selection, it is fixed to 1 pixel = 16-bit at the time of 16-bit parallel interface selection, and it is fixed to 1 pixel = 18-bit (9-bit x 2) at the time of 9-bit parallel interface selection.

1 pixel can be selected from 18-bit (TMI = 1 [R003H: D₁₅]) or 16-bit (TMI = 0 [R003H: D₁₅]) in 8-bit parallel interface. At moreover, the time of 1 pixel/18-bit selection (a data transmission format can be selected by setup of TMI = 1 [] and DFM [R003H: D₁₄].)

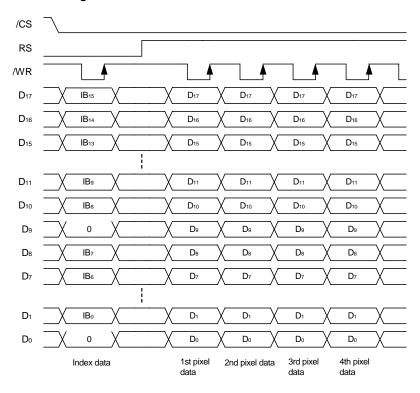

[18-bit Parallel Interface]

Figure 5-1. Relationship Between 18-bit Parallel Interface and Display RAM Data

D		
Data	hile	CIMA

	18-bit data																
D ₁₇	D ₁₆	D ₁₅	D14	D13	D ₁₂	D11	D10	D ₉	D8	D7	D ₆	D₅	D4	Dз	D ₂	D ₁	D₀
RAM D ₁₇	RAM D16	RAM D ₁₅	RAM D14	RAM D13	RAM D ₁₂	RAM D ₁₁	RAM D10	RAM D9	RAM D8	RAM D7	RAM D6	RAM D₅	RAM D4	RAM D3	RAM D2	RAM D1	RAM Do
R ₅	R ₅ R ₄ R ₃ R ₂ R ₁ R ₀ G ₅ G ₄ G ₃ G ₂ G ₁ G ₀ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀																
	R data G data B data																
								1 p	ixel								

Figure 5-2. 18-bit Parallel Interface Data Transfer

[16-bit Parallel Interface]

Data bus side 16-bit data D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₈ D₇ D₆ D₅ D₄ Dз D_2 D1 Data supplement function D₁₇ D₅ Note: Note: RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM D₁₃ D₁₇ D₁₆ D₁₅ D₁₄ D₁₂ D₁₁ D₁₀ D_9 D_8 D₇ D_6 D_5 D_4 Dз D_2 D₁ D_0 Rз R_2 R_1 R_0 G₅ G_4 Gз G_2 G_1 G_0 Вз B_0 R data G data B data 1 pixel

Figure 5-3. Relationship Between 16-bit Parallel Interface and Display RAM Data

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by D₁₇ and D₅ of bus data respectively, and written to the display RAM as 18-bit data.

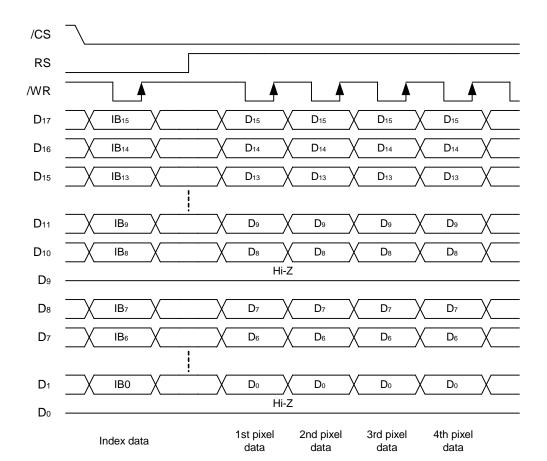


Figure 5-4. 18-bit Parallel Interface Data Transfer

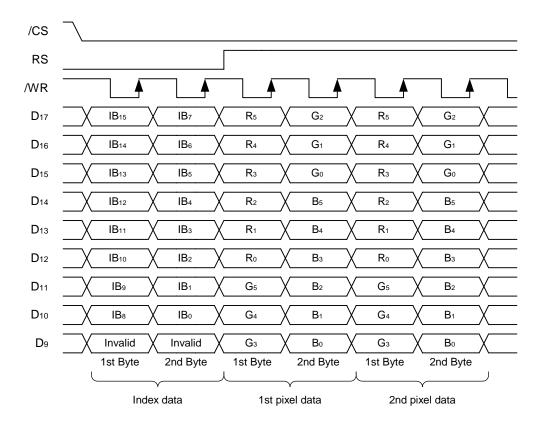

[9-bit Parallel Interface]

Figure 5-5. Relationship Between 9-bit Parallel Interface and Display RAM Data

Data bus side

			9-bit	(First tr	ansfer)						9	-bit (Se	cond tr	ansfer)			
D ₁₇	D ₁₆	D ₁₅	D ₁₄	D13	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉
RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM										DAM	DAM						
TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN								RAM Do									
R ₅	R4	Rз	R ₂	R₁	Ro	G₅	G4	G₃	G ₂	G ₁	G₀	B₅	B ₄	Вз	B ₂	B ₁	Bo
	R data G data B data																
								1 p	ixel								

Figure 5-6. 9-bit Parallel Interface Data Transfer

[8-bit Parallel Interface]

Figure 5-7. Relationship Between 8-bit Parallel Interface and Display RAM Data 1

(1) TRI = 0: 2-time transfer mode

Data bus side

			8-bit	(First tr	ansfer)						8	-bit (Se	cond tr	ansfer)			
D17	D16	D ₁₅	D14	D ₁₃		D ₁₂	D ₁₁	D ₁₀	D ₁₇	D16	D ₁₅	D ₁₄	D13	D ₁₂	D ₁₁	D ₁₀	
	>																1
RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM D D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D8							RAM D ₇	RAM D ₆	RAM D ₅	RAM D4	RAM D3	RAM D ₂	RAM D ₁	RAM D ₀			
R ₅	R ₅ R ₄ R ₃ R ₂ R ₁ R ₀ G ₅ G ₄ (G ₂ G ₁ G ₀ B ₅ B ₄ B ₃ B ₂ E						B ₁	Bo	
	R data G data B data																
								1 p	ixel								

Figure 5-8. 8-bit Parallel Interface Data Transfer 1

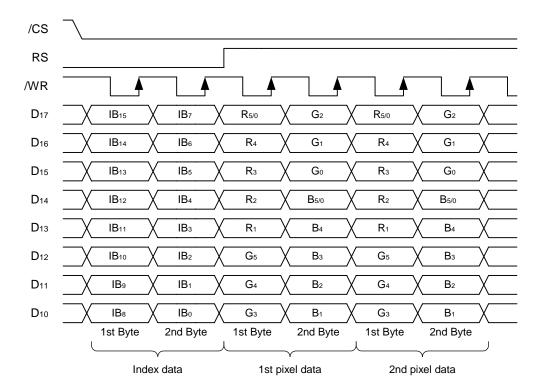


Figure 5-9. Relationship Between 8-bit Parallel Interface and Display RAM Data 2

(2) TRI = 1, DFM =0: 3-time transfer mode, Data transfer mode 1 (2 bit + 8 bit + 8 bit)

Data bus side

8-bit (First t	ransfer)			8-bit	t (Seco	nd trans	sfer)					8-1	bit (Thir	d trans	fer)		
D ₁₁	D ₁₀	D17	D16	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀
RAM D ₁₇	RAM D16	RAM D ₁₅	RAM D14	RAM D13						RAM D ₇	RAM D ₆	RAM D5	RAM D4	RAM D3	RAM D ₂	RAM D1	RAM Do
R₅	R ₄	Rз							G ₂	G ₁	G₀	0 B ₅ B ₄ B ₃ B ₂ B ₁ B ₀					
R data G data								data	B data								
								1 p	ixel								

Figure 5-10. 8-bit Parallel Interface Data Transfer 2

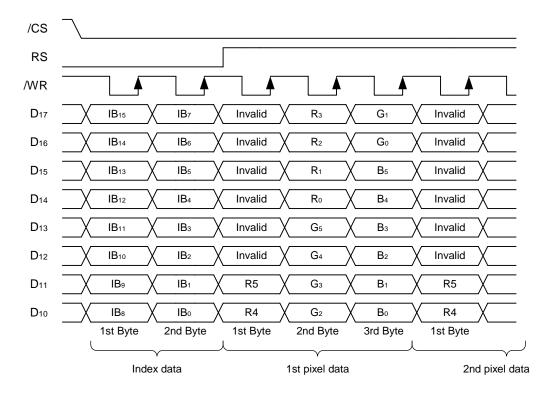


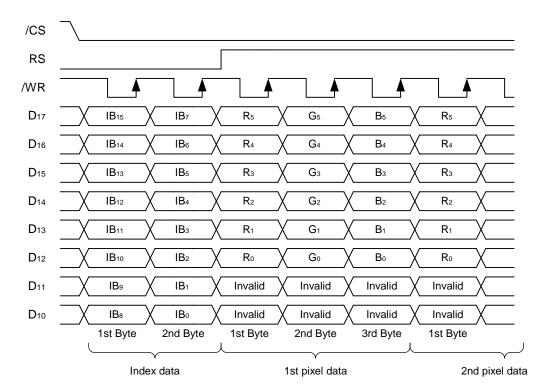
Figure 5-11. Relationship Between 8-bit Parallel Interface and Display RAM Data 2

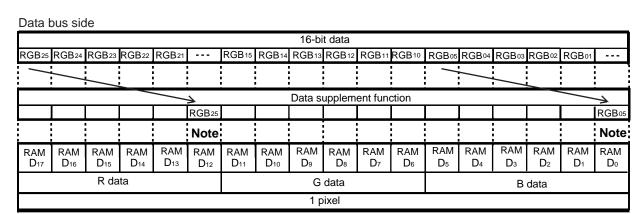
(3) TRI = 1, DFM =1: 3-time transfer mode, Data transfer mode 2 (6 bit + 6 bit + 6 bit)

Data bus side

	8-	bit (Firs	t transf	er)			8-b	it (Seco	nd tran	sfer)		8-bit (Third transfer)					
D ₁₇	D ₁₆	D ₁₅	D ₁₄	D13	D12	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂
						:											
																	 i
RAM	RAM	RAM	RAM	RAM	RAM									RAM			
D ₁₇	D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D									D ₀							
R ₅	R4	Rз	R ₂	R₁	Ro	G₅	G4	G₃	G ₂	G₁	G₀	B ₅	B ₄	Вз	B ₂	B₁	Bo
	R data G data B data																
								1 p	ixel								

Figure 5-12. 8-bit Parallel Interface Data Transfer 3




Figure 5-13. Relationship between Bus Data and Display RAM Data (18-bit RGB interface)

Data bus side

	18-bit data																
RGB ₂₅	RGB24	RGB23	RGB22	RGB21	RGB ₂₀	RGB ₁₅	RGB14	RGB ₁₃	RGB ₁₂	RGB ₁₁	RGB ₁₀	RGB ₀₅	RGB04	RGB03	RGB02	RGB01	RGB00
RAM D ₁₇	_																
	R data G data B data																
	1 pixel																

Display RAM side

Figure 5–14. Relationship between Bus Data and Display RAM Data (16-bit RGB interface)

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by RGB₂₅ and RGB₀₅ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–15. Relationship between Bus Data and Display RAM Data (6-bit RGB interface)

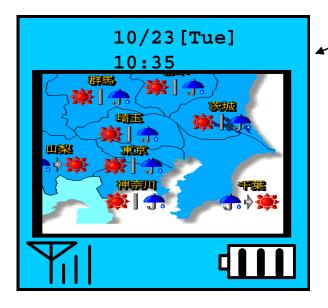
Data bus side

		6-bit	data					6-bit	data			6-bit data					
RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀
												1					
						<u> </u>											
RAM D ₁₇	RAM D ₁₆	RAM D ₁₅	RAM D ₁₄	RAM D ₁₃	RAM D ₁₂	RAM D ₁₁	RAM D ₁₀	RAM D ₉	RAM D ₈	RAM D ₇	RAM D ₆	RAM D₅	RAM D4	RAM D ₃	RAM D ₂	RAM D₁	RAM D₀
	Dio			2.0	Diz	D 111	D 10			D,			υ,	D ₀	D ₂	Ο.	
	R data G data B data																
	·	·	·	, and the second	·	, and the second	, and the second second	1 p	ixel	·	·	, and the second second	·	, and the second second	·	, and the second second	

5.1.3 RGB interface

The μ PD161802 can be directly connected to the RGB interface when bit D₂ of the RGB interface control register (R00CH of RM (D₈ bit) = "1", DM1 (D₅ bit) = "0" and DM0 (D₄ bit) = "1") is set.

