

GaAs HJ-FET INTEGRATED CIRCUIT

μ PG2253T6S

RF FRONT-END IC FOR Bluetooth™ CLASS 1

DESCRIPTION

The μ PG2253T6S is a RF front-end integrated circuit for Bluetooth Class 1 and includes TX/Bypass switch and a power amplifier with low-pass filter. And this device has no RF matching parts.

This device realizes high efficiency and low harmonics by 3.0 V operation. This device is housed in a 16-pin plastic QFN (\underline{Q} uad \underline{F} lat \underline{N} on-leaded) (T6S) package. And this package is able to high-density surface mounting by small external parts.

FEATURES

Operating frequency : f_{opt} = 2 400 to 2 500 MHz (2 450 MHz TYP.)

Supply voltage : VDD1, 2, 3 = 3.0 V TYP.
 Control voltage : Ven = 3.0 V TYP.

Circuit current
 IDD = 95 mA TYP. @ Pin = 0 dBm
 Output power
 Pout = 19 dBm TYP. @ Pin = 0 dBm

High efficiency
 PAE = 28% TYP. @ Pin = 0 dBm

High-density surface mounting: 16-pin plastic QFN package (T6S) (3.0 × 3.0 × 0.75 mm)

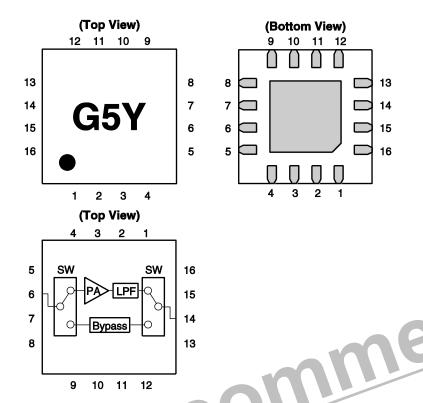
APPLICATION

Front-end IC for Bluetooth Class 1, ZigBeeTM etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPG2253T6S-E2	μPG2253T6S-E2-A	16-pin plastic QFN (T6S) (Pb-Free)	G5Y	 Embossed tape 8 mm wide Pin 10, 11, 12 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, please contact your nearby sales office.


Part number for sample order: μPG2253T6S-A

<u>Caution</u> Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PG10761EJ01V0DS (1st edition) Date Published April 2009 NS

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	GND
2	N.C.
3	Ven
4	N.C.
5	N.C.
6	RFin
7	N.C.
8	GND
9	V _D 1
10	V _D 2
11	V _D 3 (1)
12	Vb3 (2)
13	GND
14	ANT
15	Vsw1
16	Vsw2

Remark Exposed pad: GND

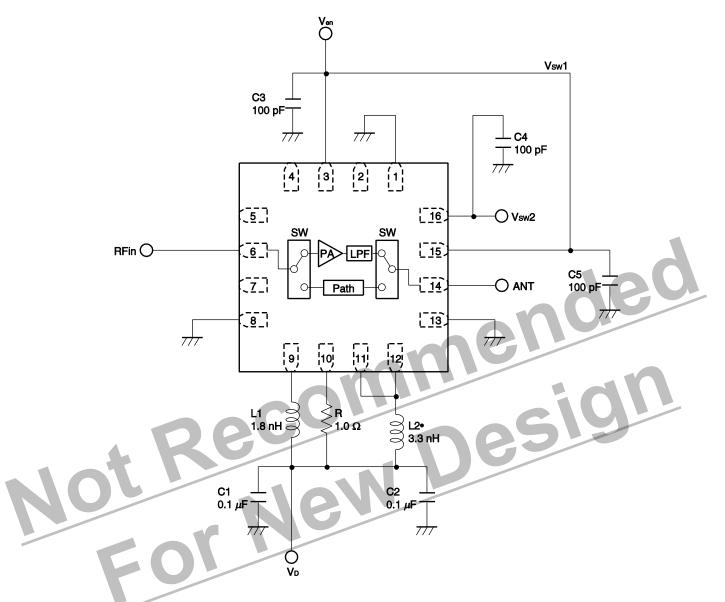
TRUTH TABLE

	Vsw1	Vsw2	Tx	Path
J	3.0 V	0 V	ON	OFF
	0 V	3.0 V	OFF	ON

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD} 1, 2, 3	5.0	V
Control Voltage	Ven	4.0	V
Switching Voltage	Vsw1, 2	5.0	V
Input Power	Pin	+5	dBm
Power Dissipation	Po	400 Note	mW
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	Tstg	-55 to +150	°C