The HSYNC and VSYNC signals establish synchronization in the horizontal and vertical direction, respectively, and data input to the data bus (RGB₀₀ to RBG₀₅, RGB₁₀ to RGB₁₅, and RGB₂₀ to RGB₂₅) is latched in synchronization with DOTCLK. For the electrical specifications, refer to **9**. **ELECTRICAL SPECIFICATIONS**.


When capture mode is selected, DOTCLK is used as a write-in signal to a display data RAM. In addition, X addresses of an address pointer are reset by the HSYNC signal, and an increment is carried out by DOTCLK. Y address is reset by the VSYNC signal and an increment is carried out by the level synchronized signal.

The blanking period can be set by the horizontal back porch register and vertical back porch register. The active levels of HSYNC and VSYNC can be set. In addition, the active level of DOTCLK can also be set.

[Example of using RGB interface]

The area set in the window access mode is written by the RGB interface (R01BH to R01EH), and a domain which became active with the VLD pin (However, a register setup is confirmed when a register setup (R01BH to R01EH) and a VLD pin set both up.).

Even in this mode, the i80 parallel interface which are shared with the RGB interface, can be used. Note, however, that data can be written to a register while the RGB interface is accessed, but that the RAM cannot be accessed. Make sure that only one of these accesses is made (shift to the RGB data invalid mode so that video data is not input).

The RGB interface performs the writing to the RAM area specified to be a window area for the RGB interface.

I80/M68 parallel interface and the serial interface rewrite display data RAM to the RAM area specified by window access mode.

<Notes on using RGB interface>

- <1> Be sure to input data from the RGB interface every frame.
- <2> When changing the mode, issue defined mode of selection command after once always setting.
- <3> Data (back porch period is included) of one line should be set within the period of HSYNC to HSYNC.
- <4> Data (back porch period is included) of one frame should be set within the period of VSYNC to VSYNC.
- <5> Do not set access to R00DH register and DM0/DM1/RM bit into standby mode.
- <6> High-speed RAM write mode cannot be used.
- <7> A setup of R200H, R201H, and R406H to R409H is invalid at the time of RGB interface mode (since these are set up of CPU interface).
- <8> The period from "the DOTCLK rising after falling of HSYNC" to "the rising of DOTCLK after a HSYNC rising" should not start VSYNC. For more details, refer to the next Figure 5–16, 5–17.

Figure 5-16. Example of HSYNC, VSYNC, DOTCLK Input Timing (both HSYNC and VSYNC are low active)

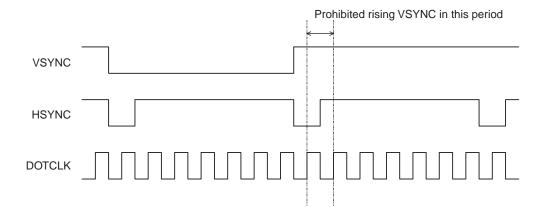
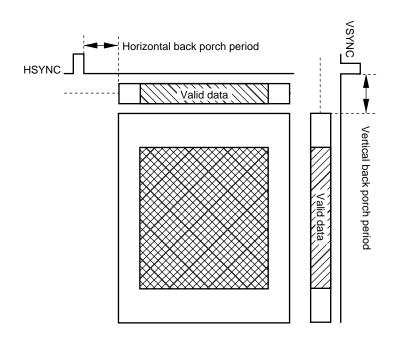
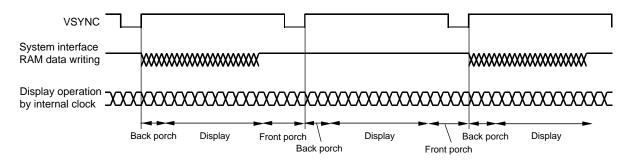



Figure 5-17. HSYNC and VSYNC Input Image Figure (when both HSYNC and VSYNC are high active)



5.1.4 VSYNIC Interface

The VSYNC interface in which video display is possible is built in only by a conventional system interface and a conventional frame synchronized signal (VSYNC).

The VSYNC interface becomes usable by setting up with R00CH and DM1 = 1, DM0 = 0, and RM = 0. In the VSYNC interface, internal display operation is synchronized by the frame synchronized signal (VSYNC). From a system interface, it abolishes that the data before rewriting and the data after rewriting are intermingled in 1 frame by writing display data in RAM at a writing speed more than fixed speed from internal display operation.

In addition, if VSYNC becomes active, being simultaneous (the above figure rising of VSYNC), when the writing from a system interface to RAM begins to be performed, it is necessary to write in data above the speed computed by the following expression of relations.

[The clock frequency for a display]

Built-in VCO frequency (fosc) [Hz] = frame frequency x (display line (320) + front porch + back porch) x the number of horizontal period clocks x variation

[RAM write in speed]

RAM write in speed (MIN.) [Hz] > 240 x display line/ {(back porch + display line (320)-margin) x the number of horizontal period clocks/fosc}

Caution The margin asks for a setup more than one.

[Example 1 of calculation] When writing in data of 240 RGB x 320 pixel

Display size : 240 RGB x 320

The number of rewriting pixels : 240 pixel
The number of rewriting lines : 320 line

Back/Front porch : 14 line/12 line

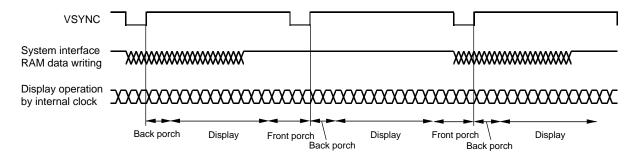
Frame frequency : 60 Hz
The number of display line clocks : 41 clock
Margin : 2 line

Built-in VCO frequency (fosc) [Hz] = 60Hz x (320 + 2 + 14) line x 41 clock x 1.1/0.9 = 827 kHz $\pm 10\%$ RAM write in speed (MIN.) [Hz] = $240 \times 320/\{(14 + 320 - 2) \text{ line x 41 clock/827 kHz}\} = 4.67$ MHz (with no variation)

[Example 2 of calculation] When writing in data of 200 RGB x 300 pixel

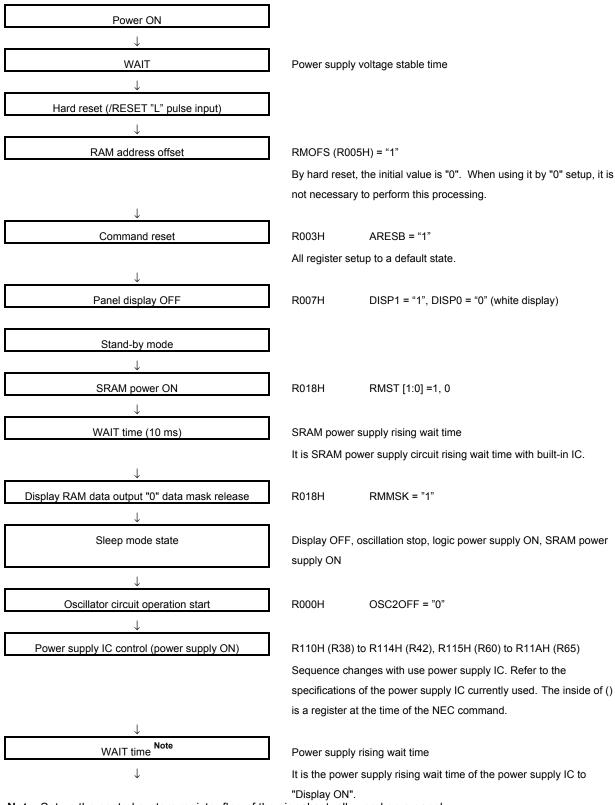
Display size : 240 RGB x 320

The number of rewriting pixels : 200 pixel

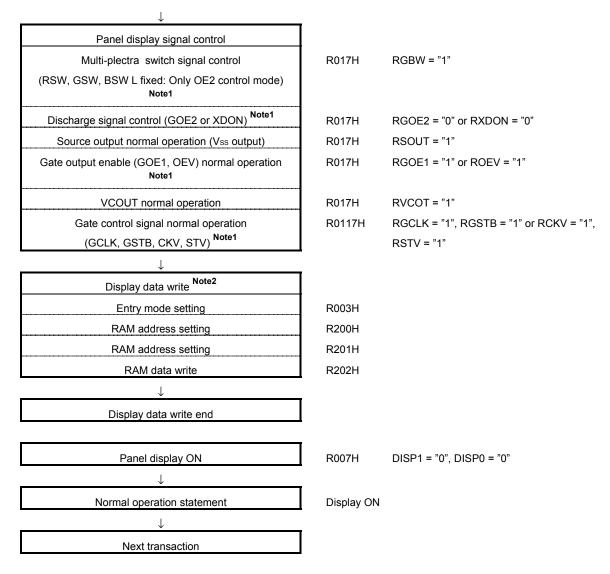

The number of rewriting lines : 300 line

Back/Front porch : 14 line/12 line

Frame frequency : 60 Hz
The number of display line clocks : 41 clock
Margin : 2 line


Built-in VCO frequency (fosc) [Hz] = 60Hz x (320 + 2 + 14) line x 41 clock x 1.1/0.9 = 827 kHz $\pm 10\%$ RAM write in speed (MIN.) [Hz] = $200 \times 300/\{(14 + 320 - 2) \text{ line x 41 clock/827 kHz}\} = 3.65$ MHz (with no variation)

Like the above and the example 2 of calculation, when rewriting size is made small, it is possible to make writing speed late. Moreover, as shown in the following figure, it is possible also by writing in data from falling of VSYNC to reduce the minimum of a writing speed.



5.8 Power Supply Sequence

The power ON supply sequence of the μ PD161802 recommends the sequence shown below.

Note Set up the control system register flag of the signal actually used on a panel.

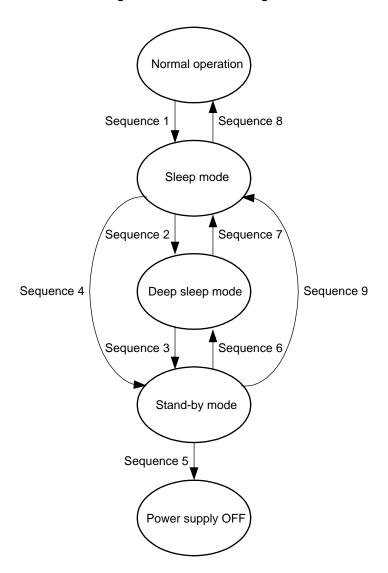
Notes1. Set up the control system register flag of the signal actually used on a panel.

2. The setup is possible at the same sequence as the driver by HITACHI company.

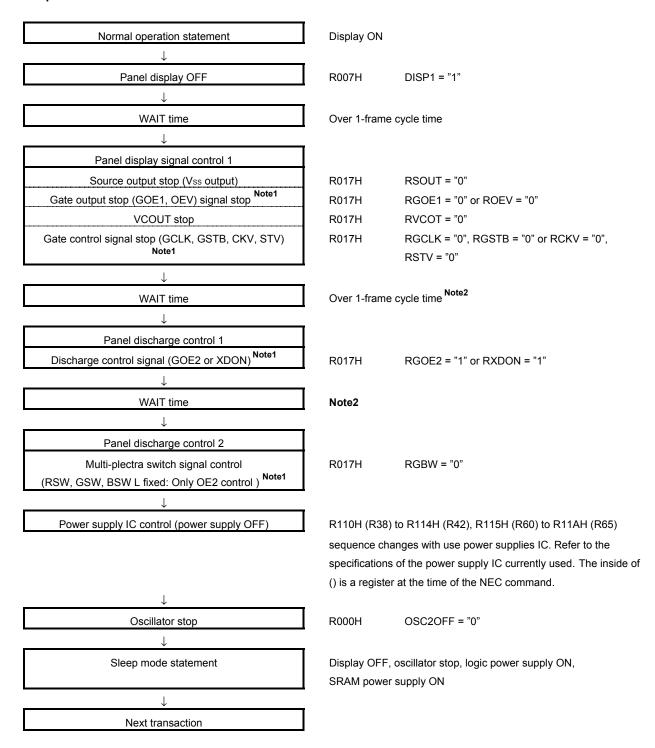
5.9 Stand-by Power Supply OFF Sequence

5.9.1 Stand-by by command input control

By state setup by the command input, μ PD161802 can usually change free in each mode state of sleep, deep sleep, and stand-by from a state of operation, as shown in Figure 5–18. In addition, each mode specifies it that it is the following table, and is planning low power consumption.

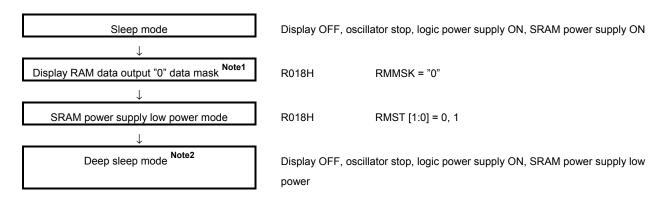

		μPD16	1802 Internal Operat	ion State	
	Logic power supply	Command reception	SRAM power supply	SRAM state	Oscillation circuit
Normal operation	0	Possibility	0	Normal operation	Operation
Sleep mode	0	Possibility	0	Normal operation	Stop
Deep sleep mode	0	Possibility	Δ	Data hold	Stop
Standby mode	О	Possibility	Х	Data	Stop
				abandonment	

Remark O: Supply, ∆: Low power supply, X: Supply stop

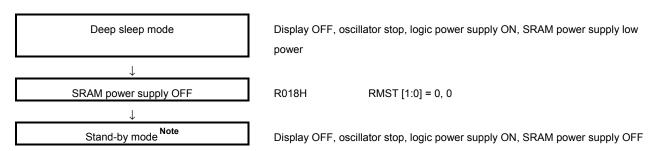

Current: Normal operation > Sleep mode > Deep sleep mode > Standby mode

In addition, low power consumption as a module can plan further by setting up sequences, such as a power supply circuit stop of a power supply IC.

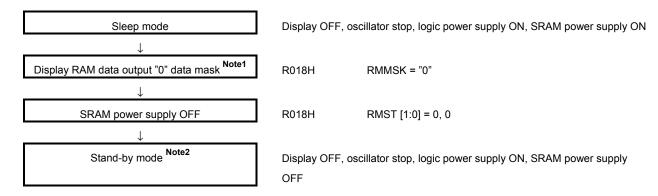
Figure 5-18. IC State Changes


<Sequence 1>

This sequence is shown in illustration and changes with use panels. It is after checking the specification of the panel used about a sequence enough evaluation. It recommends as following condition after considering.


- **Notes 1.** Set up the control system register flag of the signal actually used on a panel.
 - 2. WAIT time is after checking the characteristic of a use panel, and specification enough evaluation.

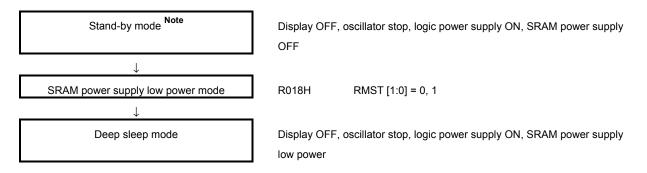
<Sequence 2>


- **Notes 1.** When it set as a deep sleep mode state, be sure to input the following command. When this processing is not performed but it shifts to a deep sleep mode (RMST [1:0] = 0, 1), problems, such as an increase in penetration current, may occur.
 - 2. Deep sleep mode state is operating the SRAM power supply for display data in the low power mode, and attains low power consumption. Although the data written to display RAM at this time is held, operation of write/read of display data cannot be performed. Note that no-guarantee about operation of IC at the time of accessing display RAM at the time of a deep sleep mode.

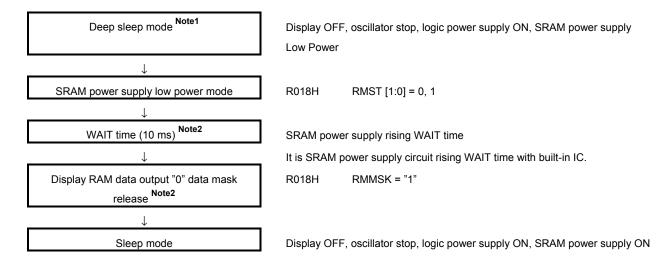
<Sequence 3>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

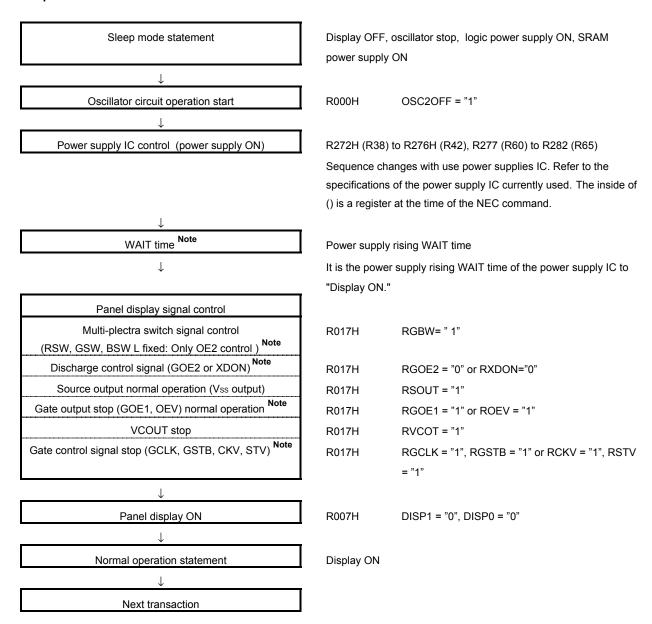
<Sequence 4>


- **Notes 1.** When it set as a deep sleep mode state, be sure to input the following command. When this processing is not performed but it shifts to a deep sleep mode (RMST [1:0] = 0, 1), problems, such as an increase in penetration current, may occur.
 - 2. Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

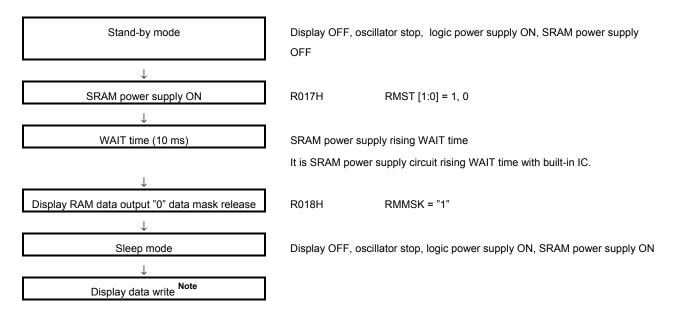
<Sequence 5>


Safely, since system power supply is turned off, after setting it as stand-by mode, it recommends turning OFF system power supply.

<Sequence 6>


Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

<Sequence 7>


- **Notes 1.** Deep sleep mode state is operating the SRAM power supply for display data in the low power mode, and attains low power consumption. Although the data written to display RAM at this time is held, operation of write/read of display data cannot be performed. Note that no-guarantee about operation of IC at the time of accessing display RAM at the time of a deep sleep mode.
 - **2.** From deep sleep mode, sleep mode or when it usually returns to operation, input the following command. When display ON is carried out, all LCD displays will be "0" data outputs, without canceling a setup of this command.

<Sequence 8>

Note Set up the control system register flag of the signal actually used on a panel.

<Sequence 9>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

7. RESET

If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. The reset command will also initialize each register to its default value. These default values are listed in the table below.

(1/2)

Register		/RESET pin Note	Reset Command	(1/2) Default Value
	R000H	X	O	0000H
Oscillator control register	R000H	X	0	0000H
Driver output control register				
Liquid crystal alternation current control register	R002H	X	0	0000H
Entry mode register	R003H	X	0	0030H
Reset register	R004H	X	0	0000H
RAM address offset	R005H	0	X	0000H
Display control (1)	R007H	X	0	0000H
Display control (2)	R008H	Х	0	0101H
Gate interface control register	R00AH	X	0	0000H
External display interface control register (1)	R00CH	X	0	0000H
Frame frequency control register (1)	R00DH	X	0	0010H
External display interface control register (3)	R00FH	Х	0	0000H
LTPS interface control register (1)	R010H	X	0	0425H
LTPS interface control register (2)	R011H	×	0	0505H
LTPS interface control register (3)	R012H	X	0	0D14H
LTPS interface control register (4)	R013H	Х	0	151CH
LTPS interface control register (5)	R014H	X	0	1D24H
LTPS interface control register (6)	R015H	х	0	0909H
LTPS interface control register (7)	R016H	Х	0	0909h
LTPS interface control register (8)	R017H	X	0	0000H
LTPS interface control register (9)	R018H	X	0	0000H
LTPS interface control register (10)	R019H	X	0	0000H
Blanking period bias control register	R021H	X	0	0000H
3 line interlace setting register	R022H	х	0	0000H
LTPS interface control register (11)	R01AH	Х	0	0001H
LTPS interface control register (12)	R01BH	Х	0	0000H
LTPS interface control register (13)	R01CH	Х	0	00EFH
LTPS interface control register (14)	R01DH	х	0	0000H
LTPS interface control register (15)	R01EF	х	0	013FH
Power control register	R101H	х	0	0000H
-	R110H to			
External power supply IC control register (1) to (11)	R11AH	X	0	0000H
E ² PROM interface control register	R120H	0	0	0000H

(2/2)

Register		/RESET pin Note	Reset Command	Default Value
E ² PROM writing address specification register	R121H	X	O	0000H
E ² PROM writing index specification register	R122H	X	0	0000H
E ² PROM reading start address specification register	R123H	×	0	0000H
RAM address set register (1) [X address]	R200H	X	0	0000H
RAM address set register (2) [Y address]	R201H	×	0	0000H
RAM data write register	R202H	X	X	000011
RAM write data mask (1)	R203H	X	0	0000H
RAM write data mask (2)	R204H	X	0	0000H
γ– control register (1)	R300H	X	0	0000H
γ – control register (2)	R301H	X	0	0000H
γ – control register (3)	R302H	X	0	0000H
γ – control register (4)	R303H	Х	0	8888H
γ – control register (5)	R304H	Х	0	2772H
γ– control register (6)	R305H	Х	0	4444H
γ– control register (7)	R306H	х	0	4444H
γ– control register (8)	R307H	х	0	0000H
γ – control register (9)	R308H	X	0	0033H
Vertical scroll control register (1)	R400H	X	0	0000H
Vertical scroll control register (2)	R401H	X	0	0000H
First panel drive position register (1)	R402H	X	0	0000H
First panel drive position register (2)	R403H	X	0	013FH
Second panel drive position register (1)	R404H	X	0	0000H
Second panel drive position register (2)	R405H	Х	0	013FH
Horizontal RAM address position register (1)	R406H	х	0	0000H or 0010H
Horizontal RAM address position register (2)	R407H	×	0	00EFH or 00FFH
Vertical RAM address position register (1)	R408H	Х	0	0000H
Vertical RAM address position register (2)	R409H	Х	0	013FH
Liquid crystal drive amplifire bias current setting register	R554H	×	0	0000Н

Remark O: Default value set, X: Default value not set

Note The internal counters are initialized only by a reset from the /RESET pin. Be sure to perform reset via the /RESET pin at power application.

Cautions 1. With setting value of RAM address offset register (R005H), a default value change as show in the below table.

R005H Setting	Defaul	t Value
Value	R406H	R407H
000H	0000H	00EFH
001H	0010H	00FFH

- 2. The following value is set as the calibration setting time, t_{cal} , in a reset by reset command. $t_{cal} = 1/f_{OSC2} \times 40$ (fosc2 returns to initial frequency)
- 3. The contents of RAM are saved in the case of both reset by /RESET pin and reset by reset command.

 Note that the RAM contents are unfixed immediately after the power is turned on.

The setting table at the time of /RESET = Low

Control Sigr	nal	All ON (default)	All OFF
Source Output		GND	Hi-Z
Gate Output	GOE1	Normal	Low Fixation
Control Signal	GOE2	Low Fixation	Normal Note
R/G/BSW Output		All High	All Low

Note The output of GOE2 changes with setup of RGON2 bit (R017H: D4).

RGON2 = 0: GOE2 = High RGON2 = 1: GOE2 = Low (R/G/BSW = High fixation)

- Cautions 1. The timing circuit 1 is set up and only a case is valid.
 - 2. The source output, the gate output control signal, and R/G/BSW output can be set up individually.

8. COMMAND

8.1 Command List

(Register number is an estimate. Understand that there is a case where it changes later).