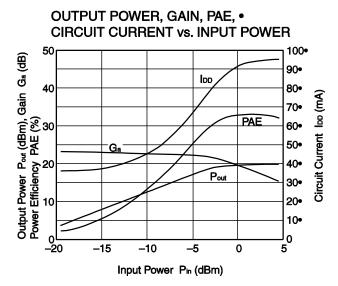
Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, $T_A = +85$ °C.

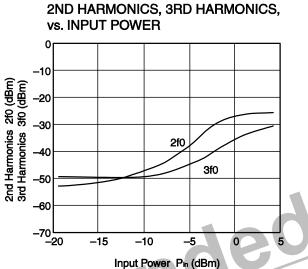

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	f _{opt}	2 400	2 450	2 500	MHz
Supply Voltage	V _{DD} 1, 2, 3	2.7	3.0	3.6	V
Switch Control Voltage (H)	Vsw1, 2	1.8	3.0	3.6	V
Switch Control Voltage (L)	Vsw1, 2	-0.2	0.0	0.2	V
Control Voltage (H)	Ven	1.5	3.0	3.6	V
Control Voltage (L)	Ven	-	0	0.2	V

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{DD}1$, 2, 3 = 3.0 V, f = 2 400 to 2 500 MHz, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	ldd	$P_{in} = 0 \text{ dBm}, V_{en} = 3.0 \text{ V}, \\ V_{sw1}/V_{sw2} = 3.0/0 \text{ V}$	ı	95	120	mA
SW Current	Isw	RF off, Vsw1/Vsw2 = 3.0/0 V	-	10	40	μΑ
Shut Down Current	Ishut down	Pin = -30 dBm, Ven = 0 V, Vsw1/Vsw2 = 3.0/0 V	3	4	15	μΑ
Output Power	Pout	Pin = 0 dBm, Ven = 3.0 V, Vsw1/Vsw2 = 3.0/0 V	17.5	19	- 7	dBm
Power Efficiency	PAE	$P_{in} = 0 \text{ dBm}, V_{en} = 3.0 \text{ V},$ $V_{sw1}/V_{sw2} = 3.0/0 \text{ V}$,	28	9	%
Input Return Loss	RLin	$P_{in} = -30 \text{ dBm}, V_{en} = 3.0 \text{ V},$ $V_{sw1}/V_{sw2} = 3.0/0 \text{ V}$	5)	-10	-	dB
Output Return Loss	RLout	$P_{in} = -30 \text{ dBm}, V_{en} = 3.0 \text{ V},$ $V_{sw1}/V_{sw2} = 3.0/0 \text{ V}$	-	-8	_	dB
2nd Harmonics	2f0	P _{in} = 0 dBm, V _{en} = 3.0 V, V _{sw1} /V _{sw2} = 3.0/0 V	-	-25	-	dBm
3rd Harmonics	3f0	P _{in} = 0 dBm, V _{en} = 3.0 V, V _{sw1} /V _{sw2} = 3.0/0 V		-40	_	dBm
Insertion Loss	Lins	$P_{in} = -30 \text{ dBm}, V_{en} = 0 \text{ V},$ $V_{sw1}/V_{sw2} = 0/3.0 \text{ V}$	_	1.5	2.0	dB