18-bit parallel interface mode, IB17, IB16 = 0

(1/5)

TO SIL PUI S	allel Interface mode, 1817, 1816						Dat	ta bit			(1/5)
Rn	Register	RS	R,/W	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8
	•			IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R000H	Oscillator control register	1	0						ос	OSC10FF	OSC2OFF
											SS
R001H	Driver output control register	0									
	Liquid crystal alternation		_							B/C	
R002H	current drive control register	1	0								
				TRI	DFM					HWM1	HWM0
R003H	Entry mode register	1	0			ID1	ID0	АМ			
D00411	Deapt register	1	0								
R004H	Reset register	1	U							0	ARESB
R005H	RAM address offset	1	0								
RUUSH	TAW address offset										RMOFS
R007H	Display control register (1)	1	0	COLOR	DISP1	DISP0	GSM		VLE2	VLE1	SPT
100711	Display control register (1)			PT1	PT0				REV		
R008H	Display control register (2)	1	0				ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
1,00011				ADLN7	ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	ADLN0
R00AH	Gate interface control register	1	1								TE
	•										
R00CH	External display interface	1	0		DCK2	DCK1	DCK0				RM
	control register (1)					DM1	DM0			RIM1	RIM0
R00DH	Frame frequency control	1	0							DIV1	DIV0
	register (1)										
R00FH	External display interface	1	0						RESSO	RESGA	RESSW
	control register (3)						VSPL	HSPL	VPL	0	DPL
R010H	LTPS interface control register	1	0			GOST5	GOST4	GOST3	GOST2	GOST1	GOST0
(R79, R80)	(1)					GOED5	GOED4	GOED3	GOED2	GOED1	GOED0
R011H	_	PS interface control register 1				PCST5	PCST4	PCST3	PCST2	PCST1	PCST0
(R81, R82)	LTDS interface control register					PCED5	PCED4	PCED3	PCED2	PCED1	PCED0
R012H	LTPS interface control register (3)	1	1 0			RST5	RST4	RST3	RST2	RST1	RST0
(R83, R84)	LTPS interface control register					RED5	RED4	RED3	RED2	RED1	RED0
R013H	(4)	1	1 0			GST5	GST4	GST3	GST2	GST1	GST0
(R85, R86) R014H						GED5	GED4	GED3	GED2	GED1	GED0
	LTPS interface control register (5)		0			BST5	BST4	BST3	BST2	BST1	BST0
(R87, R88)	(5)					BED5	BED4	BED3	BED2	BED1	BED0

(2/5)

18-bit parallel interface mode, IB17, IB16 = 0

					I	I	Da	ta bit	I	1	
Rn	Register	RS	R,/W	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8
				IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R015H	LTPS interface control register					E1ST5	E1ST4	E1ST3	E1ST2	E1ST1	E1ST0
(R89, R90)	(6)	1	0			E1ED5	E1ED4	E1ED3	E1ED2	E1ED1	E1ED0
R016H	LTPS interface control register					E2ST5	E2ST4	E2ST3	E2ST2	E2ST1	E2ST0
(R91, R92)	(7)	1	0			E2ED5	E2ED4	E2ED3	E2ED2	E2ED1	E2ED0
R017H	LTPS interface control register			TCKSL		GUD	RVCOT	RGBSW	RGSTB	RGCLK	RASW
(R77, R93)	(8)	1	0	RSTV	RCKV	RSOUT	RGOE2	RGOE1	RXDON	ROEVE	ROEV
	LTPS interface control register									RPCK1	RPCK0
R018H	(9)	1	0		RMMSK	RMST1	RMST0		LMD2	LMD1	0
R019H	LTPS interface control register						DSCG4	DSCG3	DSCG2	DSCG1	DSCG0
(R68, R72)	(10)	1	0		REFM2	REFM1	REFM0	REFB3	REFB2	REFB1	REFB0
R01AH	LTPS interface control register										
(R26)	(11)	1	0	VBP3	VBP2	VBP1	VBP0	HBP3	HBP2	HBP1	HBP0
R01BH	LTPS interface control register			1=14							
(R29)	(12)	1	0	CPXMIN7	CPXMIN6	CPXMIN5	CPXMIN4	CPXMIN3	CPXMIN2	CPXMIN1	CPXMIN0
R01CH	LTPS interface control register			CPAWIIN/	CPAMINO	CEXIVINS	CPXIVIIIV4	CPAINING	GFAMIINZ	CPAMINI	CFAMINO
(R30)	(13)	1	0	000/4440/47	CPXMAX6	CPXMAX5	CPXMAX4	ODV411140	CPXMAX2	ODVA 44 V4	00044444
R01DH	LTPS interface control register			CPXMAX7	CPXMAX6	CPAMAX5	CPXMAX4	CPXMAX3	CPAMAX2	CPXMAX1	CPXMAX0 CPYMIN8
(R31)	(14)	1	0								
R01EH	LTPS interface control register			CPYMIN7	CPYMIN6	CPYMIN5	CPYMIN4	CPYMIN3	CPYMIN2	CPYMIN1	CPYMIN0
(R32)	(15)	1	0								CPYMAX8
R021H	Blanking period bias control			CPYMAX7	CPYMAX6	CPYMAX5	CPYMAX4	CPYMAX3	CPYMAX2	CPYMAX1	CPYMAXO
(R18)	register	1	0								
	register			BSSP7	BSSP6	BSSP5	BSSP4	BSSP3	BSSP2	BSSP1	BSSP0
R022H	3 line interlace setting register	1	0								
(R66)				DO4	D00	D00		LACE3	LACE2	LACE1	LACE0
R101H	Power control register	1	0	DC4	DC3	DC2					
D.1.101.1	Futomod november 10										
R110H	External power supply IC	1	0								
(R38)	control register (1)			PSD17	PSD16	PSD15	PSD14	PSD13	PSD12	PSD11	PSD10
R111H	External power supply IC	1	0								
(R39)	control register (2)	-		PSD27	PSD26	PSD25	PSD24	PSD23	PSD22	PSD21	PSD20
R112H	External power supply IC	1	0								
(R40)	control register (3)			PSD37	PSD36	PSD35	PSD34	PSD33	PSD32	PSD31	PSD30
R113H	External power supply IC	1	0								
(R41)	control register (4)	-		PSD47	PSD46	PSD45	PSD44	PSD43	PSD42	PSD41	PSD40
R114	External power supply IC	1	0								
(R42)	control register (5)			PSD57	PSD56	PSD55	PSD54	PSD53	PSD52	PSD51	PSD50

18-bit para	allel interface mode, IB17, IB16	= 0									(3/5)
							Da	ta bit			
Rn	Register	RS	R,/W	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8
				IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R115H	External power supply IC										
(R60)	control register (6)	1	0	PSD67	PSD66	PSD65	PSD64	PSD63	PSD62	PSD61	PSD60
R116H	External power supply IC		_								
(R61)	control register (7)	1	0	PSD77	PSD76	PSD75	PSD74	PSD73	PSD72	PSD71	PSD70
R117H	External power supply IC		_								
(R62)	control register (8)	1	0	PSD87	PSD86	PSD85	PSD84	PSD83	PSD82	PSD81	PSD80
R118H	External power supply IC		_								
(R63)	control register (9)	1	0	PSD97	PSD96	PSD95	PSD94	PSD93	PSD92	PSD91	PSD90
R119H	External power supply IC		_								
(R64)	control register (10)	1	0	PSDA7	PSDA6	PSDA5	PSDA4	PSDA3	PSDA2	PSDA1	PSDA0
R11AH	External power supply IC		_	0	1	0	0	0	0	0	1
(R65)	control register (11)	1	0	PSDB7	PSDB6	PSDB5	PSDB4	PSDB3	PSDB2	PSDB1	PSDB0
R120H	E ² PROM interface control										
(R24)	register	1	0						E2OPC2	E2OPC1	E2OPC0
R121H	E ² PROM writing address		_								
(R33)	specification register	1	0	E2A7	E2A6	E2A5	E2A4	E2A3	E2A2	E2A1	E2A0
R122H	E ² PROM writing index								E2IR10	E2IR9	E2IR8
(R57)	specification register	1	0	E2IR7	E2IR6	E2IR5	E2IR4	E2IR3	E2IR2	E2IR1	E2IR0
R123H	E ² PROM reading start address										
(R58)	specification register	1	0	E2SA7	E2SA6	E2SA5	E2SA4	E2SA3	E2SA2	E2SA1	E2SA0

8-bit para	llel interface mode, IB17, IB16	= 0									(4/5)
							Dat	a bit			
Rn	Register	RS	R,/W	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8
				IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R200H (R6)	RAM address set register (1) [X address register]	1	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
				(XA7)	(XA6)	(XA5)	(XA4)	(XA3)	(XA2)	(XA1)	(XA0)
R201H	RAM address set register (2)	1	0								AD16 (YA8)
(R7)	[Y address register]	'		AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
				(YA7)	(YA6)	(YA5)	(YA4)	(YA3)	(YA2)	(YA1)	(YA0)
R202H	RAM data write register	1	0								
R203H	RAM write data mask register (1)	1	0			WM11 WM5	WM10 WM4	WM9 WM3	WM8 WM2	WM7 WM1	WM6 WM0
R204H	RAM write data mask register (2)	1	0			WM17	WM16	WM15	WM14	WM13	WM12
R300H (R43)	γ – control register (1)	1	0				GSEL	***************************************		***************************************	GONSEL
R301H	γ – control register (2)	1	0	GPL7	GPL6	GPL5	GPL4	GPL3	GPL2	GPL1	GPL0
(R46, R44)	, , ,			GPH7	GPH6	GPH5	GPH4	GPH3	GPH2	GPH1	GPH0
R302H	γ – control register (3)	1	0	GNL7	GNL6	GNL5	GNL4	GNL3	GNL2	GNL1	GNL0
(R47, R45)				GNH7	GNH6	GNH5	GNH4	GNH3	GNH2	GNH1	GNH0
R303H (R52, R48)	γ – control register (4)	1	0	VDRN3	VDRN2	VDRN1	VDRN0	VSRN3	VSRN2	VSRN1	VSRN0
R304H	γ – control register (5)	1	0	VDRP3 VLRN3	VDRP2 VLRN2	VDRP1 VLRN1	VDRP0 VLRN0	VSRP3 VHRN3	VSRP2 VHRN2	VSRP1 VHRN1	VSRP0 VHRN0
(R53, R49)				VLRP3	VLRP2	VLRP1	VLRP0	VHRP3	VHRP2	VHRP1	VHRP0
R305H (R51, R50)	γ – control register (6)	1	0		VGR3P2 VGR1P2	VGR3P1 VGR1P1	VGR3P0 VGR1P0		VGR2P2 VGR0P2	VGR2P1 VGR0P1	VGR2P0 VGR0P0

18-bit parallel interface mode, IB17, IB16 = 0

(5/5)

0-bit para	iller interiace mode, ibit, ibit	<u> </u>									(3/3)
							Dat	a bit			
Rn	Register	RS	R,/W	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8
				IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R306H	(0)				VGR3N2	VGR3N1	VGR3N0		VGR2N2	VGR2N1	VGR2N0
(R55, R54)	γ – control register (6)	1	0		VGR1N2	VGR1N1	VGR1N0		VGR0N2	VGR0N1	VGR0N0
R307H											
(R56)	γ – control register (7)	1	0							GV8S1	GV8S0
R308H	control register (9)	1	0								
(R59)	γ – control register (8)	1	U	WHP	WI2	WI1	WIO	BHP	BI2	BI1	BI0
R400H	Vertical scroll control register	1	0								VL18
R400H	(1)	<u> </u>	U	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10
R401H	Vertical scroll control register	1	0								VL28
K401H	(2)		0	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20
R402H	First panel drive position	1	0								SS18
1140211	register (1)	<u>'</u>	Ů	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
R403H	First panel drive position	1	0								SE18
1440011	register (2)	<u> </u>		SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
R404H	Second panel drive position	1	0								SS28
	register (1)	<u> </u>		SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20
R405H	Second panel drive position	1	0								SE28
	register (2)	<u> </u>		SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20
R406H	Horizontal RAM address	1	0								
	position register (1)			HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
R407H	Horizontal RAM address	1	0								
	position register (2)			HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
R408H	Vertical RAM address	1	0								VSA8
	position register (1)			VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
R409H	Vertical RAM address	1	0								VEA8
	position register (2)			VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
R554H	Liquid crystal amplifier bias	1	0					BCONB3	BCONB2	BCONB1	BCONB0
(R73)	current setting register							BCONB3	BCONB2	RCONBI	BCONB0

Cautions 1. Be sure to input 0 in blank area.

2. Access is prohibited about the register is not in the above register.

8.2 Command Explanation

(Register number is an estimate. Understand that there is a case where it changes later).

(1/22)

Register	Bit	Symbol	(1/22) Function									
R000H	D ₂	ос	This bit is used for calibration. The time from calibration start command execution until calibration stop command execution becomes the time for 1 line. 0: Calibration stop 1: Calibration start									
	D ₁	OSC1OFF	This is oscillator circuit stop bit for calibration. This command is stop when in stand-by mode. 0: Oscillator operation 1: Oscillator stop									
	D ₀	OSC2OFF	This is oscillator circuit stop bit for LCD display. This command is stop when in stand-by mode. 0: Oscillator operation 1: Oscillator stop									
R001H	D ₈	SS	The output shift direction of a source driver can be selected. 1: it is outputted to S240 from S1 1: it is outputted to S1 from S240 The liquid crystal alternating current drive method is selected. 0: select a frame alternating current waveform. 1 Perform alternating current for every panel and perform a liquid crystal drive. 1: select a line alternating current waveform. 1 Perform alternating current for every line and perform a liquid crystal drive.									
R002H	Dэ	B/C										
R003H	D ₁₅	TRI	8 Set up the RAM data transmission system at the time of a bit bus interface. 0: 2 time transmission mode 1 (16 bit length: 65 K color mode) 1: 3 time transmission mode (18 bit length: 260 K color mode)									
	D14	DFM	By the 8 bit bus interface, the data format at the time of TRI = 1 is set up. TRI = 1, DFM = 0 GRAM 1st 2nd transfer (DB) (DB) (DB) (DB) RGB assign 5 4 3 2 1 0 5 5 4 3 2 1 0 5 5 4 3 3 2 1 0 5 5									

(2/22)

Register	Bit	Symbol				Functio	n		(2/22	
R003H	the data for 2 pixels in the mode with enzyme, data is collectively written in GRAM. to transmit data access from CPU every 2 pixels. Since it is not written in display R data with which a part for 2 pixels is not filled when the data with which 2 pixels are transmitted at the time of high-speed RAM writing mode use, it is not reflected in a display even if it transmits CPU data. The data which is not reflected at this time be writing from a continuation of a register, when having become being stored in a reg and transmitting data next. However, the data stored is canceled when RS signal i middle of writing of data (RS = L). When using high-speed RAM writing mode, it rect transmitting display data every 2 pixels. D ₅ , D ₄ I/D ₁ , At the time of I/D ₁ , I/D ₀ = 1, after data writing in to GRAM, it is an address counter increment is carried out automatically. Moreover, at the time of I/D ₁ , I/D ₀ = 0, after GRAM, -1 decrement of the address counter (AC) is carried out. A setup performs the increment/decrement setup of the address counter by I/D ₁ and I/D ₀ in an address (AD ₁ 6 to AD ₈) and a low rank (AD ₁ 7 to AD ₀ 0). The address advance direction at the writing is setup in AM bit.									
		AM	1/D1 0 0 1 1							
	D₃	AM	At the time of perpendicula GRAM in a way and the time of perpendicula GRAM in a way and the second	FAM = 0, it was a single of the control of the cont	writes in ne of AN ess can etion :	I continuously horizo I = 1. At the time of be performed according to the performed according to the performed according to the performed according to the performed according to the performed according to the performed according to the performed according to the performance of	c). The renewal method ntally, and writes in common window address special ding to a setup of I/D1 I/D1-0 = 10 Length direction: decrement Height direction: increment 000000H 13FFFH 000000H cess at the time of a window address special direction increment	I/D1- Leng incre Heig incre	usly n, the writing to and AM. -0 = 01 gth direction: ement ght direction: ement	

(3/22)

Register	Bit	Symbol	Function
R004H	D ₀	ARESB	Command reset function. Be sure to execute this bit after power ON. Command reset automatically clears this bit following execution (RES = 1H). Therefore, it is not necessary to set 0 (select normal operation) again by software. Moreover, since the time required for the value of this bit to change $(1 \rightarrow 0)$ following command reset execution is extremely short, it is not necessary to secure time until the next command is set following command reset setting. 0: Normal operation 1: Command reset
R005H	D ₀	RMOFS	Offset is applied to the address value of X addresses of the display RAM. The relation between X addresses and an output is setup as follows. 0: Offset OFF, 000H (0) to 0EFH (239) 1: Offset ON, 020H (0) to 0FFH (239)
R007H	D15	COLOR (R0)	This pin switches the 260,000-color mode and the 8-color mode. When the 8-color mode is selected, low power supply can be selected in order to stop the amplifier at each output circuit. In the 8-color mode, the value of the MSB of the internal RAM data is used as the color data. This command is executed following transfer from the next frame. 0: 260,000-color mode (18-bit/pixels) 1: 8-color mode (3-bit/pixels) Caution In 8-color mode, it does not become low power consumption at the time of built-in γ
	D14	DISP1 (R0)	-output adjustment circuit use by GSEL(R43:D4) =1 setup. This command performs the same output as when 8-color mode white, independently of the internal RAM data (case of normally white). This command is executed, after it has been transferred, when the next line is output. 0: Normal operation 1: Ignores data of RAM and outputs all display line 8-color mode whites. DISP1 takes precedence over DISP0. When DISP1 = 1, DISP0 = 1 is ignored.
	D ₁₃	DISP0 (R0)	This command performs the same output as when 8-color mode black, independently of the internal RAM data (case of normally white). This command is executed, after it has been transferred, when the next line is output. 0: Normal operation 1: Ignores data of RAM and outputs all display line 8-color mode black.
	D12	GSM (R0)	Sets output of the gate scanning signal during partial display. If this bit is set to 1, the gate scan of the lines set in the partial non-display area is stopped. This command is executed following transfer from the next frame. 0: Normal mode 1: Stops gate scanning in partial non-display area

(4/22)

Register	Bit	Symbol				Function		(4/22
R007H	D10, D9	VLEn		ng is performed	d on the	•	me of VLE1 = 1. Vertion	cal scrolling is
			VLE2	VLE1	9	Second Panel	First Panel	\neg
			0	0		Fixed display	Fixed display	
			0	1		Fixed display	Scroll display	
			1	0	;	Scroll display	Fixed display	
			1	1	;	Scroll display	Scroll display	
							kternal display interface e as VLE [2:1] = "0, 0"	e. At the time of
	D ₆	PTn	display interfac	e uid crystal drive annot use it at t se use, it is sure	e the tim	e of an external dis	play interface. At the ti	
			PT1	PT0		Source output of	non-display area	
					Po	ositive polarity	Negative polarity	_
			0	0	V63		V0	_
			0	1		V63	V0	_
			1	0		GND	GND	
			1	1		Z (REFBn = 0)	Hi-Z (REFBn = 0)	
						esh/Non-refresh drive	Refresh/Non-refresh drive	
			<u> </u>			(REFBn ≠ 0)	(REFBn ≠ 0)	
	D ₂	REV	gradation pane black. Howeve	el can be expres r, the source ou	indicated by inversion. Sincessed as the same data on butput during a front/back pows a setup of PT [1:0].		the panel of normally	white and a normally
			REV	GRAM da	ıta	Source	ce Output	
						Positive polarity	Negative polarity	
			0	18'h0000	0	V63	VO	
				:		:	:	
				18'h3FFF		V0	V63	
			1	18'h0000	0	V0	V63	
				40/50555	· -	:	:	
				18'h3FFF	Έ	V63	V0	

(5/22)

Register	Bit	Symbol					Fur	nction				5/22)	
R008H	D ₁₂ to	ADCKn	The numb	er of cloc	ks set up	by this red	ister is in	serted as	a dummy	clock with	nin 1-line drive pe	riod.	
	D ₈		For more		•				,				
			ADCK4	ADCK3	ADCK2	ADCK1	ADCK0	Setting	Clock Co	unt			
			0	0	0	0	0	Setting	prohibited				
			0	0	0	0	1	1					
			0	0	0	1	0	2					
			0	0	0	1	1	3					
			0	0	1	0	0	4					
			0	0	1	0	1	5					
			:	:	:	:	:		:				
			1	1	1	1	0	30					
			1	1	1	1	1	31					
				<u>l</u>	ı		<u>I</u>						
	D ₇ to	ADLNn	The numb	er of lines	s set up by	this reals	ster is set	up as the	number o	f lines of t	the FP [2 Line fixe	 ed1 +	
	Do		BP period			•						•	
			For more		_	_	e period t	iming.					
			ADLNn s	≤ 2: Only I	BP period								
			ADLNn >	> 3: FP lin	e count [2	-line] + Bl	period li	ne count =	= Setting I	ine count	=		
				ADLN	n setting v	alue							
					1						T	7	
			ADLN7	ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	ADLN0	Setting line count	=	
			0	0	0	0	0	0	0	0	Setting prohibited	4	
			0	0	0	0	0	0	0	1	BP 1	4	
			0	0	0	0	0	0	1	0	BP 2	4	
			0	0	0	0	0	0	1	1	FP 2 + BP 1	4	
			0	0	0	0	0	1	0	0	FP 2 + BP 2	4	
			0	0	0	0	0	1	0	1	FP 2 + BP 3	4	
			:	:	:	:	:	:	:	:	:		
			1	1	1	1	1	1	1	0	FP 2 + BP		
			<u> </u>	_	_	_		_			252	1	
			1	1	1	1	1	1	1	1	FP 2 + BP		
			<u> </u>		<u> </u>				<u> </u>	<u> </u>	253		
R00AH	D ₈	TE	It is serial	transmiss	sion enabl	e to the ex	kternal po	wer suppl	y IC. Whe	n this regi	ister is read, it car	n be	
			transmitte	d serial a	t the time	of TE = 0.	If data is	written in	a power	control req	gister (R110H-R1	1A),	
			transmitted serial at the time of TE = 0. If data is written in a power control register (R110H-R11A), register data will be outputted from the serial interface for power supply IC control. Since it starts 16										
			clocks (internal oscillation frequency ÷ 2), be careful of data transmission. Write in a power control										
			register co	ontinuous	ly, and set	more tha	n wait tim	e T.B.D. <i>μ</i>	s and tran	smit data	, or a case should	ı	
			transmit th	ne followir	ng data, af	ter super	ising TE	flag and c	hecking T	E = 0.			

(6/22)

Register	Bit	Symbol					Function					
R00CH	D ₁₄	DCK2 DCK1	The divider	The divider ratio of the external input DOTCLK and a display clock is set up.								
	D ₁₂	DCK0	DCK2	DCK1	DCK0	Divide ratio	1 line output DOTCLK number					
			0	0	0	6 divide	[240] + [HBP] + [HSYNC ACT] over					
			0	0	1	7 divide	[280] + [HBP] + [HSYNC ACT] over					
			0	1	0	8 divide	[320] + [HBP] + [HSYNC ACT] over					
			0	1	1	9 divide	[360] + [HBP] + [HSYNC ACT] over					
			1	0	0	10 divide	[400] + [HBP] + [HSYNC ACT] over					
			1	0	1	11 divide	[440] + [HBP] + [HSYNC ACT] over					
			1	1	0	12 divide	[480] + [HBP] + [HSYNC ACT] over					
			1	1	1		Setting prohibited					
			RM 0	Syste Set u (inter	em interface	Interiore me of DM [1:0	ation which is displaying by the RGB interface. face performs RAM access D] = 1, 0 (VSYNC interface) or DM [1:0] = 0, 0					
			Set up at the time (RGB interface) of DM [1:0] = 0 and 1.									
	D5, D4	DM1, DM0	with DM [1:	0]. It is po However,	ssible to c	hange interna	ace which performs display operation can be set up all clock operation and an external display interface by in the time of external display interface use (RGB I/F					
			DM1		OM0	Interface p	performs display operation					
			0		0	Inter	rnal clock operation					
			0		1		RGB interface					
			1		0	V	/SYNC interface					
			1		1	S	Setting prohibited					

(7/22)