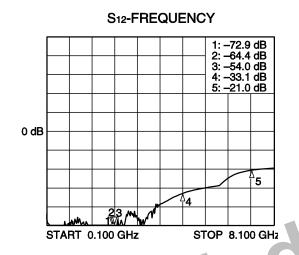

EVALUATION CIRCUIT

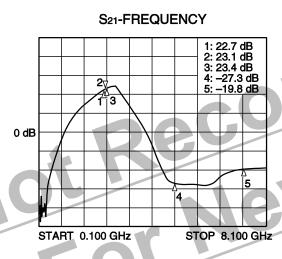


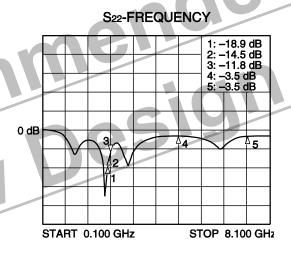
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

TYPICAL CHARACTERISTICS

(TA = +25°C, VDD1, 2, 3 = 3.0 V, Ven = 3.0 V, Vsw1/Vsw 2 = 3.0 V/0 V, f = 2.45 GHz, unless otherwise specified)

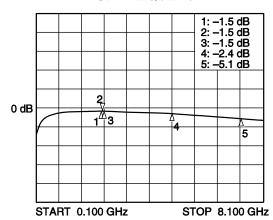



Remark The graphs indicate nominal characteristics.


Tx mode S-PARAMETERS

Condition : $T_A = +25$ °C, $V_{DD}1$, 2, 3 = 3.0 V, $V_{en} = 3.0$ V, $V_{SW}1/V_{SW}2 = 3.0$ V/0 V, $P_{in} = -30$ dBm

S11-FREQUENCY 1: -8.5 dB 2: -9.3 dB 3: -10.2 dB 4: -7.3 dB 5: -5.1 dB O dB 2 START 0.100 GHz STOP 8.100 GHz


Remarks 1. The graphs indicate nominal characteristics.

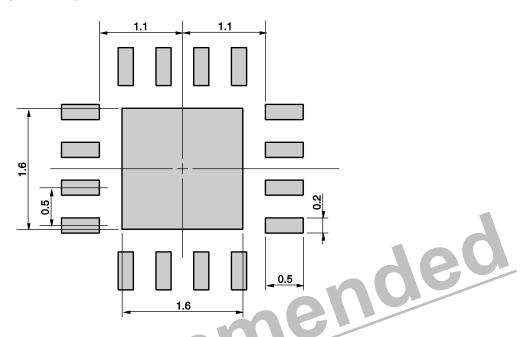
2. Marker1: 2.40 GHz Marker2: 2.45 GHz Marker3: 2.50 GHz Marker4: 4.90 GHz Marker5: 7.35 GHz

Path mode S-PARAMETER

Condition : $T_A = +25$ °C, $V_{DD}1$, 2, 3 = 3.0 V, $V_{en} = 3.0$ V, $V_{SW}1/V_{SW}2 = 0$ V/3.0 V, $P_{in} = -30$ dBm

S21-FREQUENCY

Remarks 1. The graph indicates nominal characteristics.

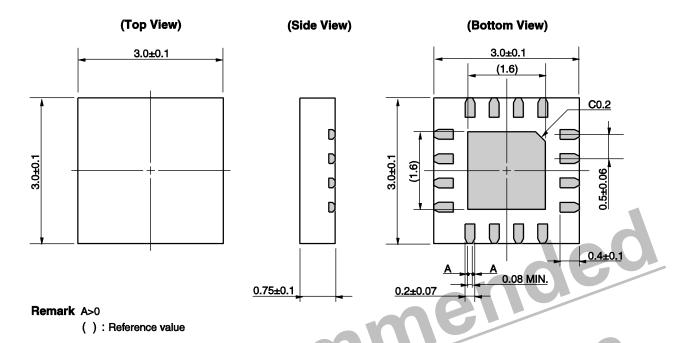

2. Marker1 : 2.40 GHz

Marker2: 2.45 GHz Marker3: 2.50 GHz

Marker4: 4.90 GHz Marker5: 7.35 GHz

MOUNTING PAD LAYOUT DIMENSIONS

16-PIN PLASTIC QFN (UNIT: mm)



Remark The mounting pad layouts in this document are for reference only.

When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

PACKAGE DIMENSIONS

16-PIN PLASTIC QFN (T6S) (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
- Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