Register	Bit	Symbol			Functio	n					
R00CH	D1, D0	RIM1, RIM0	The RGB interface mode at the time of RGB interface selection is set up. When a RGB interface is selected in DM bit and RM bit, this setup becomes valid and selects the mode to be used. Set up this setup before displaying in an external display interface. Moreover, do not change this setup while on display.								
			RIM1	RIM0	R	GB interface mode					
			0	interface (once transfer/pixel)							
			0 0 18-bit RGB interface (once transfer/pixel) 0 1 16-bit RGB interface (once transfer/pixel)								
			1	0	6-bit RGB inter	rface (three times transfer/pixel)					
			1	1		Setting prohibited					
R00DH	D ₉ , D ₈	DIV1, DIV0				ck operation is set up. The divide clock set up of frame frequency can be performed by the Internal operation clock frequency					
			0	0	1 divide cycle	fosc ÷ 1					
			0	1	2 divide cycle	fosc ÷ 2					
		1	0	4 divide cycle	fosc ÷ 4						
			1	1	8 divide cycle	fosc ÷ 8					
R0FH	D ₁₀	RESSO RESGA	The source output at the time of /RESET is set up. 0: Source output is Vss at the time of /RESET. 1: Source output is Hi-Z at the time of /RESET The GOE1 and GOE2 output at the time of /RESET are set up. 0: At the time of /RESET, GOE1 = normal output and GOE2 = L level output								
	D ₈	RESSW	1: At the time of /RESET, GOE1 = L level output and GOE2 = normal output The RSW, GSW and BSW output at the time of /RESET are set up. 0: At the time of /RESET, RSW/GSW/BSW = ALL and H level output 1: At the time of /RESET, RSW/GSW/BSW = ALL and L level output								
	D ₄	VSPL		arity of VSYNC ow active	signal is set up.	·					
	D3	HSPL		arity of HSYNC ow active	signal is set up.						
	D ₂	VPL	The signal pola 0: RAM writing invalid	arity of VLD sig	d by VLD = L. It writes in	n RAM at the time of VLD = H, and become					
	D ₀	DPL	The signal pola 0 : take in data	by the rising e	K signal is set up. edge of DOTCLK						

(8/22)

Register	Bit	Symbol	Function							
R010H (R79, R80)	D ₁₃ to	GOSTn	The start timing of the signal outputted from GOE1 (/GOE1) and OEV (/OEV) pin is set up. Set up in the range $001H \le GOSTn \le 026H$.							
, ,			In addition, prohibited for setting up the same value as GOSTn and GOEDn.							
	D₅ to	GOEDn	The end timing of the signal outputted from GOE1 (/GOE1) and OEV (/OEV) pin is set up.							
	D ₀		Set up in the range 001H ≤ GOEDn ≤ 026H.							
			In addition, prohibited for setting up the same value as GOSTn and GOEDn.							
R012H	D ₁₃ to	RSTn	The start timing of the signal outputted from RSW (/RSW) and ASW1 (/ASW1) pin is set up.							
(R83, R84)	D ₈		Set up in the range 002H ≤ RSTn ≤ 025H.							
			In addition, prohibited for setting up the same value as RSTn and REDn.							
	D₅ to	REDn	The end timing of the signal outputted from RSW (/RSW) and ASW1 (/ASW1) pin is set up.							
	D ₀		Set up in the range 002H ≤ REDn ≤ 025H.							
			In addition, prohibited for setting up the same value as RSTn and REDn.							
R013H	D ₁₃ to	GSTn	The start timing of the signal outputted from GSW (/GSW) and ASW2 (/ASW2) pin is set up.							
(R85, R86)	D ₈		Set up in the range 002H ≤ GSTn ≤ 025H.							
			In addition, prohibited for setting up the same value as GSTn and GEDn.							
	D₅ to	GEDn	The end timing of the signal outputted from GSW (/GSW) and ASW2 (/ASW2) pin is set up.							
	D ₀		Set up in the range 002H ≤ GEDn ≤ 025H.							
			In addition, prohibited for setting up the same value as GSTn and GEDn.							
R014H	D ₁₃ to	BSTn	The start timing of the signal outputted from BSW (/BSW) and ASW3 (/ASW3) pin is set up.							
(R87, R88)	D ₈		Set up in the range 002H ≤ BSTn ≤ 025H.							
, ,			In addition, prohibited for setting up the same value as BSTn and BEDn.							
	D₅ to	BEDn	The end timing of the signal outputted from BSW (/BSW) and ASW3 (/ASW3) pin is set up.							
	Do		Set up in the range 002H ≤ BEDn ≤ 025H.							
			In addition, prohibited for setting up the same value as BSTn and BEDn.							
R015H	D ₁₃ to	E1STn	The start timing of the signal outputted from EXT1 (/EXT1) pin is set up.							
(R89, R90)	D ₈		Set up in the range 001H ≤ E1STn ≤ 026H.							
(,,			In addition, when unused output signal from these pins, set up the same value as E1STn and							
			E1EDn.							
			In default, these bits are fixed to EXT1 = L, /EXT1 = H.							
	D₅ to	E1EDn	The end timing of the signal outputted from EXT1 (/EXT1) pin is set up.							
	D ₀		Set up in the range 001H ≤ E1EDn ≤ 026H.							
			In addition, when unused output signal from these pins, set up the same value as E1STn and							
	1		E1EDn.							

(9/22)

Register	Bit	Symbol	(9/22) Function
R016H	D ₁₃ to	E2STn	The start timing of the signal outputted from EXT2 (/EXT2) pin is set up.
(R91, R92)	D ₈		Set up in the range 001H ≤ E2STn ≤ 026H.
			In addition, when unused output signal from these pins, set up the same value as E2STn and E2EDn.
			In default, these bits are fixed to EXT2 = L, /EXT2 = H.
	D- to	E2EDn	The end timing of the signal outputted from EXT2 (/EXT2) pin is set up.
	D₅ to	EZEDII	Set up in the range $001H \le E2EDn \le 026H$.
	D ₀		In addition, when unused output signal from these pins, set up the same value as E2STn and
			E2EDn.
R017H	D ₁₅	TCKSL	A liquid crystal control timing circuit is selected.
		(R78)	0: Timing Circuit 1 (GSTB, GCLK, GOE, GOE2, RSW, GSW, BSW, and GUD)
		, ,	1: Timing Circuit 2 (STV, CKV, OEVE, OEV, ASW1, ASW2, ASW3, and XDON)
			In addition, as for 3-line interlace display function, only the timing circuit 1 corresponds.
	D ₁₄	(R93)	γ - resistance is changed. By change of this bit, the resistance between Vs-V $_0$ which changes with
			setup of R303H, and the resistance between V63 to Vss1 change. For details, refer to 5.5.3
			Amplitude adjustment by built-in resistance.
	D ₁₃	GUD	This pin can be used when changing the direction of gate scan of a panel.
		(R1)	A display is possible for a vertical contrary by changing the direction of gate scan of a panel also in
			the time of the through mode of RGB interface using the output signal from this pin.
			This command is executed following transfer from the next frame.
			0: GUD pin L output (at the time of 3-line interlace opposite direction)
			1: GUD pin H output (at the time of 3-line interlace the direction of order)
			The signal change timing is the same as frame change timing. About frame change timing, refer to
			5.4.2 1-frame period timing.
	D ₁₂	RVCOT	Operation of common timing signal (VCOUT) is controlled.
		(R93)	0: VCOUT signal and FR signal OFF (L output fixed)
			1: VCOUT signal and FR signal ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About the change timing of the frame, refer to 5.4.2 1-frame period timing .
		DODOW	Operation of panel multi-plexus signal (RSW, GSW, BSW) is controlled.
	D ₁₁	RGBSW	0: OFF (L output fixed)
		(R93)	1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₁₀	RGSTB	Operation of the strobe signal for gate control (GSTB) is controlled.
	D10		0: OFF (H output fixed)
		(R93)	1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₉	RGCLK	Operation of the clock signal for gate control (GCLK) is controlled.
		(R93)	0: OFF (L output fixed)
		(1100)	1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₈	RASW	Operation of panel multi-plexus signal (ASW1, ASW2, ASW3) is controlled.
		(R93)	0: OFF (L output fixed)
		(1.00)	1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .

(10/22)

Register	Bit	Symbol	Function
R017H	D ₇	RSTV	Operation of the start signal for gate control (STV) is controlled.
		(R93)	0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₆	RCKV	Operation of the clock signal for gate control (CKV) is controlled.
		(R93)	0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₅	RSOUT	Operation of source output (Yn) is controlled.
		(R77)	0: OFF (Vss output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing.
	D ₄	RGOE2	Operation of panel discharge is controlled.
		(R77)	0: GOE2 (H output), RSW, GSW and BSW (Normal operation)
			1: GOE2 (L output), RSW, GSW and BSW (H fixed)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	Dз	RGOE1	Operation of gate output enable signal is controlled.
		(R77)	0: OFF (Vss output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₂	RXDON	Operation of panel discharge is controlled.
		(R77)	0: XDON (L output), ASW1, ASW2 and ASW3 (Normal operation)
			1: XDON (H output), ASW1, ASW2 and ASW3 (H fixed)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₁	ROEVE	OEVE output operation is controlled.
		(R77)	0: OEVE (L fixed)
			1: OEVE (H fixed)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D ₀	ROEV	Operation of output enable signal (OEV) is controlled.
		(R77)	0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes valid from the output timing of the following frame after inputted. About
			the change timing of the frame, refer to 5.4.2 1-frame period timing .

(11/22)

Register	Bit	Symbol					Fund	ction		(11/22)			
R018H	D9 D8	RPCK1 RPCK0				ck outputted from		CCLK pin used as cloo	cks, such as [DC/DC			
			RPCK	1 R	RPCK0	F	PCCLK cl	ock output ON/OFF					
			0		0	The output	ON durin	g the whole period					
			0		1	1 The output OFF during the whole period							
			1		0	It output tur and except		blanking period outpo	ut OFF				
			1										
	D ₆	RMMSK (R78)	0: All "0" 1: RAM d	data mas ata enab	sk le (Norm	splay RAM is on							
	D5, D4	RMST1,	It sets up	about op	eration	of power supp	ly supplie	d to RAM circuit.					
		(R78)	RMST	1 RI	MST0	Display RAM Suppl		Display RAM	State				
			0		0	Power C)FF	RAM data is abando					
			0		1	Low Pov		RAM data maintenance Note1 RAM writing operation is possible Note2					
			1		0	Power (ON						
			1		1		Set	tting prohibited					
			2.	 Notes 1. Sleep mode etc. can be used when low power consumption and RAM data need to be held. When normal operation, do not set up (Display ON, writing of display data). When normal operation, use it in this mode (Display ON, writing of display data). 									
	D ₂	LMD2 LMD1	AMP drive ON/OFF of source output is selected.										
	D ₁	(R66)	LMD2	LMD1	Dis	splay Line	В	lanking Period	8-color line				
			0	0	R/G/B ON	SW period	Betwee OFF	n the whole period	Between the period OFF	whole			
			0	1	Betwe period	en the whole ON	Betwee OFF	n the whole period	Between the period OFF	whole			
			1	0	R/G/B ON	SW period	by BSS Blanking	e period OFF set up Pn (R18) from the g period start. The er it is R/G/BSW DN.	Between th period OFF				
			1	1	Betwe period	en the whole ON	The line by BSS blanking line afte	e period OFF set up Pn (R18) from the g period start. The er it is between the eriod ON.	Between the period ON	e whole			

(12/22)

Register	Bit	Symbol				Fu	nction		(12/22)					
Register R019H	Bit D ₁₂ to D ₈	DSCGn (R72)	output of ASW3 this flag. The output of fixation after se When DSCGn = carried out to L RXDON = H) an For more details	To compensate for a XDON output H output (it outputs from the next frame of RXDON = H), the output of ASW3, ASW2 and ASW1 are considered as the line period H output fixation set up with this flag. The output of ASW3, ASW2, ASW1, STV, CKV, FR and OEV are carried out to L output fixation after setting period. When DSCGn = 000H setup, the output of ASW3, ASW2, ASW1, STV, CKV, FR and OEV are carried out to L output fixation to a XDON output H output (it outputs from the next frame of RXDON = H) and this timing. For more details, refer to 5.8 Power Supply Sequence. DSCG4 DSCG3 DSCG2 DSCG1 DSCG0 Setting Line Count 0 0 0 0 0 0 0										
			0 0 0 0 0 0 0 : 1	0 0 0 0 0 0 0 : 1	0 0 0 0 1 1 : 1	0 0 1 1 0 0 0 :	0 1 0 1 0 1 :	0 1 2 3 4 5 : 30 31	-					
	D ₆ to	REFMn (R68)	When partial display, the case where it is set as non-refreshing drive ([GSM = 0, PT1 = and [GSM = 1, PT1 = 0, PT0 = 0]), non-refreshing frame (source output stop, gate scan and a refresh cycle (source white level output [the normally white panel], gate scan) are the combination of the value set as this flag and the value set as the REFBn flag. For more details, refer to 5.6.2 Partial display, non-display area and normal partial The number of non-refreshing frames = REFB [4:0] x REFM [3:0]											
			0 0 0 0 1 1 1	REF 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1		REFMO 0 1 0 1 0 1 0 1 1 1 1 1 1	Setting 2 4 8 16 32 64 128 256	y Value						

(13/22)

Register	Bit	Symbol			Fu	ınction		(13/22)						
R019H	D ₃ to	REFBn (R68)	and [GSM = 1, I and a refresh cy the combination For more details	when partial display, the case where it is set as non-refreshing drive ([GSM = 0, PT1 = 1, PT0 = 1] and [GSM = 1, PT1 = 0, PT0 = 0]), non-refreshing frame (source output stop, gate scanning stop) are refresh cycle (source white level output [the normally white panel], gate scan) are set up in the combination of the value set as this flag and the value set as the REFMn flag. Our more details, refer to 5.6.2 Partial display, non-display area and normal partial driving . The number of non-refreshing frames = REFB [4:0] x REFM [3:0]										
			REFB3	REFB3 REFB2 REFB1 REFB0 Setting Value										
			0	0	0	0	Only non-refresh drive	1						
			0	0	0	1	1							
			0	0	1	0	2							
			0	0	1	1	3							
			0	1	0	0	4							
			:	:	:	:	:							
			1	1	1	0	14							
			1	1	1	1	15							
R01AH	D ₇ to	VBP	This bit sets ver	tical back porch	period of RGB i	nterface.								
(R26)	D ₄		Vertical back po	orch period = set	value x HSYNC	unit								
			In addition, set	up more than "2"										
	D₃ to	HBP	This bit sets hor	izontal back por	ch period of RG	B interface.								
	D ₀		Horizontal back	porch period = s	set value x DOT	CLK unit								
			In addition, set	up more than "1"										
R01BH	D ₇ to	CAPXMINn	Minimum of X a	ddress is set up	at the time of wi	indow access a	at the time of selecting captur	re mode						
(R29)	D ₀		by the RGB inte	erface.										
R01CH	D ₇ to	CAPXMAXn	Maximum of X a	address is set up	at the time of w	vindow access	at the time of selecting captu	ire						
(R30)	D ₀		mode by the RO	BB interface.										
R01DH	D ₇ to	CAPYMINn	Minimum of Y a	Minimum of Y address is set up at the time of window access at the time of selecting capture mode										
(R31)	D ₀		by the RGB inte	rface.										
R01EH	D ₇ to	CAPYMAXn	Maximum of Y	address is set up	at the time of w	vindow access	at the time of selecting captu	ire						
(R32)	D ₀		mode by the RC	BB interface.										

(14/22)

Register	Bit	Symbol			Function						
R021H (R18)	D ₇ to	BSSPn		The number of bias-off lines from the blanking period start is set up at the time of source output amplifier bias control register LMD = 1 setup.							
			Display Mode	BSSP = 0 Setting	It is more than BSSP = 1 at the setting time						
			Internal OSC display	It is all the blanking period bias ON.	The bias OFF between several lines of a setting value and henceforth are bias-turned ON from the blanking period start.						
			VSYNC/HSYNC/ DOTCLK display		VFP line number + VSYNV Bias is turned off from several lines which applied the BSSP value –1 to the number of ACT lines, and the blanking period start line, and it bias turns on henceforth. At the time of through mode, it takes –1 from the above-mentioned calculation. At the time of three-line interlace mode, several dummy line minutes are subtracted from the above-mentioned formula. Dummy setup of 1 line: –2 line Dummy setup of 2 line: –4 line						

(15/22)

		1	Γ				(15/22)						
Register	Bit	Symbol			F	unction							
R022H	Dз	LACE3	3-line interlace	display fun	ction is selected.								
(R34)			When select 3	-line interlac	ce display, blanking pe	eriod setting register bety	ween frames (R75) should						
			set four lines o	or more and	a timing circuit select	ion register (R78:D ₇) as (0.						
			Refer to the 5.	4.3 3-line i	nterlace for operation	on of 3 line interlace.							
			In addition, this	s command	is executed from the	following frame after trar	nsmission.						
			0: Normal disp	lay (Non-Int	terlace display).								
			1: 3-line interla	ace display									
	D ₂	LACE2	The number of	The number of the dummy lines between the fields at the time of 3-line interlace display is selected.									
			In addition, this	In addition, this command is executed from the following frame after transmission.									
			0: Dummy 2-line 1: Dummy 1-line										
	D ₁	LACE1	The field selec	tion signals	EXT1 and EXT2 at the	ne time of a 3-line interla	ce display change, and a						
	D ₀	LACE0	position is sele	position is selected.									
			LACE1	LACE0	Changing line	Chanç	ging timing						
			0	0	Just before GSTB	GCLK rising timin	g						
					output line								
			0	1	Just before GSTB	GCLK falling timin	ıg						
				output line									
			1	0	Line during GSTB	GCLK rising timin	g						
					output								
			1	1 1 Line during GST		GCLK falling timin	ıg						
					output								
			In addition, this	s command	is executed from the	following frame after trar	nsmission.						
R101H	D ₁₅	DC4,	The frequency	of the clock	coutputted from the P	CCLK pin used as clock	s, such as a DC/DC						
(R72)	D ₁₄	DC3	converter circu	uit of a powe	er supply IC, is set up.	This clock is generated	from oscillation frequency						
	D ₁₃	DC2	(fosc) or extern	nal clock DO	TCLK, is cycle ratio b	y the number of setting of	of this flag, and is outputted.						
			DC4	DC3	PCCLK	Clock Frequency							
					DC2 = 0	DC2 = 1							
			0	0	fosc ÷ 4	DOTCLK ÷ 32							
			0	1	fosc ÷ 8	DOTCLK ÷ 64							
			1	0	fosc ÷ 16	DOTCLK ÷ 128							
			1	1	fosc ÷ 32	DOTCLK ÷ 256							
			- 	<u>'</u>	1.000 02		<u>-</u>						
			Remark Whe	n Olitolite a	clock signal from PCC	CLK nin it is necessary to	o operate an oscillation circuit						
				C2OFF [R1]	•	oer pin, it is necessary to	o operate an obstitution offcult						
R110H	D ₇ to	PSD1n			•	erial interface output for	external IC control. For more						
(R38)	D ₀					er supply IC control.	CACCITICATION CONTROL TO THOSE						
R111H	D ₇ to	PSD2n					external IC control. For more						
(R39)	D ₀	1 35211			•	er supply IC control.	oxisma to control. For more						
(1100)			L GOTANO, TOTOL IC	, J. 1.0 Odli	a. mioriace for powe	or capping to control.							

(16/22)

							16/22)					
Register	Bit	Symbol				Function						
R112H	D ₇ to	PSD3n	The value set	as PSD3n is o	utputted from	the serial interface output for external IC control. For	more					
(R40)	Do		details, refer to	5.1.8 Serial	interface for	power supply IC control.						
R113H	D ₇ to	PSD4n	The value set	as PSD4n is o	utputted from	the serial interface output for external IC control. For	more					
(R41)	D ₀		details, refer to	5.1.8 Serial	interface for	power supply IC control.						
R114H	D ₇ to	PSD5n	The value set	as PSD5n is o	utputted from	the serial interface output for external IC control. For	more					
(R42)	D ₀		details, refer to	5.1.8 Serial	interface for	power supply IC control.						
R115H	D ₇ to	PSD6n	The value set	as PSD6n is o	utputted from	the serial interface output for external IC control. For	r more					
(R60)	D ₀		details, refer to	etails, refer to 5.1.8 Serial interface for power supply IC control.								
R116H	D ₇ to	PSD7n	The value set	as PSD7n is o	utputted from	the serial interface output for external IC control. For	r more					
(R61)	D ₀		details, refer to	5.1.8 Serial	interface for	power supply IC control.						
R117H	D ₇ to	PSD8n	The value set	as PSD8n is o	utputted from	the serial interface output for external IC control. For	r more					
(R62)	Do		details, refer to	5.1.8 Serial	interface for	power supply IC control.						
R118H	D ₇ to	PSD9n	The value set	as PSD9n is o	utputted from	the serial interface output for external IC control. For	r more					
(R63)	Do		details, refer to	5.1.8 Serial	interface for	power supply IC control.						
R119H	D ₇ to	PSDAn	The value set	as PSDAn is o	utputted from	the serial interface output for external IC control. For	r					
(R64)	D ₀		more details, r	efer to 5.1.8 S	erial interfac	e for power supply IC control.						
R11AH	D ₇ to	PSDBn	The value set	as PSDBn is o	utputted from	the serial interface output for external IC control. For	r					
(R65)	D ₀		more details, r	efer to 5.1.8 S	erial interfac	e for power supply IC control.						
R120H	D ₂	E2OPC2	E ² PROM inter	face is controll	ed.							
(R24)	D ₁	E2OPC1		1	ı		,					
	D ₀	E2OPC0	E2OPC2	E2OPC1	E2OPC0	E ² PROM Control						
			0	0	0	Setting prohibited						
			0	0	1	EPSAVE: Write in execution to E ² PROM						
			0	1	0	MASKON: Writing / elimination permission to E ² PROM						
			0	1	1	MASKOGF: Writing / elimination permission to						
						E ² PROM						
			1	0	0	EPCLK: All area elimination of E ² PROM						
			1	0	1	EPWALL: It is the writing of FFH to all the area of E ² PROM.						
			1	1	0	EPREAD: Reading execution of E ² PROM						
			1	1	1	Setting prohibited						
			•	2								
R121H	D ₇ to	E2An	The writing address to E ² PROM is specified.									
(R33)	D ₀											
R122H	D ₁₀ to	E2IRn				PROM is specified.						
(R57)	D ₀				gister specified	d to be this register are written in the address of						
D. (00) ;			E ² PROM spec		=2=====							
R123H	D ₇ to	E2SAn	The reading st	tart address of	E*PROM is sp	pecified.						
(R58)	D ₀											

(17/22)

Register	Bit	Symbol	Function
R200H	D ₇ to	AD7 to	This register sets the X address of the display RAM.
(R6)	D ₀	AD ₀	Set 000H to 0EFH.
R201H	D ₈ to	AD ₁₆ to	This register sets the Y address of the display RAM.
(R7)	D ₀	AD ₈	Set 000H to 13FH.
R202H			
R203H	D ₁₃ to	WM ₁₁ to	At the time of the writing to GRAM, a write mask is carried out per bit. At the time of WM17 = 1, the
	D ₈	WD ₆	mask of the most upper bit of GRAM writing data is carried out, and the writing to GRAM is not
	D₅ to	WM₅ to	performed. Moreover, the mask of the GRAM writing data is carried out similarly 0 bit of WM16 to
	D ₀	WD ₀	WM0, respectively. Note to that write data mask is performed to GRAM writing data (18 bits).
R204H	D₅ to	WM ₁₇ to	
	D ₀	WD ₁₂	Remark This function cannot be used at the time of RGB interface use.

(18/22)

Denistra	D:t	Commedia a l	(18/22)					
Register	Bit	Symbol	Function					
R300H	D ₄	GSEL	Sets the maximum/minimum output potential of the γ –correction register.					
(R43)			If the internal γ -output adjustment circuit is selected, the maximum/minimum output potential of the					
			γ -correction register is:					
			0: Sets power supply voltage (outputs Vs and Vss potential).					
			1: Uses voltage of internal γ -output adjustment circuit (uses VPH, VNH, VPL, VNL output)					
	D ₀	GONSEL	About connection between γ -correction resistance and a power supply					
			0: Connect the both ends of positive-polarity γ -resistance with Vs and GND when in used γ -					
			correction by positive-polarity. On the other hand, γ -resistance by negative-polarity does not					
			connect with Vs and GND. Moreover, the both ends of negative-polarity γ -resistance are					
			connected with Vs and GND when in used γ -correction by negative-polarity. In that case, γ -					
			resistance by positive-polarity does not connect with Vs and GND.					
			1: Connect both Vs and GND on the side of positive and negative γ -correction regardless of output					
			from positive- or negative-polarity.					
R301H	D ₁₅ to	GPLn	Sets the voltage value of γ -amplitude adjustment of positive polarity.					
	D ₈	(R46)	For more detail, refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₇ to	GPHn	Sets the voltage value of γ -amplitude adjustment of positive polarity.					
	D ₀	(R44)	For more detail, refer to 5.5 γ- Curve Correction Power Supply Circuit.					
R302H	D ₇ to	GNLn	Sets the voltage value of γ -amplitude adjustment of negative polarity.					
	D ₀	(R47)	For more detail, refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₇ to	GNHn	Sets the voltage value of γ -amplitude adjustment of negative polarity.					
	D ₀	(R45)	For more detail, refer to 5.5 γ- Curve Correction Power Supply Circuit.					
R303H	D ₁₅ to	VDRNn	Negative-polarity γ -amplitude adjustment register					
	D ₁₂	(R52)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₁₁ to	VSRNn	Negative-polarity γ -amplitude adjustment register					
	D ₈	(R52)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₇ to	VDRPn	Positive-polarity γ -amplitude adjustment register					
	D ₄	(R48)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D₃ to	VSRPn	Positive-polarity γ -amplitude adjustment register					
	D ₀	(R48)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
R304H	D ₁₅ to	VLRNn	Negative-polarity γ -inclination adjustment register					
	D ₁₂	(R53)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₁₁ to	VHRNn	Negative-polarity γ -inclination adjustment register					
	D ₈	(R53)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₇ to	VLRPn	Positive-polarity γ -inclination adjustment register					
	D ₄	(R49)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D₃ to	VHRPn	Positive-polarity γ -inclination adjustment register					
	Do	(R49)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
R305H	D ₁₄ to	VGR3Pn	Positive-polarity γ -fine tuning adjustment register					
	D ₁₂	(R51)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₁₀ to	VGR2Pn	Positive-polarity γ -fine tuning adjustment register					
	D ₈	(R51)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₆ to	VGR1Pn	Positive-polarity γ -fine tuning adjustment register					
	D ₄	(R50)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					
	D ₂ to	VGR0Pn	Positive-polarity γ -fine tuning adjustment register					
	Do	(R50)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.					

(19/22)

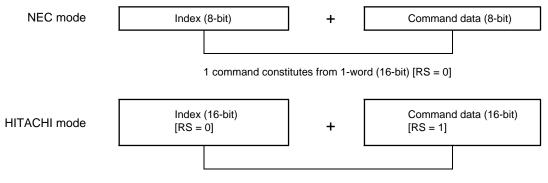
Register	Bit	Symbol	Function										
R306H	D ₁₄ to	VGR3Nn	Negative-polarity γ -fine tuning adjustment register										
	D ₁₂	(R55)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.										
	D ₁₀ to	VGR2Nn	Negative-polarity γ -fine tuning adjustment register										
	D ₈	(R55)	Refer to 5.5 γ- Curve Correction Power Supply Circuit.										
	D ₆ to	VGR1Nn	Negative-polari	Negative-polarity γ -fine tuning adjustment register									
	D ₄	(R54)	Refer to 5.5 γ -	Curve Corre	ction Power	Supply Circuit.							
	D ₂ to	VGR0Nn	Negative-polari	ty γ -fine tunin	ig adjustment	register							
	D ₀	(R54)	Refer to 5.5 γ -	Curve Corre	ction Power	Supply Circuit.							
R307H	D1, D0	GV8S1	The voltage cor	ncerning a pa	nel is set at th	e time of 8-color mode.							
(R56)			0 : Set power s	0 : Set power supply									
			1: Set amplifier	output									
R308H	D ₇	WHP	Sets the output	mode of the	reference volt	age generator amplifier for setting the white level of t	he						
(R59)			positive-polarity	and negative	e-polarity side	s (when VPL and VNL are normally white), as showr	1						
			below.										
			Determine the	amplifier capa	city after suff	cient evaluation with the actual TFT panel to be used	.t						
			0: Normal mode	e									
			1: High-power r	node (output	circuit capaci	y: twice that of normal mode)							
	D ₆ to	WIn	Sets the output	bias current	of the referen	ce voltage generator amplifier for setting the white le	vel						
	D ₄		of the positive-p	polarity and ne	egative-polari	ty sides (when VPL and VNL are normally white), as							
			shown below.										
			Determine the a	amplifier capa	city after suff	cient evaluation with the actual TFT panel to be used	t.						
			WI2	WI1	WI0	Amplifier Bias Current							
			0	0.	0	0.025 μA							
			0	0	1	0.050 μA							
			0	1	0	0.100 μA							
			0	1	1	0.200 μΑ							
			1	0	0	0.500 μΑ							
			1	0	1	1.000 μΑ							
			1	1	0	1.500 μA							
			1	1	1	2.000 μΑ							
						,							

(20/22)

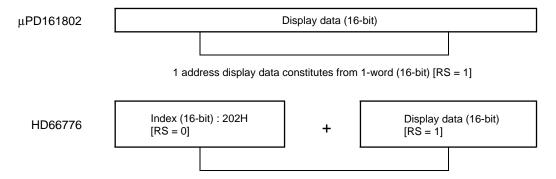
Register	Bit	Symbol	Function							
R308H	Dз	BHP	Sets the output mode of the reference voltage generator amplifier for setting the black level of the							
(R59)			positive-polarity and negative-polarity sides (when VPL and VNL are normally white), a							
			below.							
			Determine the	amplifier capa	acity after suff	icient evaluation with the actual TFT panel	to be used			
			0: Normal mode	е						
			1: High-power i	mode (output	circuit capaci	ty: twice that of normal mode)				
	D ₂ to	Bln	Sets the output bias current of the reference voltage generator amplifier for setting the black level							
	D ₀		of the positive-	polarity and n	ity sides (when VPL and VNL are normally	white), as				
			shown below.							
			Determine the	amplifier capa	acity after suff	ficient evaluation with the actual TFT panel	to be used.			
			WI2	WI1	WIO	Amplifier Bias Current]			
			WI2 0	WI1	WIO 0	Amplifier Bias Current $0.025 \mu A$]			
						·				
			0	0		0.025 μA				
			0	0	0	0.025 μA 0.050 μA				
			0 0 0	0 0 1	0	0.025 μA 0.050 μA 0.100 μA				
			0 0 0	0 0 1 1	0 1 0 1	0.025 μA 0.050 μA 0.100 μA 0.200 μA				
			0 0 0 0 0	0 0 1 1 0	0 1 0 1	0.025 μA 0.050 μA 0.100 μA 0.200 μA 0.500 μA				

(21/22)

												(2	21/22
Register	Bit	Symbol						Function					
R400H	D ₈ to	VL18 to VL10	The amount of scroll of the 1st panel scroll display is specified, and a vertical smooth scroll display is performed. It can display of scroll arbitrary line from 0 to 319 lines. The display is again started after displaying the last 320 lines repeatedly from top 1 line. In addition, the amount of scroll (VL18 to VL10) becomes valid when 1st panel vertical scroll enable bit VLE1 = 1. When VLE1 = 0, it becomes the fixed line display. Caution This function cannot be used at the time of external display interface use.										
			VL18	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10	Amount of scroll	
			0	0	0	0	0	0	0	0	0	0 line	
			0	0	0	0	0	0	0	0	1	1 line	
			0	0	0	0	0	0	0	1	0	2 line	
					Ι	ı	:						4
			1	0	0	1	1	1	1	1	0	318 line	4
			1	0	0	1	1	1	1	1	1	319 line	
	D ₀	VL20 is performed. It can display of scroll arbitrary line from 0 to 319 lines. The display is agafter displaying the last 320 lines repeatedly from top 1 line. In addition, the amount of to VL20) becomes valid when 1st panel vertical scroll enable bit VLE2 = 1. When VLE becomes the fixed line display. Caution This function cannot be used at the time of external display interface up to the strong part of the							mount of scroll (V				
			VL28	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20	Amount of scroll	
			0	0	0	0	0	0	0	0	0	0 line	
			0	0	0	0	0	0	0	0	1	1 line	-
			0	0	0	0	0	0	0	1	0	2 line	
				0	_	1	:	1	1	1	0	318 line	
			1	0	0	1	1	1	1	1	1	319 line	
						'	•					0.10 11110	-
R402H	D ₈ to	SS18 to	The drive	e start po	sition of	the 1st p	anel is s	pecified p	oer line.	The liquid	d crystal	drive is started fr	rom
	D ₀	SS10	the line o										
R403H	D ₈ to	SE18 to SE10		•		•				•	,	drive is performed 8 to SE10 = 10H	
	D ₀	SETO			Ū			•				tching on the ligh	
			·	•	•	•						S18 to SS10 ≤ SE	
			to SE10	≤ 13FH.									
R404H	D ₈ to	SS28 to	The drive	start po	sition of	the 2nd p	oanel is	specified	per line.	The liqu	id crystal	drive is started f	from
	D ₀	SS20			ting valu	e + 1. In	addition,	be sure	to set up	the size	relation	of SE18 to SE10) <
D.10711	D :	0500	SS28 to		.,								1.
R405H	D ₈ to	SE28 to										drive is performe	
	D ₀	SE20			•		•					8 to SE20 = 10H tching on the ligh	
			-		-							S28 to SS20 ≤ SE	
			to SE20			. = . • .				2.0.0	2.30		


(22/22)

								(22/22)			
Register	Bit	Symbol				Function					
R406H	D ₇ to	HSA7 to	The horizon address start/end position of window address is specified per address. The data can								
	D ₀	HSA0	be written in GRAM in the address specified to be VEA7 to VEA0 from the address set as VSA7 to								
R407H	D ₇ to	HEA7 to		VSA0. However, be sure to perform an address set before RAM writing. Be sure to set up the size							
	D ₀	HEA0		relation of 000 H ≤ HSA7 to HSA0 ≤ HEA7 to HEA0 ≤ FFH.							
R408H	D ₈ to	VSA7 to		The vertical address start/end position of window address is specified per address. The data can							
	D ₀	VSA0		be written in GRAM in the address specified to be VEA7 to VEA0 from the address set as VSA7 to							
R409H	D ₈ to	VEA7 to		VSA0. However, be sure to perform an address set before RAM writing. Be sure to set up the s relation of 000 H \leq HSA7 to HSA0 \leq HEA7 to HEA0 \leq 13FH.							
	D ₀	VEA0	relation of 00	U H ≤ HSA/ t	0 HSAU ≤ HE	EA7 TO HEAU	≤ 13FH.				
				Н	SAn		HEAn				
				00000H							
			\/O.A.=								
			VSAn —								
					Winds	w address					
					VVIIIGO	w address					
			VEAn —								
			VEAII —								
					GRAM a	ddress are	a 13FFFH				
			Caution Be	sure to set	up the area	of window a	ddress to enter in GRAM	address space.			
R554H	D₃ to	BCONBn	The bias curr	ent for liquid	crystal drive	AMP is set up).				
(R73)	D ₀							_			
			BCONB3	BCONB2	BCONB1	BCONB0	Bias Current [μA]				
			0	0	0	0	0.87				
			0	0	0	1	1.67				
			0	0	1	0	2.43]			
			0	0	1	1	3.18]			
			0	1	0	0	3.98 (default)	_			
			0	1	0	1	4.70	1			
			0	1	1	0	5.41	1			
			0	1	1	1	6.11	1			
			1	0	0	0	6.88	1			
			1	0	0	1	7.57	1			
			1	0	1	0	8.24	1			
			1	0	1	1	8.91				
			1	1	0	0	9.62	1			
			1	1	0	1	10.28	1			
			1	1	1	0	10.93]			
			1	1	1	1	11.58]			
Ĺ			l								


[NEC mode, HITACHI mode difference]

1. Command input system

1 command constitutes from 2-word (16-bit x 2) [RS = 0]

2. Display data input system (example of 16-bit/pixel)

By the index (RS = 0), display data is inputted for [RAM data write/read : 202H] after selection (RS = 1).

Display data is also dealt with as a part of index register.

REVISION HISTORY

Edition/Data	Pa	ige		Description					
	Previous	This	Type of	Location					
	edition	version	revision						
September 2003	p.66	p.66	Correction	3-line interlace explanation correction					
Ver 0.2	p.190,	p.190,	Correction	E2IR [7:0] is corrected to E2IR [10:0]					
	p.208	p.208							

NOTES FOR CMOS DEVICES

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC μ PD161802

• The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.

- No part of this document may be copied or reproduced in any form or by any means without the prior written consent
 of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
 in semiconductor product operation and application examples. The incorporation of these circuits, software and
 information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC
 Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of
 these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special", and "Specific".
 The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics products before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).